JPS6144921A - Organic semiconductor composition - Google Patents

Organic semiconductor composition

Info

Publication number
JPS6144921A
JPS6144921A JP59168160A JP16816084A JPS6144921A JP S6144921 A JPS6144921 A JP S6144921A JP 59168160 A JP59168160 A JP 59168160A JP 16816084 A JP16816084 A JP 16816084A JP S6144921 A JPS6144921 A JP S6144921A
Authority
JP
Japan
Prior art keywords
ion
polymer
tetrafluoroborate
doping
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59168160A
Other languages
Japanese (ja)
Other versions
JPH026766B2 (en
Inventor
Susumu Tanaka
進 田中
Masaaki Sato
正昭 佐藤
Kyoji Kaeriyama
帰山 享二
Masao Suda
須田 昌男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP59168160A priority Critical patent/JPS6144921A/en
Publication of JPS6144921A publication Critical patent/JPS6144921A/en
Publication of JPH026766B2 publication Critical patent/JPH026766B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

PURPOSE:The titled composition which is nontoxic and excellent in workability and can be obtained without any molding step, prepared by doping a specified polymer with anions. CONSTITUTION:The titled composition of an electric conductivity of 10<-2>-2S/cm is obtained by doping a thiophene polymer comprising repeating units of formula IIIor IV, obtained by electrolytically polymerizing a compound of formula I or IItogether with a supporting electrolyte (e.g., tetramethylammonium tetrafluoroborate) in a polar solvent (e.g., acetonitrile) in an inert atmosphere such as Ar with anions (e.g., tetrafluoroborate ion) supplied from the supporting electrolyte.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は新規なチオフェン系重合体より成る有機半導体
組成物に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to an organic semiconductor composition comprising a novel thiophene polymer.

近年、各種産業機器の電子化が進み、機器の小型化並び
に高性能化が可能となった。この背景には、半導体、集
積回路、LSIなどの産業の成長が大きく貢献しており
、今後も電子材料の利用範囲の拡大と需要増大が予測さ
れる。
In recent years, various types of industrial equipment have become increasingly electronic, making it possible to make them smaller and improve their performance. The growth of industries such as semiconductors, integrated circuits, and LSI has contributed significantly to this background, and it is predicted that the scope of use of electronic materials will continue to expand and demand will continue to increase.

従来の技術 このような情勢において、新規半導体材料の開発が重要
な課題となり、無機半導体に加えて有機半導体について
の研究が活発に行なわれている。
BACKGROUND OF THE INVENTION Under these circumstances, the development of new semiconductor materials has become an important issue, and research on organic semiconductors in addition to inorganic semiconductors is being actively conducted.

有機材料のなかでも高分子材料は成形性、可塑性、可と
う性に優れており、高分子半導体の利用は特に広いもの
と期待される。高分子半導体として、ボリア七チレン、
ポリフェニレンなどの重合体に対し、電子受容体を添加
して半導体としての性質を付与したものが開発されてい
る。例えば、〔ジャーナル・オブージ・アメリカン・ケ
ミカル・ソサエティ(J、Am、 Cbem、 Soc
、)第100巻、第1013ページ(1978年)′!
  シンセティック・メタル(5ynth、 Met、
 )第1巻、第307ページ(1980年)〕。また、
チオフェン環が置換基を有していないポリチオフェンも
知られている。例えば〔ディーマクロモレキュラー・ヘ
ミ−(Makromol。
Among organic materials, polymer materials have excellent moldability, plasticity, and flexibility, and polymer semiconductors are expected to be particularly widely used. As a polymer semiconductor, boria heptyrene,
Polymers such as polyphenylene have been developed in which electron acceptors are added to give them semiconductor properties. For example, [Journal of the American Chemical Society (J, Am, Cbem, Soc.
) Volume 100, Page 1013 (1978)'!
Synthetic metal (5ynth, Met,
) Volume 1, Page 307 (1980)]. Also,
Polythiophenes in which the thiophene ring has no substituents are also known. For example, [Makromol.

Chem、)第185巻、第1295ページ(1984
年)〕。
Chem,) Volume 185, Page 1295 (1984
Year)〕.

発明が解決しようとする問題点 しかしながら、従来の半導体材料として使用される重合
体の多くは、はん用熱可塑性重合体と異なり、加熱して
も溶融せずに固体状態のままで熱分解するため、成形性
、加工性が劣る上に、化学的性質、機械的性質が低いと
いう欠点があり、またポリアセチレンは酸素の作用を受
けやすく空気中で不安定であるという欠点を有しており
、いずれも実用性あるものとは言えない。更に電子受容
体は毒性の強いものが多く、改善が望まれていた。
Problems that the invention aims to solveHowever, unlike general-purpose thermoplastic polymers, many of the polymers used as conventional semiconductor materials do not melt even when heated, but remain in a solid state and thermally decompose. Therefore, polyacetylene has the disadvantage of poor moldability and processability, as well as low chemical and mechanical properties. Polyacetylene also has the disadvantage of being susceptible to the action of oxygen and being unstable in air. Neither of these can be said to be practical. Furthermore, many electron acceptors are highly toxic, and improvements have been desired.

また、ポリチオフェンに陰イオンをドーピングさせて成
る半導体は、その電導度が空気中で比較的急速に低下し
、実用り問題となっていた。
Furthermore, the conductivity of a semiconductor made by doping polythiophene with anions decreases relatively rapidly in the air, which has been a problem in practical use.

本発明者らは、このような従来の高分子半導体のもつ欠
点を克服すべく鋭意研究を行った結果、ある種のチオフ
ェン重合体がその目的に適合することを見出し、この知
見に基づいて本発明をなすに至った。
The present inventors conducted extensive research to overcome the drawbacks of conventional polymer semiconductors, and as a result, discovered that a certain type of thiophene polymer was suitable for this purpose.Based on this knowledge, the present inventors developed the present invention. He came up with an invention.

問題点を解決しようとする手段 すなわち、本発明は、式 または、式 で示される繰返し単位から成る重合体に陰イオンをドー
ピングさせて成る有機半導体組成物を提供、するもので
ある。
A means for solving the problem, that is, the present invention provides an organic semiconductor composition in which an anion is doped into a polymer consisting of the formula or a repeating unit represented by the formula.

本発明の1【合体は、いずれも文献未載の新規物質であ
り、そのままでは電気的に絶縁体であるがテトラフルオ
ロホウ酸イオン、過塩素酸イオン、ヘキサフルオロリン
酸・イオン、ヘキサフルオロヒ素酸イオン、硫酸イオン
、硫酸水素イオン、トリフルオル酢酸イオン、p−トル
エンスルホン酸イオンのような陰イオンをドーピングす
ると半導体としての性質を示すようになる。
1 of the present invention, all of which are new substances that have not been described in literature, and which are electrically insulating as they are, include tetrafluoroborate ion, perchlorate ion, hexafluorophosphate ion, and hexafluoroarsenic. When doped with anions such as acid ions, sulfate ions, hydrogen sulfate ions, trifluoroacetate ions, and p-toluenesulfonate ions, it exhibits semiconductor properties.

本発明のチオフェン系重合体は、例えば、式または、式 で示される化合物を電解重合させることにより製括する
ことができる。電解重合によって得られた重合体は使用
した支持電解質中の陰イオンがドーピングされた構造で
得られ、これは半導体としての性質をもっている。
The thiophene-based polymer of the present invention can be produced, for example, by electrolytically polymerizing the formula or a compound represented by the formula. The polymer obtained by electrolytic polymerization has a structure doped with anions in the supporting electrolyte used, and has semiconductor properties.

電解重合は極性溶媒中かつ不活性雰囲気下で行うのが有
利である。この際の極性溶媒としては、アセトニトリル
、ニトロベンゼン、ニトロメタン、ベンゾニトリル、炭
酸プロピレン、テトラヒドロフラン、塩化メチレン、ジ
メチルホルムアミド、ジメチルスルホキシド、ヘキサメ
チルホスホルトリアミド、1−メチル−2−ピロリジノ
ン、ジメチル硫酸、ジエチル硫酸などが好ましい。また
不活性雰囲気としては、窒素、アルゴンなどが用いられ
る。このように不活性雰囲気下で行うことにより、反応
中間体が酸素と化合して副生物を生じるのを防ぐことが
できる。
The electropolymerization is advantageously carried out in a polar solvent and under an inert atmosphere. In this case, polar solvents include acetonitrile, nitrobenzene, nitromethane, benzonitrile, propylene carbonate, tetrahydrofuran, methylene chloride, dimethylformamide, dimethyl sulfoxide, hexamethylphosphorotriamide, 1-methyl-2-pyrrolidinone, dimethyl sulfate, diethyl sulfate. etc. are preferable. Further, as the inert atmosphere, nitrogen, argon, etc. are used. By carrying out the reaction under an inert atmosphere in this manner, it is possible to prevent the reaction intermediate from combining with oxygen and producing by-products.

電極材料には、金、白金などの貴金属のほかに酸化第二
インジウム、酸化第二スズなどをガラス表面に蒸着した
ガラス電極も用いられる。
In addition to noble metals such as gold and platinum, glass electrodes in which indium oxide, stannic oxide, and the like are deposited on the glass surface are also used as electrode materials.

支持電解質としては、テトラフルオロホウ酸テトラメチ
ルアンモニウム、テトラフルオロホウ酸テトラエチルア
ンモニウム、テトラフルオロホウ酸テトラーn−ブチル
アンモニウム、テトラフルオロホウ酸リチウム、過塩素
酸テトラメチルアンモニウム、過塩素酸テトラエチルア
ンモニウム、過塩素酸テトラ−n−ブチルアンモニウム
、過塩素酸リチウム、ヘキサフルオロリン酸テトラメチ
ルアンモニウム、ヘキサフルオロリン酸テトラ−n−7
’チルアンモニウム、ヘキサフルオロリン酸ナトリウム
、ヘキサフルオロヒ素酸テトラ−n−ブチルアンモニウ
ム、ヘキサフルオロヒ素酸ナトリウム、硫酸、硫酸水素
テトラメチルアンモニウム、硫酸水素テトラ−n−ブチ
ルアンモニウム、トリフルオル酢酸ナトリウム、p−)
ルエンスルホン酸テトラメチルアンモニウム、p−トル
エンスルホン酸テトラ−n−ブチルアンモニウムなどが
あげられる。
Supporting electrolytes include tetramethylammonium tetrafluoroborate, tetraethylammonium tetrafluoroborate, tetra-n-butylammonium tetrafluoroborate, lithium tetrafluoroborate, tetramethylammonium perchlorate, tetraethylammonium perchlorate, and tetrafluoroborate. Tetra-n-butylammonium chlorate, lithium perchlorate, tetramethylammonium hexafluorophosphate, tetra-n-7 hexafluorophosphate
'Tylammonium, sodium hexafluorophosphate, tetra-n-butylammonium hexafluoroarsenate, sodium hexafluoroarsenate, sulfuric acid, tetramethylammonium hydrogensulfate, tetra-n-butylammonium hydrogensulfate, sodium trifluoroacetate, p- )
Examples include tetramethylammonium luenesulfonate and tetra-n-butylammonium p-toluenesulfonate.

前記■の化合物は新規化合物で、例えば、3−ブロム−
2,2′−ビチオフエンにナトリウムメトキシドを反応
させることにより合成される。この際に用いる3−ブロ
ム−2,2′−ビチオフエンは既知化合物であり、例え
ば、2.3−ジブロムチオフェンにn−ブチルリチウム
を反応させて、3.3′−ジブロム−2,2′−ビチオ
フェンを合成し、次にこれと金属マグネシウムとを反応
させた後、加水分解を行うことにより合成される〔アク
タ・ケミ力・スカンジナビカ(Acta、 Chem、
 5cand、)第15巻、第1393ページ(196
1年)、アルキブ・フォー・ケミ(Ark iv、 K
em j)第28巻、第99頁(1967袖)〕。
The compound (2) above is a new compound, for example, 3-bromo-
It is synthesized by reacting 2,2'-bithiophene with sodium methoxide. 3-Bromo-2,2'-bithiophene used in this case is a known compound. For example, 2,3-dibromothiophene is reacted with n-butyllithium, and 3,3'-dibromo-2,2' - It is synthesized by synthesizing bithiophene, then reacting it with metallic magnesium, and then hydrolyzing it [Acta, Chem, Scandinavica,
5cand,) Volume 15, Page 1393 (196
1st year), Ark for Chemi (Ark iv, K
em j) Volume 28, Page 99 (1967 Sleeve)].

発明の効果 本発明の重合体は電解重合により陰イオンがドーピング
された構造で得られ、重合とドーピング過程が実質的に
一段階で行ないうるという長所を有する。また、重合体
の形状は電極面上に膜として形成され、膜厚は電解槽に
通じた電気量により調整できるので、成形加工工程を省
略することが可能となる。更に、ドーピングされる陰イ
オンは中性の支持電解質から供給されるが、これは空気
中で安定なものが多く、作業性を向上させ、毒性の点て
も有利である。重合体の電導度は1O−2S/cmから
最大2 S / cm程度と良好であり、この値は空気
中でも低下せず、電極材料、電磁波シールド材、太陽電
池などへの応用が可能である。
Effects of the Invention The polymer of the present invention has an anion-doped structure obtained by electrolytic polymerization, and has the advantage that the polymerization and doping processes can be carried out substantially in one step. In addition, the shape of the polymer is formed as a film on the electrode surface, and the film thickness can be adjusted by the amount of electricity passed through the electrolytic cell, making it possible to omit the molding process. Further, the anions to be doped are supplied from a neutral supporting electrolyte, which is often stable in the air, improves workability, and is advantageous in terms of toxicity. The conductivity of the polymer is good, ranging from 10-2 S/cm to a maximum of about 2 S/cm, and this value does not decrease even in the air, making it possible to apply it to electrode materials, electromagnetic shielding materials, solar cells, etc.

前記(I)、(II)で示した重合体に陰イオンをドー
ピングさせて成る半導体は以上のような特長をもってい
るが、膜の機械的性質を比較すると、(川の方が優れて
いる。
Semiconductors made by doping the polymers shown in (I) and (II) with anions have the above-mentioned features, but when comparing the mechanical properties of the membranes, (Kawa's) is superior.

実施例 次に実施例により本発明を更に詳細に説明する。Example Next, the present invention will be explained in more detail with reference to Examples.

参考例 1 還流冷却器、撹拌器、塩化カルシウム管付き50−三頚
フラスコに、脱水メタノール22.5Mと金属ナトリウ
ム1.8g(78ミリグラム原子)を入れた。激しい反
応がおさまった後、ヨウ化カリウム25mfI(0,1
5ミリモル)、3−ブロム−2,2′−ビチオフヱン6
.9g(28ミリモル)、酸化第二銅1.12g (1
4ミリモル)、を加えた。100°Cで120時間撹拌
し、反応物を濾別した。濾液を2倍容の氷水に入れ、エ
ーテル抽出を行った。エーテル留去後、減圧蒸留すると
、無色透明液体である3−メトキシ−2,2′−ビチオ
フエン1.1g(20%)が得られた。沸点123°C
(3mmHg)。
Reference Example 1 22.5 M of dehydrated methanol and 1.8 g (78 milligram atoms) of metallic sodium were placed in a 50-three-necked flask equipped with a reflux condenser, a stirrer, and a calcium chloride tube. After the violent reaction subsided, 25 mfI of potassium iodide (0,1
5 mmol), 3-bromo-2,2'-bithiophene 6
.. 9 g (28 mmol), cupric oxide 1.12 g (1
4 mmol) was added. The mixture was stirred at 100°C for 120 hours, and the reaction product was filtered off. The filtrate was poured into twice the volume of ice water and extracted with ether. After distilling off the ether, the residue was distilled under reduced pressure to obtain 1.1 g (20%) of 3-methoxy-2,2'-bithiophene as a colorless transparent liquid. Boiling point 123°C
(3mmHg).

実施例 1 1 cmの間隔で2枚の白金板(2X2=4crII)
を取付けた電解槽に、3−メトキシチオフェン0.22
8(2ミリモル)、ヘキサフルオロリン酸テトラ−n−
7”チルアンモニウム0.194 g (0,5ミリモ
ル)、アセトニ) IJル10Tnlを入れ溶解させた
。アルゴンを15分間吹込んだ後、25°Cで電解重合
を行った。電流密度2 rrA/ cJで2時間重合さ
せると、陽極上にヘキサフルオロリン酸イオンがドーピ
ングされた黒色膜状重合体22.8m9が得られ、その
電導度は5.7 X 10 ”” 87cmを示した。
Example 1 Two platinum plates (2X2=4crII) with an interval of 1 cm
3-methoxythiophene 0.22
8 (2 mmol), hexafluorophosphate tetra-n-
7" 0.194 g (0.5 mmol) of tylammonium, 10 Tnl of acetonate was added and dissolved. After blowing in argon for 15 minutes, electrolytic polymerization was carried out at 25°C. Current density was 2 rrA/ After polymerization for 2 hours at cJ, 22.8 m9 of a black film-like polymer doped with hexafluorophosphate ions on the anode was obtained, and its conductivity was 5.7 x 10'' 87 cm.

 このサンプルを8日間空気中に放置しても電導度は低
下しなかった。
Even when this sample was left in the air for 8 days, the conductivity did not decrease.

実施例 2 鶏。Example 2 chicken.

実施例1に記載した電解槽に、3−メトキシ−2,2′
−ビチオフェン0.098g(0,5ミリモル)、、テ
トラフルオロホウ酸テトラーn−ブチルアンモニウム0
.165 g (0,5ミリモル)、ニトロベンゼンl
QmJを入れ溶解させた。以下、実施例1と同様な操作
を行ったところ、テトラフルオロホウ酸イオンがドーピ
ングされた黒色膜状重合体37.6#が得られ、その電
導度は2.4S/cmを示した。このサンプルを8日間
空気中に放置しても電導度は低下しなかった。
In the electrolytic cell described in Example 1, 3-methoxy-2,2'
- bithiophene 0.098 g (0.5 mmol), tetrafluoroboric acid tetra-n-butylammonium 0
.. 165 g (0.5 mmol), nitrobenzene l
QmJ was added and dissolved. Thereafter, the same operation as in Example 1 was performed, and a black film-like polymer 37.6# doped with tetrafluoroborate ions was obtained, and its electrical conductivity was 2.4 S/cm. Even when this sample was left in the air for 8 days, the conductivity did not decrease.

実施例 3 実施例2において、白金板の代わりにガラス電極(2X
2=4cJ)を用いんほかは同様な操作を行ったところ
、テトラフルオロホウ酸イオンがドーピングされた黒色
膜状重合体40.0 +11fが得られ、その電導度は
8.3xio−1S/cmを示した。
Example 3 In Example 2, a glass electrode (2X
When the same operation was performed except that 2=4cJ) was used, a black film-like polymer doped with tetrafluoroborate ions 40.0+11f was obtained, and its electrical conductivity was 8.3xio-1S/cm. showed that.

Claims (1)

【特許請求の範囲】 1、式 ▲数式、化学式、表等があります▼または▲数式、化学
式、表等があります▼ で示される繰返し単位から成る重合体に陰イオンをドー
ピングさせて成る有機半導体組成物。 2、陰イオンがテトラフルオロホウ酸イオン、過塩素酸
イオン、ヘキサフルオロリン酸イオン、ヘキサフルオロ
ヒ素酸イオン、硫酸イオン、硫酸水素イオン、トリフル
オル酢酸イオン又はp−トルエンスルホン酸イオンであ
る特許請求の範囲第1項記載の組成物。
[Claims] 1. An organic semiconductor composition obtained by doping an anion into a polymer consisting of repeating units represented by the formula: thing. 2. A patent claim in which the anion is a tetrafluoroborate ion, perchlorate ion, hexafluorophosphate ion, hexafluoroarsenate ion, sulfate ion, hydrogen sulfate ion, trifluoroacetate ion or p-toluenesulfonate ion A composition according to scope 1.
JP59168160A 1984-08-10 1984-08-10 Organic semiconductor composition Granted JPS6144921A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59168160A JPS6144921A (en) 1984-08-10 1984-08-10 Organic semiconductor composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59168160A JPS6144921A (en) 1984-08-10 1984-08-10 Organic semiconductor composition

Publications (2)

Publication Number Publication Date
JPS6144921A true JPS6144921A (en) 1986-03-04
JPH026766B2 JPH026766B2 (en) 1990-02-13

Family

ID=15862919

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59168160A Granted JPS6144921A (en) 1984-08-10 1984-08-10 Organic semiconductor composition

Country Status (1)

Country Link
JP (1) JPS6144921A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6366221A (en) * 1986-08-26 1988-03-24 ヘキスト アクチェンゲゼルシャフト Soluble conductive polymer, and its production and use
EP0292905A2 (en) * 1987-05-26 1988-11-30 Hoechst Aktiengesellschaft Electrically conductive coating composition, method for its manufacture and its use
JPH01252628A (en) * 1987-10-29 1989-10-09 Miles Inc Functional conductive polymer and its use in diagnostic device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6366221A (en) * 1986-08-26 1988-03-24 ヘキスト アクチェンゲゼルシャフト Soluble conductive polymer, and its production and use
EP0292905A2 (en) * 1987-05-26 1988-11-30 Hoechst Aktiengesellschaft Electrically conductive coating composition, method for its manufacture and its use
JPH01252628A (en) * 1987-10-29 1989-10-09 Miles Inc Functional conductive polymer and its use in diagnostic device

Also Published As

Publication number Publication date
JPH026766B2 (en) 1990-02-13

Similar Documents

Publication Publication Date Title
EP1652850B1 (en) Substituted thienothiophene monomers and conducting polymers
EP1642896B1 (en) Pentafluorosulfanyl-substituted thienothiophene monomers and conducting polymers
EP0253594A2 (en) Polymerisable thiophene monomers, their production and polymers prepared therefrom
US5405937A (en) Polymers derived from fluorinated thiophenes, and conductive polymers derived therefrom
US20110190461A1 (en) Novel heterocyclic aromatic compound and polymer
US4892678A (en) Thiophene derivative polymer and a polymer composition thereof
JPH01161013A (en) Modified conductive polymer and production thereof
JPS6144921A (en) Organic semiconductor composition
US4877852A (en) Thiophene derivative polymer and a polymer composition thereof
US7094365B2 (en) Pentafluorosulfanyl-substituted thienothiophene monomers and conducting polymers
JPH02218716A (en) Organic semiconductor and production thereof
JPH0794538B2 (en) Novel polymer and method for producing the same
JPH0138411B2 (en)
JPS63199727A (en) Organic semiconductor
JP3058735B2 (en) Polypyrrole derivative and method for producing the same
JPS63161024A (en) Novel thiophene polymer, its production and organic display material made therefrom
JPS62220518A (en) Thiophene polymer and production thereof
JPH0138805B2 (en)
JPH0412725B2 (en)
JPH083033B2 (en) Semiconductor manufacturing composition
JPH0273826A (en) Production of electrically conductive polymer
JPH0275625A (en) Electrically conductive polymer
JPH04106122A (en) Conductive polymer composition and its production
JPH02263823A (en) Electrically conductive polymer
JPH03121123A (en) Poly(3-alkylfuran), its production and its dielectric composite material

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term