JPS6144914B2 - - Google Patents

Info

Publication number
JPS6144914B2
JPS6144914B2 JP8359781A JP8359781A JPS6144914B2 JP S6144914 B2 JPS6144914 B2 JP S6144914B2 JP 8359781 A JP8359781 A JP 8359781A JP 8359781 A JP8359781 A JP 8359781A JP S6144914 B2 JPS6144914 B2 JP S6144914B2
Authority
JP
Japan
Prior art keywords
oil
surfactant
heavy oil
heavy
solid impurities
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8359781A
Other languages
Japanese (ja)
Other versions
JPS57198786A (en
Inventor
Masatomo Shigeta
Yoshio Ishii
Akio Hoshi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kureha Corp
Nippon Steel Corp
Original Assignee
Kureha Corp
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kureha Corp, Sumitomo Metal Industries Ltd filed Critical Kureha Corp
Priority to JP8359781A priority Critical patent/JPS57198786A/en
Publication of JPS57198786A publication Critical patent/JPS57198786A/en
Publication of JPS6144914B2 publication Critical patent/JPS6144914B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Working-Up Tar And Pitch (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は石炭系並びに石油系重質油類に界面活
性剤水溶液を混合接触せしめ該重質油類中のキノ
リン不溶の微小固形不純物を界面浮遊物として生
成せしめ、これを分離除去する方法に関するもの
である。 本発明の方法により得られる精製重質油は
UHP電極やポンプ軸封用に供される易黒鉛化性
コークス、等方性並びに異方性炭素繊維や高級活
性炭などの炭素材製造用原料として好適なもので
ある。 従来、炭素材製造用の原料としては石炭系重質
油類、石油系重質油類から高分子繊維類など非常
に多岐にわたつているが、量的には石炭系並びに
石油系重量油類は原料費が安価な割には炭化収率
が高いことによる経済的な利点のために多用され
ている。しかしながら、これら重質油類に対する
原料性状の許容範囲も厳しく、たとえば、石油系
重質油の場合、硫黄分の含有量が一般に高いため
に低硫黄品質の重質油類が選択的に用いられ、原
料選択幅が大きく制約される。一方石炭系重質油
類の場合、石油系重質油類に比較して硫黄濃度が
低く炭化収率は高いものの、針状コークスや炭素
繊維用等の高級炭素材原料として用いるには、石
炭系重質油類中に僅かに含まれている微小なキノ
リン不溶の固形不純物(キノリン不溶分)が黒鉛
化性を妨げ好ましくないものとされている。な
お、石油系重質油類中にも程度の差はあれ、石炭
系重質油類と同様、僅かではあるが、微小固形不
純物が含まれている。ここで該固形不純物の許容
濃度は炭素材として使用される方法によつて異な
るが、後述する分析法によるキノリン不溶分が、
炭素繊維の場合には100ppm以下、その他の炭素
材の場合には300ppm以下が目安とされている。 従つて、石炭系、石油系を問はず重質油類中の
固形不純物を効率的に除去することができれば高
級炭素材原料の利用拡大をはかることができ、炭
素材料コストの低減に大きく寄与することにな
る。 重質油類中の微小なキノリン不溶の固形不純物
とは500μm以下の浮遊粒子を意味し、その内容
はカーボン、無機塩などで構成されており、容易
に沈降分離しないものである。これを分離するに
は遠心力等の外力を重質油に加え、浮遊固形物粒
子と重質油との密度差で分離することが最も一般
的であるが、浮遊固形物粒子が非常に微細である
ために、単に遠心操作だけでは分離し難い。従つ
て微細な浮遊粒子を凝集巨大化することが重力差
による分離を行なう限り必要なこととなる。 こゝで技術的に特に問題となるのはこのような
微小なキノリン不溶分を除去する方法で、そのた
めの技術もいくつか提案されている。 従来法では、 重質油類を熱処理してキノリン不溶分の粒径
を増大し分離除去する方法。 石炭系重質油に他の別の石油系重質油を添加
し、キノリン不溶分に高分子成分(ガム状成
分)を付着させ、粒径を増大させ、要すれば脂
肪族系や芳香族系の溶媒を混合し、該混合液を
加熱撹拌または冷却して該不溶性沈殿物を分離
除去する方法(特開昭55−104387号、特開昭55
−113606号等)。 重質油類に有機溶剤を混合して、キノリン不
溶分を含む微小不溶性沈殿物を凝集巨大化して
分離除去する方法(特開昭55−136111号公報特
願昭54−43171号、特開昭56−49791号公報特願
昭54−125971号、特開昭56−59611号公報特願
昭54−135454号等)。 しかし上記分類の範疇に入るものは原理的には
優れているものの、以下に述べる理由により一長
一短があり必ずしも有効な方法でなかつた。 すなわちの方法では、分離される不溶性沈殿
物の粒径が極めて小さいため、分離速度が遅く、
過の際に目詰まりを生じ分離効率が低い。また
重質油類の粘度を低くするため高温にして、分離
もしくは過をする必要があり設備コストおよび
運転コストが高いものとなる。またの方法で
は、常温では不溶性沈殿物の生成が遅いため、
200℃にも及ぶ加熱や、数時間に及ぶ撹拌や多量
の高価な溶媒を必要とし、そのため溶媒回収の設
備を必要とするなど工業的な効率性と経済性に欠
ける。次にの方法では、有機溶剤の重質油類に
対する使用比率が10〜100倍を必要とするもので
は、処理費が極めて高いものとなる。またの方
法と同様、加熱撹拌後静置冷却や高価な溶媒の回
収・循環使用の設備を必要とするものが多い。 本発明者等は上記従来法のガム状成分の生成に
よる原料重質油の微小固形不純物の凝集巨大化の
代りに、界面活性剤水溶液を原料重質油に混合す
ることにより、通常の遠心力の範囲で、界面活性
剤の固形物の凝集効果を利用して、重質油中の微
小固形物を油水回面に取り込み凝集巨大化させる
ことによつて効率良く分離除去できることを発明
した。 また従来の方法は加熱などにより重質油中の成
分の重縮合を生じ、原料重質油の性状を大幅に変
質させる結果となり、過度に重縮合したものが除
去されるため結局製品までの炭化収率を低下させ
ることになる。本発明はこれと異なり、単に界面
活性剤による微小固形不純物の凝集を図るもので
あるため、原料重質油の本質的な性状の変質を伴
はず、先行技術に於ける炭化収率の低下を大幅に
改善するものである。 一方、本発明の固形物を界面活性剤などの試薬
を加えて分離するものには、粉砕鉱物から精鉱と
鉱石とを分離する浮遊選鉱法がある。これは最も
一般的には「泡沫分離法」として知られているも
ので、少量の起泡剤・捕集剤などの試薬(界面活
性剤)を加えて、機械的に稀には化学的に空気を
導入して気泡を作り、その気泡に特定の鉱物粒子
を付着させて、液面に泡沫として浮揚させて分離
する方法であるが、本発明の方法は泡沫を形成さ
せるものではなく、液状のまゝで油・水界面微小
固形不純物を凝集させるものであつて「泡沫浮
選」とは異なる方法である。その他「浮選法」に
は油を添加するものや水の表面に単分子層の皮膜
を形成させて、精鉱と鉱石に夫々の選択的付着の
差を利用して分離する方法があるが、これらの方
法では鉱物(固形分)を精鉱と鉱石に分離するも
のであつて、本発明の固形分すべてを液と分離す
るものとは方法的に異なるものである。 一方、原油採掘に於て油と水のエマルジヨン分
離の際に、採掘原油中の鉱物粒子やパラフイン結
晶などをエマルジヨン界面から引き離し、それぞ
れを水層又は油層に移行させる機能を持つた各種
界面活性剤が用いられている。油と水の分離に於
ける此等界面活性剤の効果は、本発明の目的を達
成する技術として知られたものではあるが、本発
明者等は重質油類中のキノリン不溶の微小固形不
純物の分離に此等市販の界面活性剤を適用する場
合には、混合時の撹拌の方法が適切でないと十分
な効果を挙げ得ないことを多くの実験の結果、発
見したものである。 すなわち一般には界面活性剤と重質油中の固形
不純物との混合接触を十分にするために撹拌を激
しくするだろうが、激しい撹拌では固形不純物の
油水界面への凝集の効果は発揮されず、撹拌条件
を緩徐にすることによつてのみ始めて効果が発揮
されることを発見したものである。 以下この発明について詳述する。 この発明における石炭系重質油類とは石炭乾燥
留時に副生する高温タールや低温タールのような
コールタール類や、石炭液化生成物等を指し、石
油系重質油類とは常圧蒸留残渣油、減圧蒸留残渣
油、ナフサ分解ボトム油、流動接触ボトム油、溶
剤抽出残渣油等を指し、これら単一種または複合
混合油である。 本発明は界面活性剤水溶液を上記原料重質油類
に混合することにより、該重質油中のキノリン不
溶の微小固形不純物を両液界面に凝集巨大化さ
せ、両液を分離後、重質油精製工程で分留した軽
質油分を粘度調節剤として混合し、遠心分離除去
することを特徴とする炭素成形体用原料重質油の
製造方法である。 本発明を構成する各工程を以下に順を追つて説
明する。 本発明の流れを1例として図1に示す。 (A) 界面活性剤としては慣用の油水エマルジヨン
分離用の乳化破壊性と消泡性を有する水溶性の
市販界面活性剤を使用する。該特性を有する市
販界面活性剤としては、一般にイオン性に於て
陰イオン、陽イオン、非イオン又は両性イオン
系のものが知られており、それらの何れのもの
でも使用することができる。たゞし原料重質油
類との混合撹拌により激しく発泡するものや、
エマルジヨンとなつて白濁するものは、その後
の分離操作を困難にするので好ましくない。従
つて一般の油水分離用の消泡剤や乳化破壊剤の
性質を有するものが好適である。たとえば陰イ
オン界面活性剤としてはアルキルおよびまたは
アリル硫酸塩やスルフオン酸塩で、アルキルお
よびまたはアリル基はそれらを修飾した酸やア
ルコールのエステルやエーテルの形をとるもの
も含まれる。陽イオン界面活性剤としてはアル
キルアミド系、第4級アンモニウム塩系または
アルキル等で修飾されたイミダゾリン系のも
の。非イオン界面活性剤としてはポリオキシエ
チレンアルキルフエニルエーテル、ポリオキシ
エチレンモデイフアイドアルキルアリルエーテ
ル、ポリエチレングリコールアルキルエーテ
ル、ソルビタン脂肪酸エステル、脂肪酸モノグ
リセリド等が用いられる。 本発明ではこれら市販界面活性剤の油水分に
於ける乳化破壊、消泡その他の種々の効果に加
えて、原料重質油中のキノリン不溶の微小固形
不純物を除去する場合、驚くべきことには該混
合液の撹拌条件によつて微小固形不純物の凝集
あるいはその後の分離の良否が左右されること
が明らかになつたことである。 上記界面活性剤は予め水に完全に溶解して
0.1〜5.0重量%好ましくは0.5〜2.5重量%の濃
度として、該水溶液を重質油重量の0.1〜5.0倍
の割合、好ましくは0.5〜3.0倍量を使用する。
一般に界面活性剤の水溶液濃度としては数%以
下が用いられるが、2.5%以上ではキノリン不
溶分(QI)の除去効果が飽和する傾向があ
り、一方精製重質油中のQIを100ppm以下に保
つためには0.5%以上でなければならない。界
面活性剤溶液の使用倍数は油層と水層に分離す
る程度の0.1〜5.0倍が用いられたが、2.5倍もあ
ればQIを目標値の50ppm以下まで下げること
ができることが判明した。精製重質油のQI値
は界面活性剤水溶液の濃度および使用倍数(混
合比)の調整によつて調節することができる。 後の油層と水層の分離(水分離)工程では遠
心沈降を容易にするための液粘度が75c.p.以下
であることが望ましかつたが、特に重質油の粘
度をこの範囲に保つためには50℃以上に加熱す
ることが必要で、混合槽では適当な加熱により
混合液の温度を50℃以上80℃以下に保つように
する。 (B) 次に(A)の重質油と界面活性剤水溶液の混合液
を混合撹拌する。水に溶解した界面活性剤は重
質油中の微小固形不純物を水層に懸垂する油滴
の表面に取込むことになり、この油滴は混合槽
内の撹拌により水層と油層との界面に浮揚し、
固形不純物の凝集の役割を果たす。この際混合
接触の程度を増し、単位重質油容積あたりの界
面積を大きくした方が、固形不純物を界面に取
込む割合も増し好ましいことになるように考え
られるが、結果としては撹拌を激しくすると直
径1mm以下の微細な油滴が槽全体に分散浮遊す
るようになり、固形不純物は油滴と水媒質との
界面に取込まれても、結局は次の工程で分離し
きれないまま重質油中に残存することになり、
精製重質油中のQI値を目標値まで低減するこ
とが困難となることが予期に反する驚くべきこ
ととして発見された。 本発明を特徴づけるこのような緩徐な撹拌
は、使用する界面活性剤の種類、原料重質油の
種類、混合液の温度、撹拌混合槽に於ける撹拌
翼の幾何学的な位置・構造ならびに回転数など
数多くの因子によつて影響されるので一義的に
は定められないが、数多くの実験の結果から好
ましいものとして目視による観察で水層に分散
する油滴の長径が2〜10mmとなるような撹拌と
することが必要である。このことを実験の諸元
から一例として具体的な撹拌条件を示すと次の
ようになるが、本発明はこれにより制約される
ものではない。 すなわち摺型捩り4枚羽根の撹拌翼を混合槽
の中心軸に水平に配し、槽内液に上向流を与え
るような回転方向を選び、槽径に対する翼径比
が0.5〜0.7、翼位置が槽底面から液深の1/4〜
1/3の深さで、槽径に対する翼幅比が0.08〜
0.12、翼の捩り角度が水平面に対して30〜45゜
の撹拌翼を用いて、回転数が30〜440rpm、炭
素繊維用として好ましくは50〜150rpmが1つ
の目安となる。撹拌時間は約60分間程度であ
る。 従つて界面活性剤を必要以上に溶解したり、
必要以上に強く撹拌して微細な小油滴が水媒質
中に発生させることは避けなければならない。 (C) 次に(B)工程で油水界面に集められた固形不純
物は遠心沈降機で30000〜100000G・secの遠心
力を作用させることによつて界面活性剤を含む
水層と凝集巨大化した固形不純物を含む重質油
層に分離する。遠心力の単位として対重力遠心
力比(G)と作用時間(sec.)の積のG・sec
で表わしたが本水分離工程の遠心力は通常の遠
心効果を有する遠心沈降機により短時間且つ容
易に達成される。分離水層は第1図のように界
面活性剤の濃度の管理の下に、混合槽に循環再
利用することができる。 (D) 次に(C)工程で分離した油層に、粘度調節剤と
して該油層に対してほゞ同重量のベンゼン、ト
ルエン、キシレン等の芳香族化合物あるいはア
セトン等のケトン類、エーテル類、エステル類
等の脂肪族化合物等の沸点が150℃以下の低分
子有機溶剤を添加して、任意の撹拌により該重
質油溶液の粘度を10cp以下とする。粘度調節
剤は上記各種有機剤が使用されるが、経済的な
面から後の蒸留分離工程から得られる軽質留分
(主にベンゼン)を第1図のように循環して利
用することができる。重質油溶液の粘度を下げ
る方法として50℃程度に加温することもでき
る。 (E) 次に(D)工程で得られた混合物油を遠心沈降又
は過機により、3×105〜12×105G・secの遠
心力を作用させて該重質油溶液中に混在する固
形不純物を分離除去する。先の(D)工程での粘度
調節剤の添加は本工程の遠心分離を容易にする
ためのもので、本工程の遠心分離機も又通常の
遠心効果を有するものにより、必要な時間遠心
力を作用させることによつて容易に固形不純物
を除去することができる。 (F) 該分離重質油溶液及び固形不純物はそれぞれ
常圧蒸留により、200℃以下の軽質留分を分留
する。該軽質留分は(D)工程の粘度調節剤として
循環使用することができる。 以下実施例により本発明の方法を具体的に説明
する。 なお本発明による重質油中のQI(キノリン不
溶分)の定量方法はJIS−K2425の検知限度
500ppmに対して数ppmまで測定できる精度の高
い方法を採用しているが、次の手順によつてい
る。 重質油に対して容積比で約10倍量のキノリンを
加え、80℃の温度で30分間加温、撹拌混合後、保
留粒径0.5μmのガラス繊維紙で過し、さら
にキノリン洗浄およびベンゼン洗浄を行ない0.5
μmガラス繊維紙上に残存した固形物を110℃
で30分間乾燥後冷却してその重量を重質油重量に
対する割合としてppmで表わす。 また固形不純物生成率とは固形不純物分離工程
で分離された固形物質を110℃30分間乾燥後冷却
して測定した重量の重質油重量に対する割合を百
分率で表わしたものである。 実施例 1 湯浴を有する第2図に示す撹拌機付き混合槽
に、重質油として第1表に示す性状のコールター
ルまたは石油系分解ボトム油に界面活性剤として
市販のカチオン性、アニオン性またはノニオン性
の第2表脚注に揚げた各社商品を用い第1図に示
す工程に従い第2表に示す各条件で重質油中のキ
ノリン不溶の固形不純物を除去し、精製重質油中
のキノリン不溶分を測定した。 本実施例は重質油の種類と界面活性剤の種類の
差により精製重質油のキノリン不溶分がどのよう
になるかを確かめたものである。従つてその他の
各工程の操作条件は同じにした。すなわち界面活
性剤の水溶液濃度、該水溶液と重質油の混合比
(重量比)、撹拌回転数、撹拌時間、混合液温度、
水分離に於ける遠心力(遠心沈降管を有する遠心
分離機を用い遠心力比2000Gで30秒間処理)、分
離温度;粘度調節剤混合比、その撹拌時間(4
分)および回転数(50rpm);固形不純物分離に
おける遠心力(遠心沈降管を有する遠心分離機を
用い遠心力比2000Gで5分間処理)並びに蒸留分
離(簡易常圧蒸留器で200℃までの留出分を軽質
留分としてカツト)は何れもこゝに記した以外は
第2表のとおりで、本発明の好ましい範囲の中か
ら選んだものに固定してある。 本実験の結果、界面活性剤としては「油水分離
用」として市販されている乳化破壊性と消泡性を
有する水溶性のものであれば、精製重質油中のキ
ノリン不溶の固形物含量を炭素繊維用原料として
十分な50ppm以下にすることができた。 更に第2表の試験番号1及び3で得られた精製
重質油から炭素繊維を作るため、該精製重質油に
70%硝酸を精製重質油重量の5%を添加し、常圧
で300℃まで加熱し2時間保持した後、減圧蒸留
して中油留分(沸点200〜350℃)を回収して硬ピ
ツチを作り、これを230〜260℃で溶融紡糸してピ
ツチ繊維を作り、酸化雰囲気で110℃から230℃ま
で1.4℃/hrで昇温し230℃で0.5時間不融化処理を
行なつた。この時紡糸による成形性は良好で糸切
れは認められなかつた。 また不融化処理を行なつた繊維は不活性雰囲気
で50℃で1時間保持後、850℃まで定速(6.7℃/h
r)昇温して炭化処理を行ない炭素繊維を得た。
得られた硬ピツチ及び炭素繊維の性状を第3表に
示す。これら性状は従来の溶剤法などによる精製
重質油から得られるピツチ及び炭素繊維の性状と
同等ないしはそれ以上のものである。 なお本実施例中の軟化点、キノリン不溶分を除
く溶剤不溶分定量の方法はJIS−K2425にもとづ
いている。 比較例 1 実施例1に於て界面活性剤を使用しない場合、
実施例1の水溶液の混合及び水分離工程を除いた
ベンゼン添加による粘度調整以降の工程の条件を
同一にして精製重質油を得た。第2表最右欄に示
したようにキノリン不溶分の除去は不十分であ
り、炭素繊維の製造テストを行なつたところピツ
チからの紡糸で糸切れが頻発し、糸の成形性が悪
く、焼成後の物性も悪く極めて不都合なものであ
る。 実施例 2 第1表のコールタールを原料として 第2図の撹拌混合装置を用い、界面活性剤水溶
液の混合工程で撹拌翼の回転数を50、500、
900rpmと変え、その他の条件を同一とした時、
精製重質油中のQIを測定した。この結果を第3
図に点綴して示す。第3図から回転数と共にQI
が上昇することが判る。又固形不純物の生成率を
低く抑え、QIを100ppm以下にするには回転数が
300rpm以下特にQIを50ppm以下とするには
200rpm以下が望ましい。尚本実験における他の
条件は下記の如くである。 使用界面活性剤 東邦化学 Ex−3 界面活性剤濃度 3wt% 混合比(水溶液/重質油)2.5;撹拌時間60分 温度(混合・水分離・固形物分離)50℃ 遠心力 水分離 6×104G・sec 固形物分離 6×105G・sec 混合比(ベンゼン/分離油) 1 蒸留分離 カツト温度 200℃ 実施例 3 界面活性剤として東邦化学工業株式会社製カチ
オン性Ex−3を用いてその水溶液濃度を1、2
及び3重量%として、その他の工程操作条件を同
一として第2図の装置を用いて第1表のコールタ
ールの精製をして界面活性剤水溶液の濃度の影響
を調べた。結果を第4表に示す。第4表のデータ
から活性剤の濃度が増加すればQIは少なくなる
が、その効果は飽和してくることが判る。濃度の
増加は重質油に対する使用量の増加を意味し、混
合倍数の増加も濃度の場合と同様QIの低減には
限度が出てくることを示している。
The present invention relates to a method for mixing and contacting coal-based and petroleum-based heavy oils with an aqueous surfactant solution to form quinoline-insoluble fine solid impurities in the heavy oils as interfacial floating substances, and separating and removing them. It is. The refined heavy oil obtained by the method of the present invention is
It is suitable as a raw material for producing carbon materials such as graphitizable coke used for UHP electrodes and pump shaft seals, isotropic and anisotropic carbon fibers, and high-grade activated carbon. Conventionally, raw materials for producing carbon materials have been very diverse, including coal-based heavy oils, petroleum-based heavy oils, and polymer fibers, but in terms of quantity, coal-based and petroleum-based heavy oils is widely used due to its economical advantages due to its high carbonization yield despite its low raw material cost. However, the permissible range of raw material properties for these heavy oils is also strict. For example, in the case of petroleum-based heavy oils, the sulfur content is generally high, so heavy oils with low sulfur quality are selectively used. , the range of raw material selection is greatly restricted. On the other hand, coal-based heavy oils have lower sulfur concentrations and higher carbonization yields than petroleum-based heavy oils, but coal-based heavy oils cannot be used as raw materials for high-grade carbon materials such as needle coke and carbon fibers. A small amount of quinoline-insoluble solid impurities (quinoline-insoluble matter) contained in a small amount in heavy oils is considered to be undesirable because it hinders graphitization. Note that, like coal-based heavy oils, petroleum-based heavy oils also contain minute solid impurities, albeit to varying degrees. Here, the allowable concentration of the solid impurity varies depending on the method used as the carbon material, but the quinoline insoluble content determined by the analysis method described below is
The standard is 100ppm or less for carbon fibers, and 300ppm or less for other carbon materials. Therefore, if solid impurities in heavy oils, whether coal-based or petroleum-based, can be efficiently removed, it will be possible to expand the use of high-grade carbon material raw materials, which will greatly contribute to reducing carbon material costs. It turns out. The fine quinoline-insoluble solid impurities in heavy oils refer to suspended particles of 500 μm or less, which are composed of carbon, inorganic salts, etc., and are not easily separated by sedimentation. The most common way to separate this is to apply an external force such as centrifugal force to the heavy oil and separate the suspended solid particles based on the density difference between the heavy oil, but the suspended solid particles are very fine. Therefore, it is difficult to separate them simply by centrifugation. Therefore, it is necessary to agglomerate fine suspended particles into large particles as long as separation by gravity difference is to be carried out. A particular technical problem here is how to remove such minute quinoline insoluble matter, and several techniques have been proposed for this purpose. The conventional method is to heat-treat heavy oils to increase the particle size of quinoline-insoluble components and separate and remove them. Another petroleum heavy oil is added to the coal-based heavy oil, and a polymeric component (gummy component) is attached to the quinoline-insoluble content to increase the particle size, and if necessary, aliphatic or aromatic A method of mixing the solvents of the system and separating and removing the insoluble precipitate by heating and stirring or cooling the mixture (JP-A-55-104387, JP-A-55
−113606, etc.) A method of mixing heavy oils with an organic solvent to agglomerate and separate and remove minute insoluble precipitates containing quinoline insoluble matter (Japanese Unexamined Patent Publication No. 136111/1983, Patent Application No. 43171/1983, 56-49791, Japanese Patent Application No. 54-125971, Japanese Unexamined Patent Publication No. 56-59611, Japanese Patent Application No. 135454, etc.). However, although methods that fall into the above classification are superior in principle, they have advantages and disadvantages and are not necessarily effective methods for the reasons described below. In this method, the particle size of the insoluble precipitate to be separated is extremely small, so the separation speed is slow;
Separation efficiency is low due to clogging during filtration. Furthermore, in order to lower the viscosity of heavy oils, it is necessary to separate or filter them at high temperatures, resulting in high equipment and operating costs. In addition, since the formation of insoluble precipitates is slow at room temperature,
It requires heating up to 200°C, stirring for several hours, and a large amount of expensive solvent, and therefore requires equipment for solvent recovery, making it lacking in industrial efficiency and economy. The following method requires a ratio of organic solvent to heavy oil of 10 to 100 times, which results in extremely high processing costs. Similar to the above method, many of these methods require cooling after heating and stirring, and equipment for recovering and recycling expensive solvents. The present inventors have proposed that instead of the above-mentioned conventional method in which the fine solid impurities in the feedstock heavy oil are agglomerated to a large size due to the formation of gummy components, by mixing an aqueous surfactant solution with the feedstock heavy oil, the conventional centrifugal force can be applied. Within this range, the inventors have invented that by utilizing the agglomeration effect of solids of surfactants, microscopic solids in heavy oil can be efficiently separated and removed by taking them into the oil-water surface and coagulating them to a large size. In addition, conventional methods cause polycondensation of components in heavy oil due to heating, resulting in a significant change in the properties of the raw material heavy oil, and as the excessively polycondensed material is removed, carbonization occurs in the product. This will reduce the yield. The present invention differs from this in that it simply attempts to agglomerate minute solid impurities using a surfactant, so it does not involve any change in the essential properties of the raw material heavy oil, and it does not cause the reduction in carbonization yield in the prior art. This is a significant improvement. On the other hand, methods for separating the solid matter of the present invention by adding a reagent such as a surfactant include a flotation method in which concentrate and ore are separated from crushed minerals. This is most commonly known as the ``foam separation method,'' which involves adding a small amount of reagents (surfactants) such as foaming agents and scavengers to mechanically or, rarely, chemically. This is a method of introducing air to create bubbles, attaching specific mineral particles to the bubbles, and floating them on the liquid surface as foam to separate them. However, the method of the present invention does not form bubbles, but rather This method is different from "foam flotation," as it agglomerates minute solid impurities at the oil/water interface. Other "flotation methods" include adding oil or forming a monomolecular layer on the surface of water to separate concentrates and ores by utilizing the difference in their selective adhesion. These methods separate minerals (solid content) into concentrate and ore, and are different from the method of the present invention in which all solid content is separated from liquid. On the other hand, various surfactants have the function of separating mineral particles and paraffin crystals in the extracted crude oil from the emulsion interface and transferring them to the water layer or oil layer when separating oil and water emulsions in crude oil extraction. is used. Although the effect of these surfactants in separating oil and water is known as a technique for achieving the object of the present invention, the present inventors have investigated the effect of quinoline-insoluble fine solids in heavy oils. As a result of many experiments, we have discovered that when using commercially available surfactants to separate impurities, sufficient effects cannot be achieved unless the stirring method used during mixing is appropriate. In other words, in general, vigorous stirring is required to ensure sufficient mixing contact between the surfactant and solid impurities in heavy oil, but vigorous stirring does not have the effect of aggregating solid impurities at the oil-water interface. They discovered that the effect can only be achieved by slowing down the stirring conditions. This invention will be explained in detail below. In this invention, coal-based heavy oil refers to coal tar such as high-temperature tar and low-temperature tar that are by-produced during coal dry distillation, coal liquefaction products, etc., and petroleum-based heavy oil refers to atmospheric distillation. It refers to residual oil, vacuum distillation residue oil, naphtha cracked bottom oil, fluid contact bottom oil, solvent extraction residue oil, etc., and is a single type of oil or a combination of these oils. In the present invention, by mixing an aqueous surfactant solution with the raw material heavy oils, fine solid impurities insoluble in quinoline in the heavy oil are aggregated to a large size at the interface of both liquids, and after separating both liquids, the heavy oils are This is a method for producing raw material heavy oil for carbon molded bodies, characterized in that light oil fractionated in an oil refining process is mixed as a viscosity modifier and removed by centrifugation. Each step constituting the present invention will be explained in order below. The flow of the present invention is shown in FIG. 1 as an example. (A) As the surfactant, a water-soluble commercially available surfactant having demulsifying and defoaming properties for conventional oil-water emulsion separation is used. Commercially available surfactants having such characteristics are generally anionic, cationic, nonionic, or amphoteric ionic, and any of these can be used. Those that foam violently when mixed and stirred with raw material heavy oils,
An emulsion that becomes cloudy is not preferable because it makes subsequent separation operations difficult. Therefore, those having the properties of a general antifoaming agent or demulsifying agent for oil/water separation are suitable. For example, anionic surfactants include alkyl and/or allyl sulfates and sulfonates, and alkyl and/or allyl groups may also be modified in the form of acid or alcohol esters or ethers. The cationic surfactant is an alkylamide type, a quaternary ammonium salt type, or an imidazoline type modified with an alkyl group. As the nonionic surfactant, polyoxyethylene alkyl phenyl ether, polyoxyethylene modified alkyl allyl ether, polyethylene glycol alkyl ether, sorbitan fatty acid ester, fatty acid monoglyceride, etc. are used. In the present invention, in addition to the various effects of these commercially available surfactants on oil/water content such as demulsification breaking, antifoaming, etc., when removing quinoline-insoluble minute solid impurities from raw material heavy oil, surprisingly, It has become clear that the quality of agglomeration and subsequent separation of minute solid impurities is influenced by the stirring conditions of the mixed liquid. The above surfactant should be completely dissolved in water beforehand.
The aqueous solution is used in an amount of 0.1 to 5.0 times the weight of the heavy oil, preferably 0.5 to 3.0 times the weight of the heavy oil, with a concentration of 0.1 to 5.0% by weight, preferably 0.5 to 2.5% by weight.
Generally, the concentration of surfactant in aqueous solution is several percent or less, but if it exceeds 2.5%, the removal effect of quinoline insoluble matter (QI) tends to be saturated, while keeping the QI in refined heavy oil below 100 ppm. In order to achieve this, it must be 0.5% or more. The surfactant solution was used at a ratio of 0.1 to 5.0 times, which is enough to separate the oil and water layers, but it was found that as much as 2.5 times the QI could be lowered to the target value of 50 ppm or less. The QI value of refined heavy oil can be adjusted by adjusting the concentration and usage ratio (mixing ratio) of the surfactant aqueous solution. In the subsequent oil layer and water layer separation (water separation) process, it is desirable that the liquid viscosity be 75 c.p. or less to facilitate centrifugal sedimentation, but it is particularly important to keep the viscosity of heavy oil within this range. In order to maintain the temperature, it is necessary to heat the mixture to 50℃ or higher, and in the mixing tank, the temperature of the mixed liquid must be maintained at 50℃ or higher and 80℃ or lower by appropriate heating. (B) Next, mix and stir the mixture of heavy oil and surfactant aqueous solution from (A). The surfactant dissolved in water will incorporate minute solid impurities in the heavy oil onto the surface of the oil droplets suspended in the water layer, and these oil droplets will be brought to the interface between the water layer and the oil layer by stirring in the mixing tank. levitate to,
Plays a role in coagulating solid impurities. In this case, increasing the degree of mixing contact and increasing the interfacial area per unit volume of heavy oil would increase the rate at which solid impurities are taken into the interface, which would be preferable, but as a result, vigorous stirring may be necessary. As a result, fine oil droplets with a diameter of 1 mm or less become dispersed and suspended throughout the tank, and even though solid impurities are captured at the interface between the oil droplets and the water medium, they are not separated in the next process and become heavy. It will remain in quality oil,
It was unexpectedly and surprisingly discovered that it is difficult to reduce the QI value in refined heavy oil to the target value. The slow stirring that characterizes the present invention depends on the type of surfactant used, the type of raw heavy oil, the temperature of the mixed liquid, the geometric position and structure of the stirring blade in the stirring mixing tank, and Although it cannot be determined unambiguously because it is influenced by many factors such as the rotation speed, the results of numerous experiments indicate that the long diameter of the oil droplets dispersed in the water layer is 2 to 10 mm as determined by visual observation. It is necessary to perform such stirring. The specific stirring conditions are shown below as an example from the experimental specifications, but the present invention is not limited thereto. In other words, a sliding-type torsion four-blade stirring blade is arranged horizontally on the center axis of the mixing tank, and the rotation direction is selected to give an upward flow to the liquid in the tank, and the ratio of the blade diameter to the tank diameter is 0.5 to 0.7. The position is 1/4 of the liquid depth from the bottom of the tank.
At 1/3 depth, the blade span ratio to tank diameter is 0.08 ~
0.12, using a stirring blade with a twist angle of 30 to 45 degrees with respect to the horizontal plane, and a rotational speed of 30 to 440 rpm, preferably 50 to 150 rpm for carbon fibers. The stirring time is approximately 60 minutes. Therefore, the surfactant may be dissolved more than necessary, or
It is necessary to avoid generating minute oil droplets in the water medium by stirring more strongly than necessary. (C) Next, the solid impurities collected at the oil-water interface in step (B) were coagulated into a large aqueous layer containing a surfactant by applying a centrifugal force of 30,000 to 100,000 G sec in a centrifugal sedimentation machine. Separates into a heavy oil layer containing solid impurities. The unit of centrifugal force is G・sec, which is the product of centrifugal force ratio to gravity (G) and action time (sec.)
However, the centrifugal force in this water separation step can be easily achieved in a short time using a centrifugal sedimentation machine having a normal centrifugal effect. The separated aqueous layer can be recycled and reused in the mixing tank while controlling the surfactant concentration as shown in FIG. (D) Next, add aromatic compounds such as benzene, toluene, xylene, etc., ketones such as acetone, ethers, esters, etc. to the oil layer separated in step (C) in an amount equal to the weight of the oil layer as a viscosity modifier. A low molecular weight organic solvent such as aliphatic compounds having a boiling point of 150° C. or lower is added, and the viscosity of the heavy oil solution is adjusted to 10 cp or lower by optional stirring. The various organic agents mentioned above are used as viscosity modifiers, but from an economical point of view, the light fraction (mainly benzene) obtained from the subsequent distillation separation process can be recycled and used as shown in Figure 1. . One way to lower the viscosity of the heavy oil solution is to heat it to about 50°C. (E) Next, the mixed oil obtained in step (D) is mixed in the heavy oil solution by applying centrifugal force of 3 × 10 5 to 12 × 10 5 G・sec by centrifugal sedimentation or filtering. Separate and remove solid impurities. The addition of the viscosity modifier in the previous step (D) is to facilitate centrifugation in this step, and the centrifugal separator in this step also has a normal centrifugal effect to maintain centrifugal force for the required time. Solid impurities can be easily removed by reacting with water. (F) The separated heavy oil solution and solid impurities are each subjected to atmospheric distillation to separate light fractions at temperatures below 200°C. The light fraction can be recycled as a viscosity modifier in step (D). The method of the present invention will be specifically explained below using Examples. The method for quantifying QI (quinoline insoluble content) in heavy oil according to the present invention meets the detection limit of JIS-K2425.
We use a highly accurate method that can measure down to several ppm from 500ppm, and it is based on the following steps. Add about 10 times the volume of quinoline to heavy oil, heat at 80℃ for 30 minutes, stir and mix, filter through glass fiber paper with a retained particle size of 0.5 μm, and then wash with quinoline and remove benzene. Perform cleaning 0.5
The solid matter remaining on μm glass fiber paper was heated to 110°C.
After drying for 30 minutes and cooling, the weight is expressed in ppm as a percentage of the weight of heavy oil. In addition, the solid impurity production rate is expressed as a percentage of the weight of the solid substance separated in the solid impurity separation step after drying at 110° C. for 30 minutes and then cooling to the weight of heavy oil. Example 1 A commercially available cationic or anionic surfactant was added to coal tar having the properties shown in Table 1 as heavy oil or petroleum cracked bottom oil as a heavy oil in a mixing tank with a stirrer as shown in FIG. 2 having a hot water bath. Alternatively, quinoline-insoluble solid impurities in heavy oil are removed using the nonionic products of the companies mentioned in the footnotes of Table 2 according to the process shown in Figure 1 and under the conditions shown in Table 2. The quinoline insoluble content was measured. In this example, it was confirmed how the quinoline insoluble content of refined heavy oil changes depending on the type of heavy oil and the type of surfactant. Therefore, the operating conditions for each of the other steps were kept the same. That is, the concentration of the surfactant aqueous solution, the mixing ratio (weight ratio) of the aqueous solution and heavy oil, the stirring rotation speed, the stirring time, the temperature of the mixed liquid,
Centrifugal force in water separation (processed for 30 seconds at a centrifugal force ratio of 2000 G using a centrifugal separator with a centrifugal sedimentation tube), separation temperature; viscosity modifier mixing ratio, stirring time (4
centrifugal force in solid impurity separation (processed for 5 minutes at a centrifugal force ratio of 2000 G using a centrifugal separator with a centrifugal sedimentation tube) and distillation separation (distillation up to 200°C with a simple atmospheric distiller) The light fraction (cut) is as shown in Table 2 except as noted above, and is fixed at a value selected from the preferred range of the present invention. As a result of this experiment, it was found that if the surfactant is a water-soluble surfactant that has demulsifying and antifoaming properties and is commercially available for "oil-water separation," the content of quinoline-insoluble solids in refined heavy oil can be reduced. We were able to reduce the content to 50 ppm or less, which is sufficient as a raw material for carbon fiber. Furthermore, in order to make carbon fibers from the refined heavy oil obtained in test numbers 1 and 3 in Table 2, the refined heavy oil was
Add 70% nitric acid to 5% of the weight of purified heavy oil, heat to 300℃ under normal pressure and hold for 2 hours, then distill under reduced pressure to collect the middle oil fraction (boiling point 200-350℃) and make hard pitcher. This was melt-spun at 230-260°C to make pitch fibers, and the temperature was raised from 110°C to 230°C at a rate of 1.4°C/hr in an oxidizing atmosphere, followed by infusibility treatment at 230°C for 0.5 hours. At this time, the moldability by spinning was good and no yarn breakage was observed. In addition, the fibers subjected to infusibility treatment were kept at 50℃ for 1 hour in an inert atmosphere, and then heated to 850℃ at a constant rate (6.7℃/h).
r) Carbonization treatment was carried out by increasing the temperature to obtain carbon fibers.
Table 3 shows the properties of the hard pitch and carbon fibers obtained. These properties are equivalent to or better than those of pitch and carbon fiber obtained from refined heavy oil by conventional solvent methods. In this example, the softening point and the method for determining the solvent-insoluble content excluding the quinoline-insoluble content are based on JIS-K2425. Comparative Example 1 When no surfactant is used in Example 1,
Refined heavy oil was obtained under the same conditions as in Example 1, except for the aqueous solution mixing and water separation steps, and the steps after viscosity adjustment by benzene addition. As shown in the rightmost column of Table 2, the removal of insoluble quinoline content was insufficient, and when testing carbon fiber production, thread breakage occurred frequently during spinning from pitch, and the formability of the thread was poor. The physical properties after firing are also poor, which is extremely inconvenient. Example 2 Using the coal tar shown in Table 1 as a raw material and using the stirring mixing device shown in Figure 2, the rotational speed of the stirring blade was set to 50, 500,
When changing to 900 rpm and keeping other conditions the same,
QI in refined heavy oil was measured. This result is the third
Shown in dotted form in the figure. From Figure 3, QI along with rotation speed
It can be seen that increases. In addition, in order to keep the production rate of solid impurities low and the QI to 100ppm or less, the rotation speed must be increased.
Below 300rpm, especially to keep QI below 50ppm
200rpm or less is desirable. Other conditions in this experiment were as follows. Surfactant used: Toho Chemical Ex-3 Surfactant concentration: 3wt% Mixing ratio (aqueous solution/heavy oil) 2.5; Stirring time: 60 minutes Temperature (mixing, water separation, solid matter separation): 50°C Centrifugal force Water separation: 6×10 4 G・sec Solid separation 6×10 5 G・sec Mixing ratio (benzene/separated oil) 1 Distillation separation Cutting temperature 200℃ Example 3 Using cationic Ex-3 manufactured by Toho Chemical Industry Co., Ltd. as a surfactant The concentration of the aqueous solution is 1, 2
and 3% by weight, the coal tar shown in Table 1 was purified using the apparatus shown in FIG. 2 with other process operating conditions being the same, and the influence of the concentration of the surfactant aqueous solution was investigated. The results are shown in Table 4. From the data in Table 4, it can be seen that as the concentration of the active agent increases, the QI decreases, but the effect becomes saturated. An increase in concentration means an increase in the amount of heavy oil used, and an increase in the mixing ratio also indicates that, as in the case of concentration, there is a limit to the reduction of QI.

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】 【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の簡単なフローシートである。
第2図aは撹拌機を備えた混合槽の断面略図であ
る。第2図bは第2図aに示す撹拌機に設けられ
た撹拌翼の断面図である。第3図は撹拌回転数を
横軸にとつた場合の精製重質油中のQI ppmと固
形不純物生成率を夫々示したものである。 1……原料重質油、2……界面活性剤水溶液、
3……混合槽、4……水分離、5……溶剤、6…
…混合槽、7……固形不純物分離、8……蒸留分
離、9……、10……精製重質油、11……含固
形物タール、a……70mm、b……116mm、c……
100mm、d……140mm、e……10mm、θ……30゜。
FIG. 1 is a simple flow sheet of the present invention.
FIG. 2a is a schematic cross-sectional view of a mixing vessel equipped with an agitator. FIG. 2b is a sectional view of a stirring blade provided in the stirrer shown in FIG. 2a. FIG. 3 shows the QI ppm and solid impurity production rate in refined heavy oil when the horizontal axis is the stirring rotation speed. 1... Raw material heavy oil, 2... Surfactant aqueous solution,
3...Mixing tank, 4...Water separation, 5...Solvent, 6...
...Mixing tank, 7...Separation of solid impurities, 8...Distillation separation, 9..., 10...Refined heavy oil, 11...Solid-containing tar, a...70 mm, b...116 mm, c...
100mm, d...140mm, e...10mm, θ...30°.

Claims (1)

【特許請求の範囲】 1 石炭系ならびに石油系重質油類に界面活性剤
を加えて、該重質油類中の微小固形不純物を界面
浮遊物として生成せしめ、分離除去する方法にお
いて (A) 界面活性剤として、油水混合物に対して乳化
破壊性と消泡性を有する界面活性剤の0.1〜5.0
重量%濃度水溶液を、原料重質油1重量部に対
して0.1〜5.0重量部添加混合する (B) 水層に分散する油滴長径が2〜10mmになるよ
うにゆるやかに撹拌混合する (C) 該混合液を水層と油層に遠心分離する (D) 分離油層に粘度調節剤として沸点が150℃以
下の有機溶剤を該油層に対してほヾ同重量添加
し、該重質油溶液の粘度を10cp以下とする (E) 該油溶液中の固形不純物を遠心分離する (F) 分離油溶液および固形不純物をそれぞれ蒸留
して軽質留分を分離除去し、該軽質留分は粘度
調節剤として循環使用する ことを特徴とする炭素材製造用原料重質油の製造
方法。
[Claims] 1. A method of adding a surfactant to coal-based and petroleum-based heavy oils to form fine solid impurities in the heavy oils as interfacial suspended matter and separating and removing the particles (A) As a surfactant, 0.1 to 5.0 of a surfactant that has demulsifying and antifoaming properties for oil-water mixtures.
Add and mix 0.1 to 5.0 parts by weight of the weight percent aqueous solution to 1 part by weight of raw material heavy oil (B) Gently stir and mix so that the major diameter of the oil droplets dispersed in the water layer is 2 to 10 mm (C ) The mixed solution is centrifuged into a water layer and an oil layer. Reduce the viscosity to 10 cp or less (E) Centrifuge the solid impurities in the oil solution (F) Distill the separated oil solution and the solid impurities, separate and remove the light fraction, and use the light fraction as a viscosity modifier. A method for producing heavy oil as a raw material for producing carbon materials, characterized in that it is recycled as a raw material.
JP8359781A 1981-05-29 1981-05-29 Preparation of raw material for preparing carbon material Granted JPS57198786A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8359781A JPS57198786A (en) 1981-05-29 1981-05-29 Preparation of raw material for preparing carbon material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8359781A JPS57198786A (en) 1981-05-29 1981-05-29 Preparation of raw material for preparing carbon material

Publications (2)

Publication Number Publication Date
JPS57198786A JPS57198786A (en) 1982-12-06
JPS6144914B2 true JPS6144914B2 (en) 1986-10-04

Family

ID=13806896

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8359781A Granted JPS57198786A (en) 1981-05-29 1981-05-29 Preparation of raw material for preparing carbon material

Country Status (1)

Country Link
JP (1) JPS57198786A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6136392A (en) * 1984-07-06 1986-02-21 アライド・コーポレーシヨン Low solid coal tar impregnating pitch

Also Published As

Publication number Publication date
JPS57198786A (en) 1982-12-06

Similar Documents

Publication Publication Date Title
US4514305A (en) Azeotropic dehydration process for treating bituminous froth
US3875046A (en) Recovery of oil from tar sand by an improved extraction process
US6746599B2 (en) Staged settling process for removing water and solids from oils and extraction froth
EP0480106B1 (en) Process for isolating mesophase pitch
CA2659938C (en) Silicates addition in bitumen froth treatment
CA2638120C (en) Method for treating bitumen froth with high bitumen recovery and dual quality bitumen production
US5219471A (en) Removal of metals and water-insoluble materials from desalter emulsions
CA1072473A (en) Dilution centrifuging of bitumen froth from the hot water process for tar sand
US4058453A (en) Demulsification of oil emulsions with a mixture of polymers and alkaline earth metal halide
JPS6144915B2 (en)
US20100012555A1 (en) Method for treating bitumen froth with high bitumen recovery and dual quality bitumen production
Czarnecki et al. On the “rag layer” and diluted bitumen froth dewatering
US9567532B2 (en) Method for producing non-carcinogenic aromatic process oil
CA2350001C (en) Staged settling process for removing water and solids from oil sand extraction froth
JPH0336869B2 (en)
JPH10508635A (en) Method for isolating mesophase pitch
US3468789A (en) Processing of viscous oil emulsions
JPS6144914B2 (en)
EP0034896B1 (en) Treatment of heterogeneous liquid materials
US4302326A (en) Tar sands emulsion-breaking process
US5965784A (en) Process and apparatus for extracting aromatic compounds contained in a hydrocarbon feedstock
JP6136042B2 (en) Method for treating oil content in crude sludge
CA2863487A1 (en) Methods for processing an oil sand slurry or a bitumen extract stream
JP3051155B2 (en) Method for isolating mesophase pitch
US20140097126A1 (en) Bitumen removal from tailings centrifuge centrate