JPS6144808B2 - - Google Patents

Info

Publication number
JPS6144808B2
JPS6144808B2 JP53013638A JP1363878A JPS6144808B2 JP S6144808 B2 JPS6144808 B2 JP S6144808B2 JP 53013638 A JP53013638 A JP 53013638A JP 1363878 A JP1363878 A JP 1363878A JP S6144808 B2 JPS6144808 B2 JP S6144808B2
Authority
JP
Japan
Prior art keywords
air
furnace
roasted
oxygen
spent catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53013638A
Other languages
Japanese (ja)
Other versions
JPS54107495A (en
Inventor
Shosaku Toda
Hideo Ishikawa
Yoshiaki Yoshida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TAIWA KK
Original Assignee
TAIWA KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TAIWA KK filed Critical TAIWA KK
Priority to JP1363878A priority Critical patent/JPS54107495A/en
Publication of JPS54107495A publication Critical patent/JPS54107495A/en
Publication of JPS6144808B2 publication Critical patent/JPS6144808B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Landscapes

  • Incineration Of Waste (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Muffle Furnaces And Rotary Kilns (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は石油類の脱硫、水素添加、異性化、熱
分解等において生ずる深達性で内部にまで強く吸
着されており、しかも超微細で燃焼揮散し難い有
価金属類のバナジウム、モリブデンと硫黄分、炭
素分などの可燃性物質とを含む使用済触媒に溶剤
として炭酸ナトリウムを加え、それらを酸化焙焼
処理し、使用済触媒の細粒中に深達し強い吸着作
用によつて化学的に結合した形態で含まれている
可燃性物質を酸化燃焼して除去するとともに、同
じく使用済触媒の細粒中に深達し強い吸着作用に
よつて結合した形態で含まれている有価金属類で
あるバナジウム、モリブデンをそれらの液溶性塩
類に変化させ、それを水、アルカリ性溶液、また
は酸性溶液により抽出回収する方法を実施するに
当り、上記使用済触媒に炭酸ナトリウムを加えた
被焙焼物を800〜900℃の温度に加熱し、その加熱
状態を5〜25時間の長時間に亘つて保ち、それに
よつて使用済触媒中に含まれている可燃性物質を
酸化揮散させるとともに、同じく使用済触媒中に
含まれている不溶性のバナジウム、モリブデンを
水溶性の化合物、アルカリ性溶液または酸性溶液
に可溶性の化合物に移行させる使用済触媒を酸化
焙焼して有価金属類を液溶性にする処理装置に関
するものである。 すなわち本発明は両端に滞留時間保持用のダム
部分を有する短胴形の回転式焙焼炉内に気体燃料
または液体燃料を燃焼させ、炉内の温度を800〜
900℃に昇温させ、この回転式焙焼炉内に連続的
または間歇的に可燃性物質を含む使用済触媒に溶
剤として炭酸ナトリウムを加えた混合物からなる
被焙焼物を送り込み、かつ上記回転式焙焼炉内に
空気または酸素を濃度30%以下の程度に混和した
酸素富化空気を加温または加温しないで回転式焙
焼炉内に炉胴の略全長にも亘る長さに設けた送気
管を通じ、その送気管壁に透穿して設けた多数の
噴気孔より被焙焼物の堆積層の下底部より堆積層
の上部に向つて500〜650mm水柱圧の圧力をもつて
徐々に吹き込み、被焙焼物と均密に接触させつつ
5〜25時間の長時間に亘つて上記温度の加熱状態
に保持し、それによつて使用済触媒中に吸着され
ている難燃性の可燃性物質を酸化揮散させると同
時に、同じく使用済触媒中に吸着状で含有されて
いる不溶性のバナジウム、モリブデンと溶剤とし
て混和した炭酸ナトリウムとの熱による反応を行
わせ、それらを液溶解性塩類に移行させ、このよ
うにした焙焼物を抽出槽において水、アルカリ溶
液または酸性溶液により溶解金属塩類を抽出する
とともに、排ガスは排ガス処理槽に送致するよう
にする使用済触媒を酸化焙焼して有価金属類を液
溶性にする処理装置であつて、本発明の要旨とす
るところは両側にダム部分を有する回転式焙焼炉
の炉胴内周壁に接近した位置に、多数の燃焼用空
気の送気管を適宜間隔を隔て取付子により懸吊支
持して設け、それら送気管は各末端が閉塞される
とともに、各取付先端部が開放され、この開放先
端を炉胴と一体的に取付けた環状台座に貫設し、
かつ環状台座に対し常時弾性的に摺動自在に圧接
するスリツプ体を定設、このスリツプ体は後方が
開放した箱形とするか、または環状台座に対する
摺接面に前記送気管の開放口と合致する放出口を
開設したものとなし、スリツプ体の前方部には空
気または酸素富化空気を圧送する圧送管を連設
し、それによりスリツプ体内に圧送された空気ま
たは酸素富化空気を送気管に供給するようにし、
さらに各送気管には炉胴の略全長に亘る長さにて
炉内における被焙焼物の堆積層の下底部より上方
に向けて空気または酸素富化空気を噴射する多数
の噴射孔を列穿して設けて成る構成に存するもの
である。 本発明の装置によつて使用済触媒の酸化焙焼を
行う操作を説明すれば極めて難燃性であるが徐々
には燃焼する炭素分、油分、硫黄分を含有してい
る使用済触媒に炭酸ナトリウム(Na2CO3)を加
え、それらを両端にダム部分を有する短胴形の回
転式焙焼炉内に送り込み、かつ炉内で気体燃料ま
たは液体燃料を燃焼させ、炉内を800〜900℃の酸
化ふん囲気に保持して5〜25時間の長時間に亘り
加熱焙焼し、使用済触媒中に含まれている可燃性
物質を酸化させ、燃焼により揮散させる処理を行
うために焙焼炉中に空気または酸素をその濃度が
30%以下の程度となるように混和した酸化富化空
気を加温するか、または加温しないで回転式焙焼
炉内に炉胴の略全長に亘るように設けられている
送気管によつてその送気管壁に列穿した多数の噴
気孔より被焙焼物の堆積層の下底部より上部に向
つて徐々に吹き付け、均密に被焙焼物と接触さ
せ、それによつて使用済触媒中に含まれている可
燃性物質を充分に酸化燃焼して揮散させるととも
に同じく使用済触媒中に含まれているバナジウ
ム、モリブデンを水溶性の化合物、アルカリ液に
可溶性の化合物または酸性液に可溶性の化合物で
あるモリブデン酸ソーダ(Na2MoO4)、バナジン
酸ソーダ(NaVO3)に変化させ、ついでこの焙焼
物を水、温水、アルカリ溶液または酸性溶液によ
つて抽出処理して使用済触媒から分離回収し、ま
た排ガスは排ガス処理槽に送致するものである。 従来の酸化焙焼の場合でも焙焼炉としては主と
して円筒形の回転焙焼炉、短胴可傾式回転焙焼炉
が用いられているが、いずれの場合においても気
体燃料または液体燃料を燃焼させることによつて
大気温度にある被焙焼物を昇温し、被焙焼物中に
含まれている可燃性物質の着火温度または使用済
触媒中の不溶性有価金属類を酸化するか、または
使用済触媒と共存させるように混合した溶剤と化
合するのに必要な温度のうちの高い温度にまで炉
内を昇温させ、その温度と酸化ふん囲気中に所要
時間滞留させることによつて可燃性物質である炭
素分、油分、硫黄分を酸化揮発させるとともに使
用済触媒中に含まれている有価金属類と溶剤との
化学反応を行わせるような手段が執られていた。 このような処理操作を能率良く達成させるため
には炉内の温度上昇に必要な熱量をむらのないよ
うに被焙焼物に与え、また可燃性物質の燃焼によ
る酸化反応に必要な酸素をむらのないように被焙
焼物に与え、しかも深達して担体と吸着状態にあ
る可燃性物質の燃焼酸化反応および同じく深達し
て担体と吸着状態にある有価金属類を液溶性にす
る化学反応に必要かつ充分な5〜25時間の長時間
に亘つて過熱されることなく800〜900℃の温度に
保持することが緊要である。 上記のような事柄を円滑に達成させるためには
局部的な過熱による焼結または融着を防ぐことも
亦重要である。 そのため焙焼炉自体が比較的緩速度1〜10r.p.
hにて回転し、被焙焼物の各部が互に入り乱れな
がら撹拌されるような回転式焙焼炉の使用が有効
であるとされていた。 しかしながら、使用済触媒の構成成分中にはそ
の触媒担体の表面部および内部組織内に微細にし
かも深く中心部にまで浸透分布している可燃性の
炭素分、油分、硫黄分が多く含まれ、容易には燃
焼揮発させて除去することができない状態に保た
れている。そしてそれらの可燃性物質を能率よく
酸化燃焼させようとすると、燃料の燃焼によつて
生ずる排ガスおよび使用済触媒中の可燃性物質の
燃焼によつて発生する排ガスすなわち主として二
酸化炭素、亜硫酸ガスによつてその後の酸化反応
の進行が実際上阻害される。 また溶剤として添加した炭酸ナトリウムから二
酸化炭素が放出されるから、これらの排ガスの複
合作用がさらに一層可燃性物質の酸化速度を遅滞
させる傾向をもつている。 さらに炭酸ナトリウムと有価金属類であるバナ
ジウム、モリブデンとの反応は吸熱反応を主体と
した酸化であるから、焙焼炉内の温度自体にまで
著しい影響を受け、好ましくない結果となること
がある。 また燃料の燃焼によつて生ずる温度と熱の伝達
とはその燃焼によつて発生する排ガスと燃焼に用
いた過剰の空気とを媒体として、その排ガスが被
焙焼物の堆積層の表面を唯単になでるようにして
接触し、その状態で通過する間だけの作用に局限
されているのである。 したがつて重要な目的とする深達性の酸化反応
および熱の伝達は容易には行われない。特に溶剤
として添加した炭酸ナトリウムと有価金属類との
反応は800〜900℃に保持されることを条件とする
ための主として吸熱を伴う酸化作用であるから長
い回転式焙焼炉では炉の装入口部分と排出口部分
とでは温度差が大きくなり、そのため有価金属類
と溶剤との化学反応がこれ亦円滑に行われにくく
なる。 これに対して短胴形の回転式焙焼炉では給鉱側
(装入口側)と非鉱側(非出口側)との温度差が
比較的小さく温度が相接近しているという利点が
あるけれども、炉内での被焙焼物の滞留時間が充
分とりにくいので使用済触媒中に含まれている可
燃性物質の酸化反応は単なる円筒形炉と同様に不
充分であり、同じく不溶性の有価金属類を溶解性
に変化させるのにもなお不充分である。 その結果、このような処理によると有価金属類
の回収率は85%を上廻ることができない。したが
つてこのような不充分な点を補うためには2次焙
焼を行うことによつて、さらに酸素含有成分との
接触を行わせるか、または炉内における酸化ふん
囲気中における滞留時間を長くするため焙焼帯の
特に長い円筒形の回転式焙焼炉を用いて被焙焼物
中の有価金属類の回収率を高めるかというような
工夫を採ることが必要となる。 しかしながら焙焼帯の長い回転式焙焼炉といつ
ても回転炉の構造上その炉内容積の僅かに10〜25
%が被焙焼物によつて占められるだけで、その残
余の炉内容積は単に空気および燃焼ガスの通る通
路としての役目をなすに過ぎない。 また被焙焼物の温度を上昇させ、その温度を維
持させるのに必要な熱量を供給するとしてもその
熱源となる熱ガスはあたかも被焙焼物の堆積層の
表面を単になでるようにして通過するだけの極め
て短かい時間の効果だけによるものであるから、
熱の受授能率および効果は大きく期待することが
できない。 その結果として過剰の熱量を供給しなければな
らないことになる。 すなわちその分に相当するだけ余計に排ガスの
量を扱かわなければならないことになり操業上甚
だ不経済である。 また使用済触媒中に深達的に当初から含まれて
いる可燃性物質である炭素分、油分、硫黄分を酸
化させ燃焼によつて被焙焼物より揮散させようと
しても、その燃焼に必要な空気も被焙焼物の表面
を唯単になでるようにして通過するのみで被焙焼
物の堆積層の内部にまで深く浸透させることはで
きない、従つて可燃性物質を燃焼揮散させようと
する効果も充分に期待することはできない。 しかしながら被焙焼物を無理なく内外入れ乱れ
させて撹拌するためにはこのような手段は便利で
あることは否めない事実である。 本発明では焙焼炉における上記のような欠点を
改善し同時に長所を活用するため焙焼炉内に炉胴
の略全長に亘る長さの送気管を挿設し、この送気
管は耐熱、耐蝕性の良い材質の鋼製または耐火物
製の管であることと適当とし、而も該送気管の管
壁には多数の噴気孔を列穿して設け、これの噴気
孔より被焙焼物の炉内堆積層の下底部より上方に
向けて空気または酸素を濃度30%以下の程度に混
和した酸素富化空気を加温または加温せずにかつ
被焙焼物よりの粉塵の発生を最少限に抑え、また
吹きぬけのおこらないようにするために水柱圧
500〜600mm程度の低圧力の下に噴射することによ
つて被焙焼物の温度を800〜900℃に保持し、被焙
焼物の表面から揮散する二酸化炭素、亜硫酸ガス
等を迅速に燃焼性のある空気または酸素富化空気
によつて置換させ、それと同時に未燃焼分として
残存している可燃性物質を充分に燃焼させるとと
もに有価金属類の酸化または添加されている溶剤
との化学反応を著しく促進させるようにしたもの
である。 上記のようにすることの結果として本発明によ
るときは有価金属類の酸化および溶剤として添加
した炭酸ナトリウムとの反応が能率良く円滑に行
われ、したがつて有価金属類の回収も高能率とな
る。 本発明の酸化焙焼装置を用いることによる工業
的な効果は焙焼の目的を充分に達成することがで
きるとともに炉の構造の上で酸化域を極めて短か
くすることができるということである。このため
焙焼炉を小形化することができるので設備費の面
においても経済的であり、燃料の消費量も少なく
て済む利点がある。 焙焼炉内の温度を均等に上昇させ、しかも終始
800〜900℃の範囲で一定に保持するのに必要な熱
量は使用済触媒または使用済触媒と溶剤との混合
物を焙焼炉内に供給する装入口(給鉱口)に設け
た補助燃焼バーナーの燃料を調整することによつ
て達成することができる。 また被焙焼物に深達的に吸着状態で含まれてい
る可燃性物質は本発明の効果とされる円滑な酸化
燃焼反応によつても徐々に相当な発熱現象を示し
これによつて発生する熱量もまた本発明において
は有効な熱量として加算利用し得る特長がある。 使用済触媒と溶剤との混合物を酸化焙焼するた
めの焙焼炉内に上記のように空気または酸素富化
空気を、焙焼炉の内周壁に接近して懸吊支持さ
れ、かつ炉胴の略全長に亘るように設置された送
気管の多数の噴気孔より炉内の被焙焼物堆積層の
下底部より上方に向け圧力下に噴射させることに
よつて、それらの相乗的作用を発揮させ、能率良
く被焙焼物の昇温酸化と同時に高い回収率の下に
有価金属類の抽出回収を行わせることができるも
のである。 なお本発明によるときは焙焼炉の炉胴周壁には
何等の燃焼用空気の噴射孔などを設ける必要がな
く、送気管を取付子により懸吊支持するだけでよ
いから仮令送気管が耐熱性であつても使用中消耗
すれば容易にしかも簡便に送気管の取替を行うこ
とができ処理操作を経済的に実施することができ
る。 送気管の取付子としては焙焼炉内の温度は比較
的低く、また直接に燃焼用空気に触れることはな
いので、例えば18−8ニツケルクロム鋼製の懸吊
用金物にて作製したものを用い、送気管を炉周壁
に対し懸吊支持するようにするのがよい。 つぎに本発明による短胴形可傾回転式焙焼炉お
よびそれに附属する装置について説明すれば、第
1図は本発明が完成するまでの過程において試み
られた前例を示すものであつて、すなわち第1図
に示すように使用済触媒のホツパー1と溶剤のホ
ツパー2との下部にスクリウフイーダー3および
フイーダー4によつて使用済触媒aおよび溶剤b
を移送し、導樋5を経て両側にダム部分を有する
回転式焙焼炉6内に使用済触媒aと溶剤bとの混
合物を供給するようにする。 この回転式焙焼炉6は伝動歯車機構7によつて
比較的緩やかな速度にて一方向に回転するものと
し、焙焼炉6の排出口側に接して排ガス受兼焙焼
物受タンク8を設け、この受タンク8の上部に排
ガス排出管9を開設し、その先端を送風機10を
経て排ガス処理装置に連ね排ガスを適宜な手段に
より処理して無害となし大気中に放出するととも
に、受タンク8の下部より焙焼処理後の焙焼物を
排除口11を経て落下させ、さらにそれを抽出機
に受け、水、温水、アルカリ溶液または酸性溶液
によつて可溶性有価金属化合物を溶液として抽出
するに具える。 また回転式焙焼炉6の装入口側内方に向けて重
油バーナー12を臨設し、その燃料燃焼熱によつ
て炉6内を昇温させる。 このように第1図に示す場合においては送風機
13によつて燃焼用空気を圧送するための長い送
気管14を、その先端が閉塞され、しかも炉内の
略全長に亘る長さに挿設し、さらに炉内において
被焙焼物堆積層cの表面部の略全体に向け燃焼用
空気を噴射するように管壁に多数の噴射孔15を
列穿して設け、かつ送気管14の炉外における適
当な個所に酸素ガスを供給する酸素供給管16を
調節弁17を介して連結し、圧縮酸素または液化
酸素供給装置18から送出する酸素を空気に対し
酸素濃度30%以下の程度に混和した酸素富化空気
を送気管14を経て炉内の被焙焼物堆積層の表面
側に向け噴射するようにすることもできるが、第
1図に示すものでは上記のように送気管14の噴
射孔15から噴射する燃焼用空気は被焙焼物堆積
層cの表面部に向けられ、したがつて燃焼用空気
は殆んど被焙焼物堆積層cの表面をなでるように
して燃焼するものであるから、堆積層cの下底部
および内部にまで充分にその作用を及ぼすことは
不充分であることが認められた。 本発明はこのような点に鑑がみ第2図に示すよ
うに燃焼用空気の送気管を炉胴の内周壁に接近し
た位置に適当な間隔を隔ててそれぞれ取付子によ
り懸吊支持するようにし、それによつて送気管の
噴射孔から被焙焼物堆積層の下底部より上方に向
けて燃焼用空気を噴射するようにしたものであ
る。 実施に当つては第2図に示すように焙焼炉6の
内部略中心部に送気管14を挿設することを併用
してもよく、それによつて送気管14の噴射孔1
5から燃焼用空気を被焙焼物堆層cの表面部に向
け噴射するようにすることもできる。 つぎに第2図に示す本発明装置について説明す
れば、焙焼炉6の装入口側の外周に炉胴と一体的
に環状の台座19を定設しこの環状の台座19の
外側に摺接して台座19の外面に摺動自在に圧接
するように略半弦月形またはそれに近似する略四
半弦月形のスリツプ体20を固定位置において弾
機21により弾圧自在に装設する。そして環状の
台座19の内方には多数の送気管22をその取付
先端が外方に向けて開放するように定設し、この
送気管22は各末端が閉塞され、しかもすべて炉
胴6の内周壁に近い位置にてそれぞれ取付子23
により取付けると共に各送気管22の長さは炉胴
の略全長に亘る長さとなし、その管壁には炉内に
おける被焙焼物の堆積層cの下底部より上方に向
けて燃焼用の空気または酸素富化空気を噴射する
多数の噴射孔24を列穿して設ける。 前記摺動スリツプ体20は後方が開放している
箱形とするか、また後方側に前記環状台座19に
おける送気管22の開放口と合致する放出口を開
設したものであつて、スリツプ体20の前方側に
は空気または産素富化空気を圧送する圧送管25
を連設しスリツプ体20内に空気または酸素富化
空気を供給するに具える。 上記のようにスリツプ体20を環状としないで
略半弦月形、またはそれに近似する略四半弦月形
としたのは、回転動作している焙焼炉6内におけ
る被焙焼物の堆積層cは恰かも第4図、第5図に
示すように焙焼炉6の回転方向に向け下方部より
一側方に円の約4分の1程の範囲に片寄つて堆積
しており、したがつて被焙焼物の堆積層cの下方
部から上部に向け空気または酸素富化空気を噴射
することは堆積層cが片寄つて存在する個所だけ
で充分であつて炉内の全周に亘り噴射する必要が
ないから空気または酸素富化空気を送気管22を
経て炉内に圧送するためにはそれを送込むための
スリツプ体20は円環状ではなく約半弦月形また
は約四半弦月形の程度の欠円環状で何等差支がな
く、それ以外の所に噴射させても堆積層cの表面
を唯単になでるようにして通過するのみで効果は
あまり期待できないからである。 すなわち台座19の送気管22の開放口がスリ
ツプ体20の放出口と対向する位置になつたとき
スリツプ体20より台座19の送気管22を経て
空気または酸素富化空気を炉内における被焙焼物
の堆積層cの下底部より上方に向けて圧力の下に
噴射することができるものとする。 なお略半弦月形または略四半弦月形のスリツプ
体20に対向している以外の個所にある台座19
に取付けた送気管22にはその開放口から自然の
吸引作用にて大気が吸い込まれ送気管22を経て
炉内に放出される。しかし特に空気を圧送する必
要はない。 また送気管22はすべて耐熱、耐蝕性の鋼管ま
たは耐火物製管であるのが良い。 スリツプ体20と台座19とは外部よりスリツ
プ体20を弾圧的に押圧されているだけで摺動自
在に保たれているので多少の空気または酸素富化
空気がそれらの接触面から洩れることはやむを得
ない。 また回転式焙焼炉6の排出口側の端部を直ちに
排ガス受兼焙焼物受タンク8に連通させることな
く、それらの間に堅形の固定式2次焙焼炉を介設
し、それに別に燃料バーナーを設け、自燃式に被
焙焼物の第2次焙焼を行つて後、排ガスは排ガス
排出管を経て排ガス処理装置に送り、焙焼物は抽
出機に向け落下供給して抽出操作を行うようにす
ることもできる。 つぎに本発明の装置を用いて行う操作の実施例
を記載する。 アルミナを担体とした使用済触媒を750Kgを原
料とした。その化学組成はつぎのとおりである。 アルミナ 65.0%(重量) コバルト 0.1% 酸化ニツケル 1.5% 硫 黄 10.0% バナジウム 5.5% モリブデン 4.8% 油 分 3.2% この使用済触媒に溶剤として炭酸ナトリウム
(Na2CO3)を重量比で21.5%加え、それらをスク
リウフイーダー3より短胴可傾形回転式焙焼炉6
内に連続的に供給した。 焙焼炉6内の温度は重油バーナー12によつて
850℃±50℃の範囲に保持した。 被焙焼物中に含まれている可燃性物質はこの重
油バーナー12の燃焼用空気の外に酸素供給管1
6より調節された酸素を混和した酸素富化空気に
よつて直接被燃焼物の堆積層cの表面に向け水柱
圧550mmの圧力にて送気管22の噴射孔24から
噴射させることにより充分に酸化燃焼させた。 このようにして使用済触媒中の可燃性物質の燃
焼および不溶性の有価金属類の酸化および添加溶
剤である炭酸ナトリウムとの反応を行わせた。 この際炉内に送気管22を経て圧送する空気中
の酸素濃度を21%(容積)から30%程度にまで変
化させて有価金属類の抽出率を試験した結果をつ
ぎの表−1に示す。 この場合送気管22と被焙焼物との最短距離を
20cmとし、また使用済触媒の焙焼炉6内への供給
量を毎時65Kgとした。
The present invention focuses on vanadium, molybdenum, and sulfur, which are valuable metals that are strongly adsorbed deep into the interior of petroleum, which occur during desulfurization, hydrogenation, isomerization, thermal decomposition, etc. Sodium carbonate is added as a solvent to the spent catalyst containing combustible substances such as carbon, and the mixture is oxidized and roasted to penetrate into the fine grains of the spent catalyst and chemically bond through strong adsorption. At the same time, the combustible substances contained in the spent catalyst are removed by oxidative combustion, and the valuable metal vanadium, which is also contained in the fine particles of the spent catalyst and bound by strong adsorption, is removed. In carrying out the method of converting molybdenum into their liquid-soluble salts and extracting and recovering them with water, an alkaline solution, or an acidic solution, the roasted material obtained by adding sodium carbonate to the above spent catalyst is heated to 800 to 900 g. It is heated to a temperature of This relates to a processing device that converts the insoluble vanadium and molybdenum contained into water-soluble compounds and compounds that are soluble in alkaline or acidic solutions by oxidizing and roasting the used catalyst to make valuable metals soluble in liquid. . That is, the present invention burns gaseous fuel or liquid fuel in a short-bodied rotary roasting furnace that has dam parts at both ends for maintaining residence time, and increases the temperature inside the furnace to 800 to 800°C.
The temperature is raised to 900°C, and a to-be-roasted material consisting of a mixture of spent catalyst containing combustible materials and sodium carbonate as a solvent is fed continuously or intermittently into this rotary roasting furnace, and Oxygen-enriched air mixed with air or oxygen to a concentration of 30% or less is placed in a rotary roasting furnace over approximately the entire length of the furnace body without heating or heating. Through the air pipe, a large number of fumarole holes perforated through the wall of the air pipe are used to gradually apply a pressure of 500 to 650 mm of water column from the bottom of the sediment layer of the material to be roasted to the top of the sediment layer. Flame-retardant combustible substances are blown into the spent catalyst and maintained in a heated state at the above temperature for a long period of time from 5 to 25 hours while being in intimate contact with the to-be-roasted material, thereby adsorbing the flame-retardant combustible substance into the spent catalyst. At the same time, insoluble vanadium and molybdenum, which are also adsorbed in the spent catalyst, are reacted with sodium carbonate mixed as a solvent, and they are transferred to liquid-soluble salts. Dissolved metal salts are extracted from the roasted product using water, an alkaline solution, or an acidic solution in an extraction tank, and the exhaust gas is sent to an exhaust gas treatment tank.The spent catalyst is oxidized and roasted to extract valuable metals. The gist of the present invention is to provide a processing device for making a substance soluble in liquid, and the gist of the present invention is to install a large number of combustion air supply pipes in a position close to the inner circumferential wall of the furnace body of a rotary roasting furnace having dam parts on both sides. The air pipes are suspended and supported by fittings at appropriate intervals, each end of which is closed, and each mounting tip is opened, and this open tip is passed through an annular pedestal that is integrally attached to the furnace body. established,
In addition, a slip body is provided which is always elastically and slidably pressed against the annular pedestal, and this slip body is box-shaped with an open rear, or the opening of the air pipe is provided on the sliding surface with respect to the annular pedestal. A matching discharge port is opened, and a pressure pipe for pumping air or oxygen-enriched air is connected to the front part of the slip body, thereby sending the air or oxygen-enriched air under pressure into the slip body. to supply the trachea,
Furthermore, each air pipe is equipped with a large number of injection holes that inject air or oxygen-enriched air upward from the bottom of the pile of materials to be roasted in the furnace, extending over approximately the entire length of the furnace body. The configuration consists of the following. To explain the operation of oxidizing and roasting a spent catalyst using the apparatus of the present invention, the spent catalyst containing carbon, oil, and sulfur, which is extremely flame retardant but gradually burns, is carbonated. Sodium (Na 2 CO 3 ) is added and fed into a short-bodied rotary roasting furnace with dam parts at both ends, and gaseous or liquid fuel is burned in the furnace to produce 800 to 900 The spent catalyst is heated and roasted for a long period of 5 to 25 hours while being kept in an oxidizing atmosphere at ℃ to oxidize the combustible substances contained in the spent catalyst and evaporate them by combustion. Air or oxygen in the furnace with its concentration
Either heat the mixed oxidized enriched air to a level of 30% or less, or heat it without heating it and use the air pipe installed in the rotary roasting furnace to run approximately the entire length of the furnace body. Then, the air is gradually sprayed from the bottom of the pile of torrefied materials to the top through a large number of fumaroles drilled in a row on the wall of the air pipe, bringing it into uniform contact with the torrefied materials, thereby discharging the material into the spent catalyst. The combustible substances contained in the catalyst are sufficiently oxidized and burned to volatilize, and the vanadium and molybdenum also contained in the spent catalyst are converted into water-soluble compounds, alkaline liquid-soluble compounds, or acidic liquid-soluble compounds. It is converted into sodium molybdate (Na 2 MoO 4 ) and sodium vanadate (NaVO 3 ), and then the roasted product is extracted with water, hot water, an alkaline solution or an acidic solution, and separated and recovered from the spent catalyst. In addition, the exhaust gas is sent to an exhaust gas treatment tank. Even in the case of conventional oxidation roasting, cylindrical rotary roasting furnaces and short-body tilting rotary roasting furnaces are mainly used as roasting furnaces, but in either case, gaseous or liquid fuel is burned. The temperature of the material to be roasted at atmospheric temperature is raised by Combustible substances are removed by heating the inside of the furnace to the higher temperature required to combine with the mixed solvent so that it coexists with the catalyst, and then remaining at that temperature and in the oxidizing atmosphere for the required time. Measures have been taken to oxidize and volatilize the carbon, oil, and sulfur content, and to cause a chemical reaction between the valuable metals contained in the spent catalyst and the solvent. In order to accomplish such processing operations efficiently, the amount of heat required to raise the temperature inside the furnace must be evenly distributed to the roasted material, and the oxygen necessary for the oxidation reaction due to the combustion of combustible materials must be uniformly supplied. It is necessary for the combustion oxidation reaction of combustible substances that have penetrated deeply into the carrier and in an adsorbed state, and also for the chemical reaction that has penetrated deeply and made valuable metals that have been adsorbed with the carrier soluble in liquid. It is essential to maintain the temperature at 800-900° C. without overheating for a sufficiently long time of 5-25 hours. In order to smoothly achieve the above matters, it is also important to prevent sintering or fusion due to local overheating. Therefore, the roasting furnace itself operates at a relatively slow speed of 1 to 10 r.p.
It was believed that it would be effective to use a rotary roasting furnace that rotates at a speed of 1.5 h and stirs the various parts of the roasted material while intermingling with each other. However, the components of the spent catalyst contain large amounts of flammable carbon, oil, and sulfur, which are distributed finely and deeply into the center of the catalyst carrier's surface and internal structure. It is kept in a state where it cannot be easily removed by combustion and volatilization. When attempting to oxidize and burn these combustible substances efficiently, the exhaust gases generated by the combustion of fuel and the exhaust gases generated by the combustion of combustible substances in the spent catalyst, mainly carbon dioxide and sulfur dioxide gas, are used. This actually inhibits the progress of the subsequent oxidation reaction. Furthermore, since carbon dioxide is released from the sodium carbonate added as a solvent, the combined effect of these exhaust gases tends to further retard the oxidation rate of the combustible material. Furthermore, since the reaction between sodium carbonate and valuable metals such as vanadium and molybdenum is an oxidation mainly based on an endothermic reaction, it is significantly affected by the temperature in the roasting furnace itself, which may lead to unfavorable results. In addition, the temperature and heat transfer caused by the combustion of fuel are carried out by using the exhaust gas generated by the combustion and the excess air used for combustion as the medium, and the exhaust gas is transferred only to the surface of the deposited layer of the material to be roasted. Its effect is limited to the time it makes contact with it in a stroking manner and passes in that state. Therefore, deep oxidation reactions and heat transfer, which are important objectives, cannot easily take place. In particular, the reaction between sodium carbonate added as a solvent and valuable metals is an oxidizing action that is mainly endothermic under the condition that the temperature is maintained at 800 to 900°C. There is a large temperature difference between this section and the discharge port section, making it difficult for the chemical reaction between the valuable metals and the solvent to proceed smoothly. On the other hand, short-body rotary roasting furnaces have the advantage that the temperature difference between the ore feed side (charging inlet side) and the non-ore side (non-ore side) is relatively small and the temperatures are close to each other. However, since it is difficult to allow sufficient residence time for the materials to be roasted in the furnace, the oxidation reaction of combustible substances contained in the spent catalyst is as insufficient as in a simple cylindrical furnace. It is still insufficient to make the species soluble. As a result, with such treatment, the recovery rate of valuable metals cannot exceed 85%. Therefore, in order to compensate for these insufficiencies, it is necessary to carry out secondary roasting to further bring the oxygen-containing component into contact with it, or to shorten the residence time in the oxidizing atmosphere in the furnace. In order to increase the length, it is necessary to take measures such as using a cylindrical rotary roasting furnace with a particularly long roasting zone to increase the recovery rate of valuable metals in the roasted material. However, when using a rotary roasting furnace with a long roasting zone, the inner volume of the rotary furnace is only 10 to 25 mm due to the structure of the rotary furnace.
% is occupied by the material to be roasted, and the remaining internal volume merely serves as a passage for air and combustion gases. Furthermore, even if the temperature of the object to be roasted is increased and the amount of heat necessary to maintain that temperature is supplied, the hot gas that is the heat source will simply pass through the surface of the accumulated layer of the object to be roasted. Because it is only due to the effect of a very short period of time,
The efficiency and effect of heat transfer cannot be expected to be great. As a result, an excessive amount of heat must be supplied. In other words, an additional amount of exhaust gas must be handled correspondingly, which is extremely uneconomical in terms of operation. Furthermore, even if an attempt is made to oxidize the combustible substances, such as carbon, oil, and sulfur, which are deeply contained in the spent catalyst from the beginning and evaporate them from the roasted material through combustion, the Air also simply passes through the surface of the object to be roasted, but cannot penetrate deeply into the deposited layer of the object to be roasted.Therefore, the effect of burning and volatilizing combustible substances is sufficient. cannot be expected to. However, it is an undeniable fact that such a means is convenient for stirring the roasted material by smoothly moving it in and out. In the present invention, in order to improve the above-mentioned drawbacks of the roasting furnace and utilize its advantages at the same time, an air supply pipe with a length that spans approximately the entire length of the furnace body is inserted into the roasting furnace. It is appropriate that the pipe be made of steel or refractory material with good properties, and the wall of the air pipe should be provided with a large number of fumarole holes in a row, so that the material to be roasted can be heated through the fumarole holes. The oxygen-enriched air mixed with air or oxygen to a concentration of 30% or less is directed upward from the bottom of the deposited layer in the furnace, without heating or heating, and minimizing the generation of dust from the roasted materials. The water column pressure is
By injecting at a low pressure of about 500 to 600 mm, the temperature of the roasted material is maintained at 800 to 900℃, and carbon dioxide, sulfur dioxide, etc. that volatilize from the surface of the roasted material are quickly converted into combustible substances. At the same time, the combustible substances remaining as unburned substances are sufficiently burned, and the oxidation of valuable metals or the chemical reaction with the added solvent is significantly promoted. It was designed so that As a result of the above method, when the present invention is used, the oxidation of valuable metals and the reaction with sodium carbonate added as a solvent are carried out efficiently and smoothly, and therefore the recovery of valuable metals is also highly efficient. . The industrial effect of using the oxidation roasting apparatus of the present invention is that the purpose of roasting can be fully achieved and the oxidation zone can be made extremely short in terms of the structure of the furnace. Therefore, the roasting furnace can be downsized, which is economical in terms of equipment costs, and has the advantage of requiring less fuel consumption. The temperature inside the roasting furnace is raised evenly, and evenly throughout the roasting process.
The amount of heat required to maintain a constant temperature in the range of 800 to 900°C is determined by an auxiliary combustion burner installed at the charging port (ore feed port) that supplies the spent catalyst or a mixture of used catalyst and solvent into the roasting furnace. This can be achieved by adjusting the fuel. Furthermore, the combustible substances contained in the roasted material in a deeply adsorbed state gradually generate a considerable amount of heat due to the smooth oxidation combustion reaction which is an effect of the present invention. The present invention also has the advantage that the amount of heat can be used in addition as an effective amount of heat. Air or oxygen-enriched air as described above is supplied into a torrefaction furnace for oxidative torrefaction of a mixture of a spent catalyst and a solvent, and the air or oxygen-enriched air is suspended and supported close to the inner circumferential wall of the torrefaction furnace, and By injecting under pressure upward from the bottom of the torrefaction material accumulation layer in the furnace through numerous fumaroles of the air pipe installed over almost the entire length of the furnace, a synergistic effect is exerted. This makes it possible to efficiently extract and recover valuable metals at a high recovery rate while oxidizing the roasted material at elevated temperatures. In addition, according to the present invention, there is no need to provide any injection holes for combustion air on the peripheral wall of the roasting furnace, and the air supply pipe only needs to be suspended and supported by the attachment, so that the air supply pipe is heat resistant. Even if the air pipe is worn out during use, it can be easily and conveniently replaced, and the treatment operation can be carried out economically. Since the temperature inside the roasting furnace is relatively low and there is no direct contact with the combustion air, we recommend using hanging hardware made of 18-8 nickel chromium steel as a fitting for the air pipe. It is preferable that the air pipe be suspended and supported on the peripheral wall of the furnace. Next, the short-barrel tilting rotary roasting furnace according to the present invention and the equipment attached thereto will be explained. FIG. 1 shows a precedent that was tried in the process of completing the present invention. As shown in FIG. 1, the used catalyst a and the solvent b are placed under the spent catalyst hopper 1 and the solvent hopper 2 by a screw feeder 3 and a feeder 4.
A mixture of spent catalyst a and solvent b is supplied through a guide trough 5 into a rotary roasting furnace 6 having dam parts on both sides. This rotary roasting furnace 6 is rotated in one direction at a relatively slow speed by a transmission gear mechanism 7, and has an exhaust gas receiving tank 8 which also serves as a roasted product receiving tank in contact with the discharge port side of the roasting furnace 6. An exhaust gas discharge pipe 9 is opened in the upper part of the receiving tank 8, and the tip thereof is connected to the exhaust gas treatment device via the blower 10, and the exhaust gas is treated by appropriate means to be rendered harmless and released into the atmosphere. The roasted material after the roasting process is dropped from the lower part of the chamber 8 through the exhaust port 11, and is further received in an extractor, where soluble valuable metal compounds are extracted as a solution using water, hot water, an alkaline solution, or an acidic solution. equip Further, a heavy oil burner 12 is installed toward the inner side of the charging port of the rotary roasting furnace 6, and the temperature inside the furnace 6 is raised by the heat of combustion of the fuel. In the case shown in FIG. 1, the long air supply pipe 14 for pressure-feeding combustion air by the blower 13 is closed at its tip and is inserted over almost the entire length inside the furnace. Furthermore, a large number of injection holes 15 are provided in a row in the tube wall so as to inject combustion air toward substantially the entire surface of the roasted material accumulation layer c in the furnace, and the air supply pipe 14 is provided outside the furnace. An oxygen supply pipe 16 that supplies oxygen gas to an appropriate location is connected via a control valve 17, and compressed oxygen or oxygen sent from a liquefied oxygen supply device 18 is mixed with air to an oxygen concentration of 30% or less. It is also possible to inject the enriched air through the air pipe 14 toward the surface of the torrefaction material accumulation layer in the furnace, but in the case shown in FIG. 1, the injection hole 15 of the air pipe 14 is The combustion air injected from the torrefied material is directed toward the surface of the torrefied material accumulation layer c, and therefore most of the combustion air strokes the surface of the torrefied material accumulation layer c and is burned. It was recognized that it was insufficient to sufficiently exert its effect on the bottom and inside of the deposited layer c. In view of these points, the present invention has been devised so that the combustion air supply pipes are suspended and supported by fixtures at appropriate intervals at positions close to the inner circumferential wall of the furnace shell, as shown in Fig. 2. By doing so, combustion air is injected upward from the bottom of the to-be-roasted material accumulation layer from the injection hole of the air pipe. In implementation, as shown in FIG.
It is also possible to inject the combustion air from 5 toward the surface of the to-be-roasted material pile c. Next, the apparatus of the present invention shown in FIG. 2 will be described. An annular pedestal 19 is set integrally with the furnace body on the outer periphery of the charging port side of the roasting furnace 6, and the annular pedestal 19 is in sliding contact with the outside of the annular pedestal 19. A slip body 20 having a substantially half-moon shape or a substantially quarter-moon shape similar thereto is installed in a fixed position so as to be able to be pressed by an elastic force 21 so as to be slidably pressed against the outer surface of the base 19. A large number of air supply pipes 22 are installed inside the annular pedestal 19 so that their mounting tips open outward. Attachment 23 at a position close to the inner peripheral wall.
At the same time, the length of each air pipe 22 is set to be approximately the entire length of the furnace body, and the pipe wall is provided with combustion air or A large number of injection holes 24 for injecting oxygen-enriched air are provided in rows. The sliding slip body 20 has a box shape with an open rear end, or has an outlet opening on the rear side that matches the opening of the air pipe 22 in the annular pedestal 19. On the front side, there is a pressure pipe 25 for pumping air or product-enriched air.
are connected in series to supply air or oxygen-enriched air into the slip body 20. As mentioned above, the slip body 20 is not made into an annular shape, but is made into a substantially half-moon shape, or a substantially quarter-moon shape similar thereto, because the layer c As shown in Figs. 4 and 5, the particles were deposited unevenly in an area of about one-fourth of a circle from the lower part toward one side in the direction of rotation of the roasting furnace 6. Therefore, it is sufficient to inject air or oxygen-enriched air from the lower part to the upper part of the deposited layer c of the roasted material only in the areas where the deposited layer c exists unevenly; Since it is not necessary, in order to forcefully feed air or oxygen-enriched air into the furnace through the air supply pipe 22, the slip body 20 for feeding it is not circular but approximately half-moon-shaped or quarter-moon-shaped. This is because there is no difference in the shape of the circular ring, and even if it is sprayed somewhere else, it will simply pass over the surface of the deposited layer c, and not much effect can be expected. That is, when the opening of the air supply pipe 22 of the pedestal 19 is in a position opposite to the discharge port of the slip body 20, air or oxygen-enriched air is supplied from the slip body 20 through the air supply pipe 22 of the base 19 to the material to be roasted in the furnace. can be injected under pressure upward from the bottom of the deposited layer c. Note that the pedestal 19 is located at a location other than that facing the approximately half-moon-shaped or approximately quarter-moon-shaped slip body 20.
Atmospheric air is drawn into the air pipe 22 attached to the air pipe 22 through its open opening by natural suction and is discharged into the furnace through the air pipe 22. However, there is no particular need to pump air. All of the air pipes 22 are preferably made of heat-resistant and corrosion-resistant steel pipes or refractory pipes. Since the slip body 20 and the pedestal 19 are kept slidable only by pressing the slip body 20 elastically from the outside, it is inevitable that some air or oxygen-enriched air leaks from their contact surfaces. do not have. In addition, instead of immediately communicating the end of the rotary roasting furnace 6 on the discharge port side to the exhaust gas receiving/roasted product receiving tank 8, a rigid fixed secondary roasting furnace is interposed between them. A separate fuel burner is installed, and after performing the secondary roasting of the roasted material in a self-combustion type, the exhaust gas is sent to the exhaust gas treatment equipment via the exhaust gas exhaust pipe, and the roasted material is fed down to the extractor for extraction operation. You can also do it. Next, examples of operations performed using the apparatus of the present invention will be described. The raw material was 750 kg of spent catalyst with alumina as a carrier. Its chemical composition is as follows. Alumina 65.0% (weight) Cobalt 0.1% Nickel oxide 1.5% Sulfur 10.0% Vanadium 5.5% Molybdenum 4.8% Oil 3.2% To this spent catalyst, 21.5% by weight of sodium carbonate (Na 2 CO 3 ) was added as a solvent. The short-bodied tilting rotary roasting furnace 6
Continuously supplied within. The temperature inside the roasting furnace 6 is controlled by the heavy oil burner 12.
The temperature was maintained within the range of 850°C ± 50°C. Combustible substances contained in the roasted material are passed through the oxygen supply pipe 1 outside the combustion air of this heavy oil burner 12.
Oxygen-enriched air mixed with oxygen adjusted in step 6 is directly injected from the injection hole 24 of the air pipe 22 at a water column pressure of 550 mm toward the surface of the deposited layer c of the material to be combusted, to ensure sufficient oxidation. Burnt it. In this way, combustion of combustible substances in the spent catalyst, oxidation of insoluble valuable metals, and reaction with sodium carbonate as an additive solvent were carried out. At this time, the extraction rate of valuable metals was tested by varying the oxygen concentration in the air pumped into the furnace through the air pipe 22 from 21% (volume) to about 30%. The results are shown in Table 1 below. . In this case, the shortest distance between the air pipe 22 and the object to be roasted is
20 cm, and the amount of spent catalyst fed into the roasting furnace 6 was 65 kg/hour.

【表】【table】

【表】 上記の表1に示す結果からも認められるように
本発明の噴射装置を用いないで燃焼用の過剰空気
および燃焼排ガスのみで被焙焼物の堆積層cの表
面を単になでるようにして酸化燃焼を行わせた場
合にはバナジウム(V)の抽出率は僅か53.7%に
すぎなかつたものが、噴射装置を用い空気または
酸素富化空気を噴射させることによつて一挙に
83.5%に抽出率が上昇した。 またモリブデン(Mo)の抽出率は同じく66.7
%であつたものが空気または酸素富化空気を噴射
させることによつて一挙に84.0%に上昇してい
る。これによつても本発明の酸化焙焼の装置によ
る操作が有効であるかが判る。 酸化焙焼処理された被焙焼物は直接水を満した
湿式粉砕機に供給され、微粉砕された後公知の方
法で可溶性になつているバナジウムおよびモリブ
デンを抽出した。 また焙焼炉よりの排ガスは公知の処理装置によ
り脱硫、脱硝して無害とした後大気中に放出し
た。
[Table] As can be seen from the results shown in Table 1 above, the surface of the deposited layer c of the roasted material was simply stroked with only the excess air for combustion and the combustion exhaust gas without using the injection device of the present invention. When oxidative combustion was carried out, the extraction rate of vanadium (V) was only 53.7%, but by injecting air or oxygen-enriched air using an injection device, it can be extracted all at once.
The extraction rate increased to 83.5%. The extraction rate of molybdenum (Mo) is also 66.7.
% increased to 84.0% by injecting air or oxygen-enriched air. This also shows whether the operation using the oxidation roasting apparatus of the present invention is effective. The oxidized and roasted material was directly fed to a wet mill filled with water, and after being finely ground, soluble vanadium and molybdenum were extracted by a known method. Further, the exhaust gas from the roasting furnace was desulfurized and denitrated using a known treatment device to render it harmless, and then released into the atmosphere.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の完成する前に試みられた回転
式焙焼炉の装置を略示する一部縦断正面図、第2
図は本発明による回転式焙焼炉の装置を略示する
一部縦断正面図、第3図は同じく回転式焙焼炉の
部分を示す一部截断斜視図、第4図は焙焼炉内に
おける送気管の配置関係を説明する断面図、第5
図は同じく焙焼炉における台座とスリツプ体との
配置関係を説明する断面図、第6図は同じく焙焼
炉における台座とスリツプ体との配置関係を説明
する一部截断斜視図である。 1……使用済触媒のホツパー、2……溶剤のホ
ツパー、3,4……フイーダー、a……使用済触
媒、b……溶剤、5……導樋、6……回転式焙焼
炉、7……伝動歯車機構、8……排ガス受兼焙焼
物受タンク、9……排ガス排出管、10……送風
機、11……焙焼物排除口、12……重油バーナ
ー、c……被焙焼物堆積層、14……送気管、1
5……噴射孔、16……酸素供給管、17……調
節弁、18……酸素供給装置、19……環状台
座、20……スリツプ体、21……弾機、22…
…送気管、23……取付子、24……噴射孔、2
5……酸素圧送管。
Fig. 1 is a partially longitudinal front view schematically showing a rotary roasting furnace device attempted before the invention was completed;
The figure is a partially longitudinal front view schematically showing the rotary roasting furnace apparatus according to the present invention, FIG. 3 is a partially cutaway perspective view showing the rotary roasting furnace, and FIG. A sectional view illustrating the arrangement of the air pipes in the fifth figure.
The figure is a cross-sectional view illustrating the positional relationship between the pedestal and the slip body in the roasting furnace, and FIG. 6 is a partially cutaway perspective view illustrating the positional relationship between the pedestal and the slip body in the roasting furnace. 1... Spent catalyst hopper, 2... Solvent hopper, 3, 4... Feeder, a... Spent catalyst, b... Solvent, 5... Guidance, 6... Rotary roasting furnace, 7... Transmission gear mechanism, 8... Exhaust gas receiving tank and roasted material receiving tank, 9... Exhaust gas discharge pipe, 10... Air blower, 11... Roasted material discharge port, 12... Heavy oil burner, c... Roasted material Deposition layer, 14...Air pipe, 1
5... Injection hole, 16... Oxygen supply pipe, 17... Control valve, 18... Oxygen supply device, 19... Annular pedestal, 20... Slip body, 21... Bullet machine, 22...
...Air pipe, 23...Mounter, 24...Injection hole, 2
5...Oxygen pressure pipe.

Claims (1)

【特許請求の範囲】[Claims] 1 石油類の脱硫、水素添加、異性化、熱分解等
において生ずる有価金属類のバナジウム、モリブ
デンと硫黄分、炭素分などの可燃性物質とを含む
使用済触媒に溶剤として炭酸ナトリウムを混和し
たものを短胴形回転式焙焼炉中に送り込み、回転
式焙焼炉の炉壁または焙焼炉中に複数の空気噴気
孔を設けた使用済触媒の酸化焙焼装置において、
両側にダム部分を有する回転式焙焼炉の炉胴内周
壁に接近した位置に、多数の燃焼用空気の送気管
を適宜間隔を隔て取付子により懸吊支持して設
け、それら送気管は各末端が閉塞されるととも
に、各取付先端が開放され、この開放先端を炉胴
と一体的に取付けた環状台座に貫設し、かつ環状
台座に対し常時弾性的に摺動自在に圧接するスリ
ツプ体を定設し、このスリツプ体は後方が開放し
た箱形とするか、または環状台座に対する摺接面
に前記送気管の開放口と合致する放出口を開設し
たものとなし、スリツプ体の前方部には空気また
は酸素富化空気を圧送する圧送管を連設し、それ
によりスリツプ体内に圧送された空気または酸素
富化空気を送気管に供給するようにし、さらに各
送気管には炉胴の略全長に亘る長さにて炉内にお
ける被焙焼物の堆積層の下底部より上方に向けて
燃焼用空気を噴射する多数の噴射孔を列穿して設
けて成る使用済触媒を酸化焙焼して有価金属類を
液溶性にする処理装置。
1. Spent catalysts containing valuable metals such as vanadium and molybdenum produced during desulfurization, hydrogenation, isomerization, thermal decomposition, etc. of petroleum and combustible substances such as sulfur and carbon, mixed with sodium carbonate as a solvent. In an oxidation roasting device for spent catalysts, the spent catalyst is fed into a short-body rotary roasting furnace, and a plurality of air blowholes are provided on the wall of the rotary roasting furnace or in the roasting furnace.
A large number of combustion air supply pipes are installed at appropriate intervals and are suspended and supported by fixtures in a position close to the inner circumferential wall of the furnace body of a rotary roasting furnace that has dam parts on both sides. A slip body whose end is closed and each mounting tip is opened, and the open tip is inserted through an annular pedestal that is integrally attached to the furnace body, and is always elastically and slidably pressed against the annular pedestal. The slip body is box-shaped with an open rear end, or has a discharge port that matches the opening of the air pipe on the sliding surface against the annular pedestal, and the front part of the slip body is A pressure feed pipe for feeding air or oxygen-enriched air under pressure is connected to the air pipe, so that the air or oxygen-enriched air forced into the slip body is supplied to the air pipe. A spent catalyst is oxidized and roasted, which is made up of a number of injection holes that are arranged in a row to inject combustion air upward from the bottom of the accumulated layer of materials to be roasted in a furnace over almost its entire length. Processing equipment that makes valuable metals soluble in liquid.
JP1363878A 1978-02-10 1978-02-10 Oxidating incineration treatment for used catalyst Granted JPS54107495A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1363878A JPS54107495A (en) 1978-02-10 1978-02-10 Oxidating incineration treatment for used catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1363878A JPS54107495A (en) 1978-02-10 1978-02-10 Oxidating incineration treatment for used catalyst

Publications (2)

Publication Number Publication Date
JPS54107495A JPS54107495A (en) 1979-08-23
JPS6144808B2 true JPS6144808B2 (en) 1986-10-04

Family

ID=11838767

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1363878A Granted JPS54107495A (en) 1978-02-10 1978-02-10 Oxidating incineration treatment for used catalyst

Country Status (1)

Country Link
JP (1) JPS54107495A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5242483A (en) * 1992-08-05 1993-09-07 Intevep, S.A. Process for the production of vanadium-containing steel alloys
RU2398895C2 (en) 2005-10-05 2010-09-10 Жфе Матириал Ко., Лтд. PROCEDURE FOR ROASTING MATERIAL CONTAINING AT LEAST ONE METAL FROM GROUP INCLUDING V OR Mo, OR Ni AND ROTATING FURNACE FOR THIS MATERIAL ROASTING
JP2007130542A (en) * 2005-11-09 2007-05-31 Mettsu Corporation:Kk Treatment method of used catalyst
JP2010249421A (en) * 2009-04-16 2010-11-04 Masaaki Fujiwara Rotary heat storage gasification combustion device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4918953A (en) * 1972-06-15 1974-02-19
JPS5043138U (en) * 1973-08-23 1975-05-01
JPS5137248A (en) * 1974-09-26 1976-03-29 Victor Company Of Japan Kogakubiimu no shotenchoseihoshiki

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4918953A (en) * 1972-06-15 1974-02-19
JPS5043138U (en) * 1973-08-23 1975-05-01
JPS5137248A (en) * 1974-09-26 1976-03-29 Victor Company Of Japan Kogakubiimu no shotenchoseihoshiki

Also Published As

Publication number Publication date
JPS54107495A (en) 1979-08-23

Similar Documents

Publication Publication Date Title
US3481720A (en) Process and apparatus for the distillation of solids
NO163318B (en) PROCEDURE AND ADORTS FOR NITROGEN REMOVAL FROM A GAS CURRENT CONTAINING NITROGEN AND OXYGEN.
KR20060100022A (en) Method for manufacturing energy from combustible waste non pollution carbonization, the system therefor, cracking catalyst and manufacturing method thereof
US3206299A (en) Dense-bed, rotary, kiln process and apparatus for pretreatment of a metallurgical charge
JPH03243709A (en) Method and device for direct reduction of metal oxide
EP0631981B1 (en) Process and apparatus for activating carbon-containing material
CA1117097A (en) Method and apparatus for producing active coke
JP2004538122A (en) Method for heat treating residual material containing oil and iron oxide
JPS6144808B2 (en)
US6395057B1 (en) Method for producing directly reduced iron in a layered furnace
US2074061A (en) Production of sulphur dioxide
RU2218417C2 (en) Method of heat treatment of wastes containing heavy metals and ferric oxides
KR100654478B1 (en) A method and apparatus for reducing a feed material in a rotary hearth furnace
US2086733A (en) Production of sulphur dioxide
US2058480A (en) Process of treating pyrites
US2057099A (en) Production of sulphur dioxide
RU2240361C2 (en) Method of removing zinc and reducing iron oxide waste (metallization)
US1555513A (en) Evaporating and incinerating apparatus
RU2278175C2 (en) Method for recovery of metal compounds from thermal reprocessing of metal-containing raw materials
US1512262A (en) Process of reducing ore
US1461372A (en) Process of treating ore and like materials
CZ20011548A3 (en) Heat treatment process of waste materials containing heavy metals
CN110566982A (en) Combustion device for waste gas environment-friendly treatment
CA1200392A (en) Process of producing sponge iron by a direct reduction of iron oxide-containing material in a rotary kiln
CZ20011042A3 (en) Process for producing directly reduced metal in a multiple hearth furnace