JPS6144219B2 - - Google Patents

Info

Publication number
JPS6144219B2
JPS6144219B2 JP56117403A JP11740381A JPS6144219B2 JP S6144219 B2 JPS6144219 B2 JP S6144219B2 JP 56117403 A JP56117403 A JP 56117403A JP 11740381 A JP11740381 A JP 11740381A JP S6144219 B2 JPS6144219 B2 JP S6144219B2
Authority
JP
Japan
Prior art keywords
pressure
building
air
exhaust
blower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56117403A
Other languages
Japanese (ja)
Other versions
JPS5818049A (en
Inventor
Yasushi Fukui
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Engineering Corp
Original Assignee
Toshiba Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Engineering Corp filed Critical Toshiba Engineering Corp
Priority to JP56117403A priority Critical patent/JPS5818049A/en
Publication of JPS5818049A publication Critical patent/JPS5818049A/en
Publication of JPS6144219B2 publication Critical patent/JPS6144219B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/0001Control or safety arrangements for ventilation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/0001Control or safety arrangements for ventilation
    • F24F2011/0002Control or safety arrangements for ventilation for admittance of outside air
    • F24F2011/0005Control or safety arrangements for ventilation for admittance of outside air to create underpressure in a room, keeping contamination inside

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Ventilation (AREA)
  • Air Conditioning Control Device (AREA)

Description

【発明の詳細な説明】 この発明は、原子力発電所内換気空調系統など
のように、建屋内の圧力を建屋外に対して、ある
一定幅の負圧値に保つように差圧制御を行う必要
がある換気空調系において常に建屋内圧力を一定
幅内の負圧値に保つよう制御すると同時に、換気
回数維持、ならびに熱除去の目的の為に、確実に
風量一定制御を行う建屋差圧制御装置に関するも
のである。
[Detailed description of the invention] This invention requires differential pressure control to maintain the pressure inside the building at a negative pressure value within a certain range with respect to the outside of the building, such as in a ventilation air conditioning system in a nuclear power plant. A building differential pressure control device that constantly controls the pressure inside the building to maintain a negative pressure value within a certain range in a certain ventilation air conditioning system, and at the same time reliably controls the air volume at a constant level in order to maintain the ventilation frequency and remove heat. It is related to.

従来の建屋内負圧制御の方法としては、給気送
風機の下流側の風量を検出し、その検出器からの
信号をうけた調節計の出力信号により、給気送風
機の上流側にあるダンパの開度を制御していた。
しかし、この方法であると排気エアフイルタが目
づまりしてきた場合、建屋内の負圧値は減少する
方向となり、極度に目づまりすると、負圧を維持
出来なくなる恐れがあつた。又、ダンパはサクシ
ヨンベーンに比べ制御性が劣り、特に静圧の大き
い場合にはその傾向が大きかつた。
The conventional method for controlling negative pressure inside a building is to detect the air volume on the downstream side of the supply air blower, and use the output signal of a controller that receives the signal from the detector to control the damper on the upstream side of the supply air blower. It controlled the opening.
However, with this method, if the exhaust air filter becomes clogged, the negative pressure value inside the building tends to decrease, and if it becomes extremely clogged, there is a risk that the negative pressure cannot be maintained. In addition, dampers have poorer controllability than suction vanes, and this tendency is particularly pronounced when static pressure is large.

この発明は以上の事情に鑑みてなされたもの
で、その目的とするところは、サクシヨンベーン
を初期設定した時の給気ラインと排気ラインの圧
力差を設定値とする設定手段と、前記圧力差が設
定値となるように前記サクシヨンベーンを制御す
る手段とを備えることにより、常に一定幅内の建
屋内負圧を得ると共に、一定風量をも確保できる
換気空調系統の建屋差圧制御装置を提供すること
にある。
The present invention has been made in view of the above circumstances, and its purpose is to provide a setting means for setting a pressure difference between an air supply line and an exhaust line when a suction vane is initially set; A building differential pressure control device for a ventilation air conditioning system that can always obtain a negative pressure within a constant width and also secure a constant air volume by comprising means for controlling the suction vane so that the difference becomes a set value. Our goal is to provide the following.

以下、図面を参照してこの発明の一実施例を説
明する。第1図に建屋差圧制御を行なう換気空調
系を示す。この換気空調系はルーバ11より取り
入れた外気を、給気エアフイルタ12にて除塵処
理した後、給気加熱器13等を経由して給気送風
機14によつて建屋15内へ給気するものであ
る。次に建屋15内に給気された空気は、排気ダ
クト16によつて集められ、排気エアフイルタ1
7によつて除塵処理された後、排気送風機18に
よつて排気筒20から建屋外へ放出されている。
排気送風機18に風量を調節出来るようサクシヨ
ンベーン19が付属している。前記給気ラインの
給気送風機14の出力側と前記排気ラインの排気
エアフイルタ17の入力側にその検出点を設け、
前記サクシヨンベーン19を初期設定したときの
その両側における圧力差を検出しこの出力信号2
1Aを出力する差圧検出器21を備えている。そ
して、この差圧検出器21の出力信号(前記サク
シヨンベーン19を初期設定したときの差圧検出
器21の出力信号21Aを入力してこれを設定値
とする設定手段を内蔵するとともに、この設定手
段の設定値と前記差圧検出器の出力が一致するよ
うに前記サクシヨンベーン19を制御するための
出力信号22Aを出力する手段22とを備えてい
る。
Hereinafter, one embodiment of the present invention will be described with reference to the drawings. Figure 1 shows the ventilation air conditioning system that controls the building differential pressure. This ventilation air conditioning system takes in outside air from a louver 11, removes dust with a supply air filter 12, and then supplies the air into a building 15 via a supply air heater 13 and the like with a supply air blower 14. be. Next, the air supplied into the building 15 is collected by the exhaust duct 16 and passed through the exhaust air filter 1.
After being subjected to dust removal processing by the exhaust blower 18, it is discharged from the exhaust pipe 20 to the outside of the building.
A suction vane 19 is attached to the exhaust blower 18 so that the air volume can be adjusted. The detection points are provided on the output side of the supply air blower 14 of the supply air line and on the input side of the exhaust air filter 17 of the exhaust line,
When the suction vane 19 is initially set, the pressure difference on both sides is detected and this output signal 2 is generated.
It is equipped with a differential pressure detector 21 that outputs 1A. The output signal of the differential pressure detector 21 (the output signal 21A of the differential pressure detector 21 when the suction vane 19 is initialized) is inputted and set as a set value. Means 22 is provided for outputting an output signal 22A for controlling the suction vane 19 so that the set value of the setting means and the output of the differential pressure detector match.

このような構成の換気空調系統において、ルー
バ11から排気筒20に至る間で空気の大幅な漏
洩がないと仮定すると、この間は、1ダクト系を
形成していることになる。第2図はこの系統の各
部分における圧力分布の概念図を示したものであ
り、第2図において大気圧の線を基準にその上側
は正圧を、下側は負圧を示している。系統運転当
初の給、排気系のエアフイルタ12,17が清浄
な時は、第2図の実線30Aで示す圧力分布とな
り安定している。系統運転を続け、給気エアフイ
ルタ12がつまつてくると破線30Bで示す圧力
分布となり、建屋15の負圧は給気エアフイルタ
12のつまりによる圧力損失増加分だけ増進す
る。次に排気エアフイルタ17もつまると、一点
鎖線30Cで示す圧力分布となる。このように第
1図に示すような換気空調系統の外気取り入れル
ーバ11から排気筒20の間における内部圧力は
エアフイルタの目づまりによる装置抵抗の変化分
のみ変化することになる。
In the ventilation air conditioning system having such a configuration, assuming that there is no significant leakage of air between the louver 11 and the exhaust stack 20, one duct system is formed between the louver 11 and the exhaust stack 20. FIG. 2 shows a conceptual diagram of the pressure distribution in each part of this system. In FIG. 2, the upper side of the atmospheric pressure line shows positive pressure, and the lower side shows negative pressure. When the air filters 12 and 17 of the supply and exhaust systems are clean at the beginning of system operation, the pressure distribution is stable as shown by the solid line 30A in FIG. As the system operation continues and the supply air filter 12 becomes clogged, the pressure distribution becomes as shown by the broken line 30B, and the negative pressure in the building 15 increases by the amount of pressure loss increase due to the supply air filter 12 being clogged. Next, when the exhaust air filter 17 is also clogged, the pressure distribution becomes as shown by the dashed line 30C. In this way, the internal pressure between the outside air intake louver 11 and the exhaust stack 20 of the ventilation air conditioning system shown in FIG. 1 changes by the amount of change in device resistance due to clogging of the air filter.

第3図は一般的な送風機特性曲線を示すもの
で、その横軸は風量、縦軸は静圧を示し、装置抵
抗曲線を42Aとし、送風機の特性曲線を41A
とすると、風量Q1が流れた時の静圧損失はP1
となる(作用点X)。エアフイルタがつまつて装
置抵抗曲線が42Bの状態になると引き続きQ1
の風量を流すためにはP3の静圧が必要となる
(作用点Z)。しかし送風機の特性曲線が変らない
時は作用点はYとなり、風量はQ2に減少し、静
圧損失はP2に増加して安定することになる。そ
こでサクシヨンベーン19付の送風機の容量を決
める際に、あらかじめフイルタのつまりによる装
置抵抗増加分をもカバーするだけの能力を持たせ
て選定しておき、系統運転当初は最終的なフイル
タのつまりにみあう分だけサクシヨンベーン19
の流入角度をかえて運転し、フイルタ12,17
がつまるにしたがいサクシヨンベーン19を制御
して、送風機18の特性曲線を41Aから41B
に変え、静圧を増加させて風量Q1を保つように
すれば(作用点Z)装置抵抗変化に対しても、風
量を一定に保つことが出来ることになる。すなわ
ち、これを第2図で説明すると、排気送風機18
の能力(静圧)をあらかじめA―Dに選定してお
き、運転当初はサクシヨンベーン19の流入角度
を変えることにより、排気送風機18の送風能力
をA―Bとして使用し、その後はエアフイルタの
目づまりに応じてサクシヨンベーン19を制御し
て、排気送風機18の能力をA―C〜A―Dと変
化させていくことで、常に一定風量と建屋内をあ
る一定幅(第2図において32と示してある)の
負圧値内に保つことが出来ることになる。
Figure 3 shows a typical blower characteristic curve, where the horizontal axis shows air volume and the vertical axis shows static pressure.The device resistance curve is 42A, and the blower characteristic curve is 41A.
Then, the static pressure loss when the air volume Q1 flows is P1
(point of action X). If the air filter becomes clogged and the device resistance curve reaches 42B, Q1 continues.
In order to flow an air volume of , a static pressure of P3 is required (point of action Z). However, when the characteristic curve of the blower does not change, the point of action becomes Y, the air volume decreases to Q2, and the static pressure loss increases to P2 and becomes stable. Therefore, when determining the capacity of the blower with suction vane 19, it should be selected in advance so that it has enough capacity to cover the increase in device resistance due to filter clogging, and at the beginning of system operation, Suction vane 19 as much as possible
The filters 12 and 17 are operated by changing the inflow angle of the filters 12 and 17.
The suction vane 19 is controlled to change the characteristic curve of the blower 18 from 41A to 41B.
If the static pressure is increased to maintain the air volume Q1 (point of action Z), the air volume can be kept constant even when the device resistance changes. That is, to explain this with reference to FIG. 2, the exhaust blower 18
The capacity (static pressure) of the exhaust fan 18 is selected in advance as A-D, and at the beginning of operation, by changing the inflow angle of the suction vane 19, the air blowing capacity of the exhaust blower 18 is used as A-B. By controlling the suction vane 19 according to the clogging and changing the capacity of the exhaust blower 18 from AC to AD, the air volume is always constant and the inside of the building is kept within a certain width (32cm in Fig. 2). This means that it is possible to maintain the negative pressure within the negative pressure value (shown as ).

次に、このようにサクシヨンベーン19を制御
するための手段22の作用について説明する。第
1図において前記手段22は給排気ラインの差圧
を検出している差圧検出器21から出力信号21
Aにより、サクシヨンベーン19に出力信号22
Aを発しているが、この関係を第2図をもとに説
明する。差圧検出器21の給気側検出位置の圧力
値は圧力分布図中34の値となり、排気側検出位
置の圧力値は35の値となる。すなわち、給気側
の圧力値34と排気側の圧力値35の絶対値の和
36がこのシステムで差圧検出器21が検出して
いる個所の初期圧損になる。
Next, the operation of the means 22 for controlling the suction vane 19 in this manner will be explained. In FIG. 1, the means 22 receives an output signal 21 from a differential pressure detector 21 that detects the differential pressure in the supply and exhaust lines.
A causes an output signal 22 to be sent to the suction vane 19.
This relationship will be explained based on FIG. 2. The pressure value at the supply side detection position of the differential pressure detector 21 is the value 34 in the pressure distribution diagram, and the pressure value at the exhaust side detection position is the value 35. That is, the sum 36 of the absolute values of the pressure value 34 on the supply side and the pressure value 35 on the exhaust side becomes the initial pressure loss at the location detected by the differential pressure detector 21 in this system.

そこで、系統運転当初に、建屋15内の負圧値
が規定幅32内に入る時の給気ラインと排気ライ
ンの間の圧力差36を測定し、この圧力差36に
より、サクシヨンベーン19の流入角度を初期設
定することにより、その後は給気エアフイルタ1
2の目づまりによる第2図の破線30Bに示す圧
力分布となつた時でも、又排気エアフイルタ17
の目づまりによる一点鎖線30Cに示す圧力分布
となつた時でも、常に初期設定の圧力差36を保
つようにサクシヨンベーン19が制御され、これ
により排気送風機18がA―CあるいはA―Dの
能力を発揮することになり、常にある一定幅内の
負圧値と一定風量を得る制御が行われることにな
る。
Therefore, at the beginning of system operation, the pressure difference 36 between the supply line and the exhaust line when the negative pressure value in the building 15 falls within the specified width 32 is measured, and this pressure difference 36 causes the suction vane 19 to By initially setting the inflow angle, the supply air filter 1
Even when the pressure distribution becomes as shown by the broken line 30B in FIG. 2 due to the clogging of the exhaust air filter 17,
Even when the pressure distribution becomes as shown by the dashed line 30C due to clogging, the suction vane 19 is controlled so as to always maintain the initially set pressure difference 36, and this causes the exhaust blower 18 to switch between A-C or A-D. This means that control is performed to always obtain a negative pressure value within a certain range and a constant air volume.

斯して、この発明の換気空調系の建屋内負圧制
御装置は、プロセス系統の条件が運転を続ける内
に変化していつても極めて短時間に安定性良く、
常に建屋内圧力を建屋外に対し一定の負圧幅内に
保つように制御すると同時に送風量も一定となる
よう制御することができ、又この発明装置による
とエアフイルタの目づまりによる装置抵抗増加に
対しても、建屋内の負圧値が増進する方向とな
り、従来方式より安全側に働くことになる。
In this way, the indoor negative pressure control device for ventilation and air conditioning systems of the present invention can be used in an extremely short period of time and with good stability even if the conditions of the process system change during continued operation.
It is possible to control the pressure inside the building to always maintain it within a certain negative pressure range relative to the outside of the building, and at the same time to control the amount of air flow to be constant.In addition, the device of this invention prevents the increase in device resistance due to clogging of the air filter. In contrast, the negative pressure inside the building will increase, making it safer than the conventional system.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明装置が適用される原子力発電
所内などで用いられている一般的な換気空調系統
図、第2図は第1図の系統図における圧力分布概
念図、第3図は一般的な送風機特性曲線を示す図
である。 11…ルーバ、12…給気エアフイルタ、13
…給気加熱器、14…給気送風機、15…建屋、
16…排気ダクト、17…排気エアフイルタ、1
8…排気送風機、19…サクシヨンベーン、20
…排気筒、21…差圧検出器、22…サクシヨン
ベーン19を制御する手段。
Figure 1 is a general ventilation air conditioning system diagram used in nuclear power plants to which this invention is applied, Figure 2 is a conceptual diagram of pressure distribution in the system diagram of Figure 1, and Figure 3 is a general diagram. FIG. 3 is a diagram showing a typical blower characteristic curve. 11...louver, 12...supply air filter, 13
... Supply air heater, 14... Supply air blower, 15... Building,
16...Exhaust duct, 17...Exhaust air filter, 1
8...Exhaust blower, 19...Suction vane, 20
...Exhaust pipe, 21...Differential pressure detector, 22...Means for controlling suction vane 19.

Claims (1)

【特許請求の範囲】[Claims] 1 外気を給気エアフイルタを通して給気送風機
で建屋内に給気するラインと、前記建屋内に給気
された空気を排気エアフイルタおよびサクシヨン
ベーンを通して排気送風機で建屋外へ排気するラ
インとを有し、前記建屋内圧力を前記建屋外圧力
より所定値負圧に保つ必要がある換気空調系統に
おいて、前記負圧が前記所定値になるように前記
サクシヨンベーンを初期設定したときにおける前
記給気送風機の出力側の圧力と前記排気エアフイ
ルタ入力側の圧力との差を検出する差圧検出器
と、前記サクシヨンベーンを初期設定したときの
差圧検出器の出力を入力してこれを設定値とする
設定手段と、前記差圧検出器の出力が前記設定手
段の設定値となるように前記サクシヨンベーンを
制御する手段とを備えた換気空調系統の建屋差圧
制御装置。
1 It has a line that supplies outside air into the building through a supply air filter and a supply air blower, and a line that exhausts the air supplied into the building to the outside of the building through an exhaust air filter and suction vane with an exhaust blower. , in a ventilation air conditioning system in which the pressure inside the building needs to be maintained at a predetermined value negative pressure than the pressure outside the building, the air supply blower when the suction vane is initially set so that the negative pressure becomes the predetermined value. A differential pressure detector detects the difference between the pressure on the output side of the exhaust air filter and the pressure on the input side of the exhaust air filter, and the output of the differential pressure detector when the suction vane is initialized is input and this is set as the set value. What is claimed is: 1. A building differential pressure control device for a ventilation air conditioning system, comprising: a setting means for setting the pressure difference; and a means for controlling the suction vane so that the output of the differential pressure detector becomes a set value of the setting means.
JP56117403A 1981-07-27 1981-07-27 Method of controlling differential pressure in house of ventilating air conditioning system Granted JPS5818049A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56117403A JPS5818049A (en) 1981-07-27 1981-07-27 Method of controlling differential pressure in house of ventilating air conditioning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56117403A JPS5818049A (en) 1981-07-27 1981-07-27 Method of controlling differential pressure in house of ventilating air conditioning system

Publications (2)

Publication Number Publication Date
JPS5818049A JPS5818049A (en) 1983-02-02
JPS6144219B2 true JPS6144219B2 (en) 1986-10-01

Family

ID=14710780

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56117403A Granted JPS5818049A (en) 1981-07-27 1981-07-27 Method of controlling differential pressure in house of ventilating air conditioning system

Country Status (1)

Country Link
JP (1) JPS5818049A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60164141A (en) * 1984-02-06 1985-08-27 Takasago Thermal Eng Co Lts Clean room device with simultaneous controlling mechanism for cleanness and room pressure
FR2764999B1 (en) * 1997-06-23 1999-09-17 Inst Nat Environnement Ind METHOD AND DEVICE FOR CONTROLLING THE EXCHANGE OF FLUIDS
CN104833051A (en) * 2015-04-28 2015-08-12 广东美的制冷设备有限公司 Detection method and detection device for dust deposition degree of filter screen as well as air regulating equipment
KR102473104B1 (en) * 2021-05-31 2022-12-02 주식회사 휴마스터 Air conditioning system

Also Published As

Publication number Publication date
JPS5818049A (en) 1983-02-02

Similar Documents

Publication Publication Date Title
EP0908928A3 (en) Baking furnace and control method therefor
KR101050412B1 (en) Energy-saving kitchen ventilation control system and method
JP6295422B2 (en) Ventilation equipment
KR102425661B1 (en) Ventilator and the control method thereof
CN110836431A (en) Indoor ventilation system and control method thereof
JP2006329440A (en) Pressure control unit
US4372195A (en) Mass flow thermal compensator
JPS6144219B2 (en)
CN112815412A (en) Device and method for controlling air output of clean area purification system
JPS5995327A (en) Air conditioner for clean room
JP2019100588A (en) Control method of heat exchange type ventilation fan
JP2734280B2 (en) Air conditioner
JPH026425B2 (en)
JPH0763404A (en) Air conditioner
JPH0581809B2 (en)
JPS60164141A (en) Clean room device with simultaneous controlling mechanism for cleanness and room pressure
JPH05106883A (en) Air cleaning system variable in air supply volume
JP3083744B2 (en) Exhaust gas treatment equipment
JPS59153046A (en) Concentrated suction/exhaust air device
JPH0220903B2 (en)
JPH0989350A (en) Method and apparatus for controlling humidity of air conditioner
JPH0525740Y2 (en)
JPH0755311A (en) Air volume control method of work cooling device
JPH0648102B2 (en) Indoor air pressure control air conditioning ventilation equipment
JPH0719574A (en) Controlling equipment of quantity of airflow of air-conditioning system