JPS6144081B2 - - Google Patents

Info

Publication number
JPS6144081B2
JPS6144081B2 JP16139078A JP16139078A JPS6144081B2 JP S6144081 B2 JPS6144081 B2 JP S6144081B2 JP 16139078 A JP16139078 A JP 16139078A JP 16139078 A JP16139078 A JP 16139078A JP S6144081 B2 JPS6144081 B2 JP S6144081B2
Authority
JP
Japan
Prior art keywords
chitin
organic acid
soluble
derivative
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16139078A
Other languages
Japanese (ja)
Other versions
JPS5590504A (en
Inventor
Junichi Kosugi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kureha Corp
Original Assignee
Kureha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kureha Corp filed Critical Kureha Corp
Priority to JP16139078A priority Critical patent/JPS5590504A/en
Priority to US06/105,250 priority patent/US4308377A/en
Priority to CA000342542A priority patent/CA1148944A/en
Priority to DK553379A priority patent/DK553379A/en
Priority to DE7979303067T priority patent/DE2963863D1/en
Priority to EP79303067A priority patent/EP0013181B1/en
Publication of JPS5590504A publication Critical patent/JPS5590504A/en
Publication of JPS6144081B2 publication Critical patent/JPS6144081B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Polysaccharides And Polysaccharide Derivatives (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、可溶性キチン誘導体であるカルボキ
シアルキルキチンもしくはカルボキシアルキルキ
チン塩の脱N−アセチル化物を不溶化又はアシル
化処理する方法に関する。更に詳しくは、カルボ
キシメチルキチンもしくはカルボキシメチルキチ
ン塩の脱N−アセチル化物などを有機酸の無水物
などで処理することから成る不溶性キチン誘導体
の製造方法に関する。 自然界に存在する多糖類の繊維成分は、高等動
物におけるコラーゲン、節足動物や下等植物にお
けるキチン、高等植物におけるセルロースに大別
され、それぞれにアパタイト、炭酸カルシユウ
ム、リグニン等が沈積することにより形体を作つ
ている。この中で、キチンは、N−アセチル−D
−グルコサミンの1,4−β結合よりなる高分子
物質であり、セルロースに匹敵する量が存在す
る。しかしながら、該キチンは極めて高結晶性で
あり且つそのアミノアセチル基の結合が強固であ
る為、セルロースにおけるアルカリの如く良好に
溶解、分散或いは膨潤させる経済的な溶剤がみつ
かつていない。この為、キチンはセルロースやそ
の他の多糖に比べその利用面での開発が遅れてい
る。 その中にあつて、特公昭48−19213号は、キチ
ンの脱N−アセチル化物であるキトサンが希酸に
溶解する性質を利用して、キトサンフイルムを作
り、該キトサンフイルムを固相アセチル化するこ
とにより、キチンフイルムを得る方法を開示して
いる。この方法はキトサンフイルムを水に膨潤さ
せた後エタノール、アセトン、ピリジン等の溶媒
に浸漬し、ジシクロヘキシルカルボイミド等のア
ミド基形成用の脱水縮合剤を用いてN−アセチル
化し、キチンフイルム化することから成るが、こ
の方法では、後記の実施例に見られる如く、アセ
チル化に要する時間が極めて長い。 キトサンのN−アセチル化方法としては、上記
方法以外に、キトサンをピリジン溶媒中に無に酢
酸と反応させる方法又はキトサンをトルエン媒体
中で無水酢酸−過塩素酸と反応させる方法などが
報告されている。しかしながら、これらの方法に
おいても、そのN−アシル化時間は長く、特にキ
トサンが水を含んだ状態では極端に反応速度が遅
くなる欠点がみられる。 なお、前述した方法はいずれもキチンのフイル
ム状物を得ることを目的としており、且つそのフ
イルム状物の用途も音響振動板への適用を示唆し
ているにすぎず、キチン及びキチン誘導体の性質
を活かした真の用途開発と云う点で不満を残すも
のである。 本発明者は、上述した現状に鑑み、キチン及び
キチン誘導体の性質を充分発揮し得る用途、並び
にその用途に適用可能な形体の工業的な製造法等
について鋭意研究の結果、可溶性キチン誘導体例
えばカルボキシメチルキチンもしくはその塩の脱
N−アセチル化物を有機酸の無水物等と反応させ
ると驚くべきことに瞬時にアシル化反応を起こし
て水、酸、アルカリ或いは有機溶剤に不溶性のア
シル化物が得られ、該反応を利用して得られる可
溶性キチン誘導体の少なくとも一部をアシル化処
理して成る成形材が、分離材、透析材、固定化酵
素の基材、吸着材としての機能を有することの知
見を得て、本発明に到達したものである。 上記知見に基づく本発明は、カルボキシメチル
キチンもしくはカルボキシメチルキチン塩の脱N
−アセチル化物などの可溶性キチン誘導体と有機
酸の無水物の単独或いは該有機酸の無水物と有機
酸との混合物とを反応させることから成り、水、
酸、アルカリ、或いは有機溶剤に不溶な変成キチ
ン(以下、可溶性キチン誘導体のアシル化物と云
う)を提供するものである。 本発明に係る可溶性キチン誘導体とは、本発明
者が本願と同日出願した特開昭55−90505号公報
に開示する可溶性(水溶性)のカルボキシアルキ
ルキチンもしくはカルボキシアルキルキチン塩の
脱N−アセチル化物を意味し、例えば、キチンを
高濃度のアルカリ水溶液に浸漬し、キチン浸漬ア
ルカリ水溶液を凍結処理し、次いで凍結したアル
カリ含有キチンを式X(CH2)nCOOH(式中、
XはBr又はClを示し、nは1,2または3の整
数を示す)で表わされるエーテル化剤を含有する
有機溶媒中で反応させることにより得られたカル
ボキシアルキルキチンにアルカリ水溶液を添加し
て脱N−アセチル化することで製造し得る。 本発明方法の効果の1つは、アシル化反応に要
する時間が水の存在下においても極めて短時間で
あることである。しかしながら、未だこの理論的
な根拠は明らかでなく、おそらくカルボキシメチ
ルキチンもしくはカルボキシメチルキチン塩の脱
N−アセチル化物自身のカルボキシル基が触媒の
役目としているものと推察される。この効果によ
つて、球状、繊維状、フイルム状等任意の形態ま
たは必要に応じてそれらの中空状の形態の成形材
が極めて容易に且つ短時間に製造されることが出
来る。 本発明方法を利用して得られる可溶性キチン誘
導体の少なくとも一部分をアシル化処理して成る
キチン系成形材の物質透過性或いは膨潤性の度合
は、可溶性キチン誘導体の濃度を変える事により
任意に調節され得る。本発明方法によれば、可溶
性キチン誘導体溶液の表面から不溶化が起こる為
に、最初に生成する不溶性膜により前記成形材の
透過性はある程度限定される。本発明方法を利用
して得られるキチン系成形材は、可溶性キチン誘
導体の少なくとも一部をアシル化処理(不溶化処
理)して成るものであるので、生体的、化学的に
安定且つ安全でしかも物質透過性、吸着性、生体
適合性にすぐれるのでカプセル化材、分離材、吸
着材、重金属捕集材、薬剤の徐放化材、固定化酵
素の基材、限外過材、生体機能性材、イオン交
換体材等々広範な用途に応用され得る。 以下、本発明を詳述する。 本発明の可溶性キチン誘導体の原料は、カニ、
エビ等の節足動物の甲殻等から常法によつて分離
精製して得られる一般式()で示されるキチン
である。 キチンをモノクロル酢酸等と反応させることに
より、カルボキシメチル化し一般式()で示さ
れる構造単位を含むカルボキシメチルキチンまた
はその塩となる。 或いは 或いは (式中、Mは水素、アルカリ金属、アルカリ土
類金属、アンモニウム基を示す) 本発明方法に用いられるカルボキシアルキルキ
チンまたはその塩は単位構造であるN−アセチル
グルコサミン1単位当りカルボキシアルキル基を
0.1〜1.0、好ましくは0.3〜1.0有する。これを水
酸化ナトリウム、水酸化カリウム等のアルカリ水
溶液中で加熱すれば、脱N−アセチル化し、カル
ボキシアルキルキチンもしくはその塩の脱N−ア
セチル化物、即ち本発明の可溶性キチン誘導体が
得られる。本発明の可溶性キチン誘導体の脱N−
アセチル化度は10〜100%、好ましくは20〜60%
である。該脱アセチル化度が60%以上となると不
溶化が遅くなる傾向を示す。しかし、反応温度を
高める等の反応条件を選択することにより所期の
目的を達成することが出来る。 本発明における該可溶性キチン誘導体の不溶化
(アシル化)は、極めて簡単である。即ち、該可
溶性キチン誘導体の水溶液と、有機酸無水物また
は有機酸無水物と有機酸の混合物とを接触させる
だけで、既述の如く極めて短時間でアシル化反応
が起こり、不溶性キチン誘導体が生成される。前
記有機酸無水物または前記混合物は、例えば溶液
状又は気体状であつてよい。この反応のメカニズ
ムについては未だ明らかでないが、反応は該可溶
性キチン誘導体の水溶液が有機酸無水物に接触す
ると瞬時的に起こり、該水溶液の表面から進行す
ることからみて、まず該水溶液表面にアシル化に
よる不溶性キチン誘導体からなる皮膜が形成さ
れ、該水溶液の形態を維持し、次いでやや遅れて
有機酸無水物が最初に形成された不溶性キチン誘
導体皮膜を通じて内部に拡散するに従い、逐次内
部に反応が進行し、内部での不溶化を進めるもの
と推察される。 この際の反応生成物は、カルボキシメチルキチ
ンの脱N−アセチル化物のN−アシル化によるN
−アシル化カルボキシメチルキトサン(一般式
)、更に脱カルボキシメチル化したN−アシル
化キトサン(一般式)及びN−・O−アシル化
キトサン(一般式)の構造単位が主体である。 :C6H8O3(OCH2COOH)・NHCOR :C6H8O3(OH)NHCOR :C6H8O3(OCOR)・NHCOR (式中、RはCH3(CH2nであり、mは0〜4
を示す) ただし、不溶化物中における一般式()の割
合は通常10%以下であり、残部を一般式()及
び()が占めているため酸やアルカリに不溶と
なる。 また、後述の如き、用途によつては、D−グリ
コサミンの構造単位を残すことが好ましい場合も
あるが、この場合でも不溶性を有する。 なお、本発明で用いる該可溶性キチン誘導体の
水溶液濃度は、濃い方がより強固で緻密な不溶性
キチン誘導体を生成するが、通常1〜10wt%で
良い。しかし、これは本発明の成形材の用途及び
性質により適宜調節されるべきものであつて、必
ずしもこの範囲に限定されるものでない。 本発明方法で用いる有機酸及び有機酸無水物
は、酢酸、プロピオン酸、酪酸、吉草酸等及びそ
の無水物(以下有機酸無水物と称する)が好適で
ある。これらを単独もしくは2種以上の混合物と
して使用し得る。該有機酸無水物は希釈せずその
まま用いても良く、また反応速度を調節したり、
反応物の処理を容易にする目的等から、有機酸或
いは有機酸無水物と反応しない有機溶剤で希釈し
ても良い。アシル化反応温度は5〜80℃、好まし
くは5〜60℃であるが、前述の如く脱アセチル化
度60%以上の可溶性キチン誘導体を用いる場合は
より高温度が望ましい。また該有機酸無水物のガ
スと反応させる場合には、更に高温度であつても
良い。 次に可溶性キチン誘導体の水溶液と有機酸無水
物とを接触させ態様であるが、これは本発明のキ
チン系成形材の用途、形態に応じて適宜選ぶこと
が出来る。 例えば、1つの接触態様として、可溶性キチン
誘導体の水溶液を、有機酸無水物中に撹拌しなが
ら滴下分散させる方法を例示し得る。この態様に
おいては、該水溶液滴の表面から瞬時に反応して
不溶化し、更に時間とともに内部迄反応する事に
より、可溶性キチン誘導体のアシル化物、即ち本
発明の不溶性キチン誘導体を形成し、球形状の成
形材が得られる。所定時間反応後、分離、水洗に
より未反応の有機酸無水物を除去すれば、キチン
系成形材からなる球状体が得られる。得られる球
状体は滴下する液滴の大きさを調節することによ
り、約10〜10000μに及ぶ広範囲の直径のものと
なり得る。表面被膜としての不溶性キチン又は不
溶性変性キチンの膜厚及び緻密度或いは中空状と
するには、用いる可溶性キチン誘導体の水溶液濃
度、反応時間、反応温度等を変えることにより調
節可能であり、厚みとしては通常1〜1000μ、緻
密度は分子量500〜400000にわたる透過限界を有
するものが得られる。又、該可溶性キチン誘導体
の水溶液を有機酸無水物の気相中にスプレーする
ことにより、瞬時に表面層をアシル化して不溶性
皮膜を形成し、それを有機酸無水物中に投入し、
微小の球体を得ることが出来る。 別の接触態様として、可溶性キチン誘導体の水
溶液を、ノズルを通して有機酸無水物を含む液中
に紡糸することを例示し得る。この態様において
は、表面層から一部不溶性となつた糸が得られ、
これを水洗することによりキチン系成形材より成
る繊維を得ることが出来る。また、上記ノズルと
してスリツト状のものを用いれば、キチン系成形
材よりなるフイルムを得ることも出来る。繊維
状、フイルム状のいずれの場合においても、内部
を中空にしたり膜厚、緻密度を必要に応じて調節
可能なことは球状物の場合と同様である。 上記した接触態様に限らず、その他種々の接触
態様をとり得ることは当然である。 以上の説明で明らかな如く、本発明方法を利用
すれば、球状、繊維状、フイルム状等の任意の形
体として、更に必要に応じ中空体のキチン系成形
材を容易に製造することが可能であり、しかも該
キチン系成形材は、物質透過性を有する化学的、
生体的に安定、且つ安全な可溶性キチン誘導体の
アシル化物で構成されているため、前述の用途以
外にも広範な用途に適用可能である。 用途の一部を例示すれば、膜の透過性を利用し
て球状成形材を混合物試料溶液に入れることによ
り、一定分子量以下の物質のみを該成形材内に拡
散させることが出来る。 また中空繊維、或いはフイルムを用いて従来の
透析材と同様に使用することも可能である。更
に、物質透過性を調節可能であること及びイオン
性基を有することを利用してイオン交換体として
利用し得る。その他、生体に対して極めて安定且
つ安全であるので、生体関連分野での使用が可能
であり、例えば血液潅流用或いは服用して胃腸内
の毒素を吸着除去する吸着剤又は吸着剤等の被覆
材としても利用出来る。また、酵素を可溶性キチ
ン誘導体に分散させることにより、包括された固
定化酵素が出来る。 なお、血液と接触させる用途に用いる場合は、
アシル化反応を調整し、若干アミノ基を残してお
き、該アミノ基とヘパリン、キトサン硫酸エステ
ル、キチン硫酸エステル等の抗血栓物質とポリイ
オンを作つておくと更に好ましいものとなる。 また、各種のイオン交換樹脂を本発明の成形材
内にとじ込めれば、キチン質の膜が覆われた特定
の分子量以下の物質のみに対してイオン交換能を
有する新規なイオン交換体となり、活性炭等の吸
着剤を本発明の成形体で被覆すれば、従来にない
新規性能を有する吸着剤になり得るものである。 以下、本発明は従来、利用が限られていた資源
であつたキチンを有効利用可能にした画期的なも
のであり、しかも用途面に関しても無数の展開が
考えられるものである。 以下実施例により本発明をさらに具体的に説明
する。 実施例 1 カルボキシメチルキチンの脱N−アセチル化物
(カルボキシメチル化度1.0、脱アセチル化度50
%)50gを、5%の濃度になる様に水950計に溶
解させた後、5の無水酢酸と1の酢酸の混合
液中に滴下、撹拌分散させた。 反応温度は25℃、反応時間10分で不溶物が得ら
れ、それを過水洗して直径20〜100μの球状物
を得た。更にこれを徐々にエタノールで置換し、
最後にアセトンで置換後、乾燥した。 収量 48g 乾燥物10gをとり、粉砕後、5%水酸化ナトリ
ウム水溶液100c.c.に投入し撹拌した。 これを中和後、過して不溶物は水で洗滌し、
更にエタノールで洗滌して乾燥した。 液はエバポレータで濃縮した後、凍結乾燥し
たが、残渣物はなかつた。 乾燥物の元素分析を行つた結果は、第1表のと
おりであり、なお参考のため、キチン及び用いた
カルボキシメチルキチンの脱アセチル物の元素分
析値を併示した。
The present invention relates to a method for insolubilizing or acylating a de-N-acetylated product of carboxyalkyl chitin or carboxyalkyl chitin salt, which is a soluble chitin derivative. More specifically, the present invention relates to a method for producing an insoluble chitin derivative, which comprises treating carboxymethyl chitin or a de-N-acetylated product of carboxymethyl chitin salt with an organic acid anhydride. The fiber components of polysaccharides that exist in nature can be roughly divided into collagen in higher animals, chitin in arthropods and lower plants, and cellulose in higher plants. is making. Among these, chitin is N-acetyl-D
- It is a polymer substance consisting of 1,4-β bonds of glucosamine, and exists in an amount comparable to that of cellulose. However, since chitin is extremely highly crystalline and its aminoacetyl groups have strong bonds, no economical solvent has yet been found that can dissolve, disperse, or swell chitin as well as alkali in cellulose. For this reason, the development of chitin's uses has lagged behind that of cellulose and other polysaccharides. Among them, Japanese Patent Publication No. 19213/1984 utilizes the property of chitosan, which is a de-N-acetylated product of chitin, to dissolve in dilute acid to produce a chitosan film, and then solid-phase acetylates the chitosan film. A method for obtaining a chitin film is disclosed. This method involves swelling a chitosan film in water, immersing it in a solvent such as ethanol, acetone, or pyridine, and N-acetylating it using a dehydration condensation agent for forming an amide group such as dicyclohexylcarboimide to form a chitin film. However, in this method, the time required for acetylation is extremely long, as seen in the examples below. In addition to the above-mentioned method, other methods for N-acetylation of chitosan have been reported, such as a method in which chitosan is reacted with acetic acid in a pyridine solvent, or a method in which chitosan is reacted with acetic anhydride-perchloric acid in a toluene medium. There is. However, these methods also have the disadvantage that the N-acylation time is long and the reaction rate is extremely slow, especially when chitosan contains water. All of the above-mentioned methods are aimed at obtaining a film-like material of chitin, and the use of the film-like material only suggests application to acoustic diaphragms, and the properties of chitin and chitin derivatives are limited. This leaves some dissatisfaction in terms of true application development that takes advantage of the technology. In view of the above-mentioned current situation, the inventors of the present invention have conducted extensive research into applications that can fully demonstrate the properties of chitin and chitin derivatives, as well as industrial manufacturing methods for shapes that can be applied to those applications. Surprisingly, when a de-N-acetylated product of methyl chitin or its salt is reacted with an anhydride of an organic acid, an acylation reaction occurs instantly and an acylated product that is insoluble in water, acids, alkalis, or organic solvents is obtained. , the knowledge that a molded material obtained by acylating at least a portion of a soluble chitin derivative obtained using this reaction has functions as a separation material, a dialysis material, a base material for immobilized enzymes, and an adsorbent. This is what led to the present invention. Based on the above findings, the present invention is based on the de-Nation of carboxymethyl chitin or carboxymethyl chitin salt.
- It consists of reacting a soluble chitin derivative such as an acetylated product with an anhydride of an organic acid alone or a mixture of an anhydride of the organic acid and an organic acid, and includes water,
The present invention provides a modified chitin (hereinafter referred to as an acylated product of a soluble chitin derivative) that is insoluble in acids, alkalis, or organic solvents. The soluble chitin derivative according to the present invention refers to the de-N-acetylated soluble (water-soluble) carboxyalkyl chitin or carboxyalkyl chitin salt disclosed in JP-A-55-90505, which the present inventor filed on the same day as the present application. For example, chitin is immersed in a highly concentrated alkaline aqueous solution, the chitin-immersed alkali aqueous solution is subjected to freezing treatment, and then the frozen alkali-containing chitin is converted into a compound of the formula X (CH 2 )nCOOH (in the formula,
X represents Br or Cl, n represents an integer of 1, 2 or 3) An alkaline aqueous solution is added to the carboxyalkyl chitin obtained by reacting it in an organic solvent containing an etherifying agent. It can be produced by de-N-acetylation. One of the advantages of the method of the present invention is that the time required for the acylation reaction is extremely short even in the presence of water. However, the theoretical basis for this is still not clear, and it is presumed that the carboxyl group of carboxymethyl chitin or the de-N-acetylated product of carboxymethyl chitin salt itself plays the role of a catalyst. Due to this effect, molded materials in arbitrary shapes such as spherical, fibrous, and film shapes, or in hollow shapes as required, can be produced extremely easily and in a short time. The degree of substance permeability or swelling of the chitin-based molding material obtained by acylating at least a portion of the soluble chitin derivative obtained using the method of the present invention can be arbitrarily adjusted by changing the concentration of the soluble chitin derivative. obtain. According to the method of the present invention, since insolubilization occurs from the surface of the soluble chitin derivative solution, the permeability of the molding material is limited to some extent by the insoluble film that is initially formed. Since the chitin-based molding material obtained using the method of the present invention is made by acylating (insolubilizing) at least a part of a soluble chitin derivative, it is biologically and chemically stable and safe, and it is also a substance. Because of its excellent permeability, adsorption, and biocompatibility, it can be used as an encapsulation material, separation material, adsorption material, heavy metal collection material, drug sustained release material, base material for immobilized enzymes, ultrafiltration material, and biofunctionality. It can be applied to a wide range of applications such as materials, ion exchange materials, etc. The present invention will be explained in detail below. The raw materials for the soluble chitin derivative of the present invention are crab,
It is chitin represented by the general formula () obtained by separating and purifying the shells of arthropods such as shrimp by conventional methods. By reacting chitin with monochloroacetic acid or the like, it is carboxymethylated to become carboxymethyl chitin or a salt thereof containing a structural unit represented by the general formula (). Or Or (In the formula, M represents hydrogen, an alkali metal, an alkaline earth metal, or an ammonium group.) The carboxyalkyl chitin or its salt used in the method of the present invention has a carboxyalkyl group per unit of N-acetylglucosamine as a unit structure.
It has 0.1 to 1.0, preferably 0.3 to 1.0. If this is heated in an alkaline aqueous solution such as sodium hydroxide or potassium hydroxide, it is de-N-acetylated and a de-N-acetylated product of carboxyalkyl chitin or a salt thereof, that is, a soluble chitin derivative of the present invention is obtained. De-N-determination of soluble chitin derivatives of the present invention
Acetylation degree is 10-100%, preferably 20-60%
It is. When the degree of deacetylation is 60% or more, insolubilization tends to be delayed. However, the desired objective can be achieved by selecting reaction conditions such as increasing the reaction temperature. Insolubilization (acylation) of the soluble chitin derivative in the present invention is extremely simple. That is, by simply bringing an aqueous solution of the soluble chitin derivative into contact with an organic acid anhydride or a mixture of an organic acid anhydride and an organic acid, an acylation reaction occurs in an extremely short period of time as described above, and an insoluble chitin derivative is produced. be done. The organic acid anhydride or the mixture may be in the form of a solution or a gas, for example. Although the mechanism of this reaction is not yet clear, the reaction occurs instantaneously when the aqueous solution of the soluble chitin derivative comes into contact with the organic acid anhydride, and the reaction proceeds from the surface of the aqueous solution. A film consisting of the insoluble chitin derivative is formed, and the form of the aqueous solution is maintained, and then, after a slight delay, the organic acid anhydride diffuses into the interior through the initially formed insoluble chitin derivative film, and the reaction progresses internally. It is presumed that this promotes internal insolubilization. The reaction product at this time is N-acylated from the de-N-acetylated product of carboxymethyl chitin.
The main structural units are -acylated carboxymethyl chitosan (general formula), further decarboxymethylated N-acylated chitosan (general formula), and N-.O-acylated chitosan (general formula). :C 6 H 8 O 3 ( OCOR )・NHCOR :C 6 H 8 O 3 (OH)NHCOR :C 6 H 8 O 3 (OCOR)・NHCOR (In the formula, R is CH 3 (CH 2 ) n and m is 0 to 4
However, the proportion of general formula () in the insolubilized material is usually 10% or less, and the remainder is occupied by general formulas () and (), making it insoluble in acids and alkalis. Further, as described below, depending on the use, it may be preferable to leave the structural unit of D-glycosamine, but even in this case, it remains insoluble. Note that the concentration of the aqueous solution of the soluble chitin derivative used in the present invention is generally 1 to 10 wt%, although the higher the concentration, the stronger and denser the insoluble chitin derivative will be. However, this should be adjusted as appropriate depending on the use and properties of the molding material of the present invention, and is not necessarily limited to this range. The organic acids and organic acid anhydrides used in the method of the present invention are preferably acetic acid, propionic acid, butyric acid, valeric acid, etc., and their anhydrides (hereinafter referred to as organic acid anhydrides). These may be used alone or as a mixture of two or more. The organic acid anhydride may be used as is without dilution, or the reaction rate may be adjusted or
For the purpose of facilitating treatment of the reactant, it may be diluted with an organic solvent that does not react with the organic acid or organic acid anhydride. The acylation reaction temperature is from 5 to 80°C, preferably from 5 to 60°C, but as mentioned above, when using a soluble chitin derivative with a degree of deacetylation of 60% or more, a higher temperature is desirable. Furthermore, when reacting with the organic acid anhydride gas, the temperature may be even higher. Next, an aqueous solution of a soluble chitin derivative and an organic acid anhydride are brought into contact with each other, and this can be appropriately selected depending on the use and form of the chitin-based molding material of the present invention. For example, one contact mode may include a method in which an aqueous solution of a soluble chitin derivative is dropwise dispersed in an organic acid anhydride while stirring. In this embodiment, an acylated product of a soluble chitin derivative, that is, an insoluble chitin derivative of the present invention, is formed by instantaneously reacting and insolubilizing the aqueous solution droplet from the surface, and further reacting to the inside over time, and forming a spherical shape. A molded material is obtained. After reacting for a predetermined period of time, unreacted organic acid anhydrides are removed by separation and washing with water to obtain spherical bodies made of chitin-based molding material. The resulting spheres can have a wide range of diameters ranging from about 10 to 10,000 microns by adjusting the size of the droplets applied. The film thickness and compactness or hollow shape of insoluble chitin or insoluble modified chitin as a surface coating can be adjusted by changing the concentration of the aqueous solution of the soluble chitin derivative used, reaction time, reaction temperature, etc. It is usually 1 to 1,000 microns, and the density can be obtained with a permeation limit ranging from 500 to 400,000 in molecular weight. Further, by spraying the aqueous solution of the soluble chitin derivative into the gas phase of the organic acid anhydride, the surface layer is instantly acylated to form an insoluble film, which is then poured into the organic acid anhydride.
You can get tiny spheres. Another contact mode may include spinning an aqueous solution of a soluble chitin derivative through a nozzle into a liquid containing an organic acid anhydride. In this embodiment, threads are obtained that are partially insoluble from the surface layer,
By washing this with water, fibers made of chitin-based molding material can be obtained. Furthermore, if a slit-shaped nozzle is used as the nozzle, it is also possible to obtain a film made of a chitin-based molding material. In both the fibrous and film forms, the interior can be made hollow and the film thickness and density can be adjusted as necessary, as in the case of spherical objects. It goes without saying that the contact mode is not limited to the above-described contact mode, and that various other contact modes can be adopted. As is clear from the above explanation, by using the method of the present invention, it is possible to easily produce chitin-based molded materials in any shape such as spheres, fibers, films, etc., and even in hollow bodies as required. Moreover, the chitin-based molding material is chemically permeable to substances.
Since it is composed of an acylated soluble chitin derivative that is biologically stable and safe, it can be applied to a wide range of uses other than those described above. To give an example of some of the uses, by putting a spherical molding material into a mixture sample solution using the permeability of the membrane, only substances with a certain molecular weight or less can be diffused into the molding material. It is also possible to use hollow fibers or films in the same manner as conventional dialysis materials. Furthermore, it can be used as an ion exchanger by taking advantage of its ability to control substance permeability and having an ionic group. In addition, it is extremely stable and safe for living organisms, so it can be used in biological fields, such as adsorbents or coatings such as adsorbents for blood perfusion or for adsorbing and removing toxins in the gastrointestinal tract. It can also be used as Furthermore, by dispersing the enzyme in a soluble chitin derivative, an encapsulated immobilized enzyme can be obtained. In addition, when used for purposes that involve contact with blood,
It is even more preferable to adjust the acylation reaction, leave some amino groups, and create a polyion with the amino groups and an antithrombotic substance such as heparin, chitosan sulfate, or chitin sulfate. In addition, if various ion exchange resins are contained in the molding material of the present invention, a new ion exchanger that has ion exchange ability only for substances with a specific molecular weight or less covered with a chitinous membrane will be created. If an adsorbent such as activated carbon is coated with the molded article of the present invention, it can become an adsorbent with novel performance not seen before. Hereinafter, the present invention is an epoch-making method that makes it possible to effectively utilize chitin, which has hitherto been a resource of limited use, and has countless potential applications. The present invention will be explained in more detail with reference to Examples below. Example 1 De-N-acetylated product of carboxymethyl chitin (degree of carboxymethylation 1.0, degree of deacetylation 50)
%) was dissolved in 950 g of water to a concentration of 5%, and then added dropwise to a mixed solution of acetic anhydride (5) and acetic acid (1), followed by stirring and dispersion. The reaction temperature was 25°C and the reaction time was 10 minutes to obtain an insoluble substance, which was washed with water to obtain a spherical substance with a diameter of 20 to 100μ. Furthermore, this was gradually replaced with ethanol,
Finally, the mixture was replaced with acetone and then dried. Yield: 48g 10g of the dried product was taken, ground, and then poured into 100cc of a 5% aqueous sodium hydroxide solution and stirred. After neutralizing this, insoluble matter is washed with water,
Furthermore, it was washed with ethanol and dried. The liquid was concentrated using an evaporator and then freeze-dried, but there was no residue. The results of elemental analysis of the dried product are shown in Table 1, and for reference, the elemental analysis values of chitin and the deacetylated product of carboxymethyl chitin used are also shown.

【表】 これから明らかな様に、当該不溶化物はキチン
よりなつていることが認められた。 実施例 2 カルボキシメチルキチンの脱アセチル化物(カ
ルボキシメチル化度0.5、脱アセチル化度25%)
20gを、水180c.c.に溶解させた後、減圧下で脱気
処理して原料水溶液を調整した。 該原料水溶液を第1図に示す装置を用いて繊維
状キチン系成形材を得た。反応槽には20℃に保た
れた無水のプロピオン酸液を用い、原料吐出圧力
は2Kg/cm2である。 得られた繊維を実施例1と同様に分析したとこ
ろ水可溶物がなかつたことから、不溶化物よりな
る繊維である。 第2表にその元素分析値を示した。
[Table] As is clear from the table, the insolubilized material was found to be composed of chitin. Example 2 Deacetylated product of carboxymethyl chitin (degree of carboxymethylation 0.5, degree of deacetylation 25%)
After dissolving 20 g in 180 c.c. of water, the solution was degassed under reduced pressure to prepare an aqueous raw material solution. A fibrous chitin-based molding material was obtained from the raw material aqueous solution using the apparatus shown in FIG. An anhydrous propionic acid solution maintained at 20°C is used in the reaction tank, and the raw material discharge pressure is 2 kg/cm 2 . When the obtained fibers were analyzed in the same manner as in Example 1, no water-soluble substances were found, indicating that the fibers were made of insolubilized substances. Table 2 shows the elemental analysis values.

【表】 実施例 3 実施例1で得られた乾燥物17gを蒸留水中で膨
潤させ、直径2cmのカラムに充填してゲル過試
験を行つた。このカラムに2c.c.の蒸留水に溶解し
たブルデキストラン(分子量200万)20mgとグル
コース30mgの混合試料を添加しし、蒸留水で1
c.c./分で溶出を行つた。 ブルデキストランは30〜45c.c.の溶出液中に溶出
し、グルコースは65〜80c.c.の位置に溶出された。 明らかに、この球状物は撫離能を有し、分子量
200万の物質は球状物の内部に拡散していないこ
とが判明した。 実施例 4 実施例1における原料及びその濃度、アシル化
剤及び反応条件を代えて実施例1に準じて球状物
を製造した。 条件及びその結果を第3表に示す。 これらの結果から明らかなとおり、本発明方法
によるアシル化反応は極めて短時間に行なわれる
ことが判る。
[Table] Example 3 17 g of the dried product obtained in Example 1 was swollen in distilled water, packed into a column with a diameter of 2 cm, and a gel permeability test was conducted. A mixed sample of 20 mg of bulldextran (molecular weight: 2 million) dissolved in 2 c.c. of distilled water and 30 mg of glucose was added to this column, and a sample of 30 mg of glucose was added to the column.
Elution was performed at cc/min. Bulldextran eluted in the eluate at 30-45 c.c., and glucose eluted at 65-80 c.c. Apparently, this spherical material has the ability to exfoliate, and the molecular weight
It turns out that the 2 million substances are not diffused inside the sphere. Example 4 A spherical material was produced according to Example 1 except that the raw materials, their concentrations, acylating agents, and reaction conditions were changed. The conditions and results are shown in Table 3. As is clear from these results, it can be seen that the acylation reaction according to the method of the present invention is carried out in an extremely short time.

【表】【table】 【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、実施例2で用いた紡糸装置の概略図
を示す。 1……原料の水溶性キチン誘導体水溶液槽、2
……ノズル(25穴、0.05m/mφ)、3……反応
槽(50m/mφ×3000m/mL)、4……ローラ
ー、5……溶剤除去槽(第1)エタノール:水=
1:1、6……溶剤除去槽(第2)水100℃、7
……まきとり装置。
FIG. 1 shows a schematic diagram of the spinning apparatus used in Example 2. 1... Water-soluble chitin derivative aqueous solution tank as raw material, 2
...Nozzle (25 holes, 0.05m/mφ), 3...Reaction tank (50m/mφ×3000m/mL), 4...Roller, 5...Solvent removal tank (first) Ethanol: Water =
1:1, 6...Solvent removal tank (second) water 100℃, 7
...Sowing device.

Claims (1)

【特許請求の範囲】 1 カルボキシアルキルキチンもしくはその塩の
脱N−アセチル化物を有機酸の無水物の単独もし
くは有機酸との混合物で処理することを特徴とす
る不溶性キチン誘導体の製造方法。 2 前記有機酸の無水物の単独もしくは有機酸と
の混合物が溶液もしくはガス状物であることを特
徴とする特許請求の範囲第1項に記載の方法。 3 前記脱N−アセチル化物がカルボキシメチル
キチンもしくはカルボキシメチルキチン塩の脱N
−アセチル化物であることを特徴とする特許請求
の範囲第1項又は第2項記載の方法。 4 前記脱N−アセチル化物の脱N−アセチル化
度が10〜100%、好ましくは20〜60%であること
を特徴とする特許請求の範囲第1項乃至第3項の
いずれかに記載の方法。 5 前記カルボキシメチルキチンもしくはカルボ
キシメチルキチン塩が構造単位であるN−アセチ
ル−D−グルコサミン1単位当りカルボキシル基
を0.1〜1.0、好ましくは0.3〜1.0有することを特
徴とする特許請求の範囲第3項又は第4項に記載
の方法。 6 有機酸の無水物が酢酸、プロピオン酸、酪
酸、吉草酸の無水物の1種又はそれらの混合物で
あることを特徴とする特許請求の範囲第1項乃至
第5項のいずれかに記載の方法。
[Scope of Claims] 1. A method for producing an insoluble chitin derivative, which comprises treating a de-N-acetylated product of carboxyalkyl chitin or a salt thereof with an organic acid anhydride alone or in a mixture with an organic acid. 2. The method according to claim 1, wherein the anhydride of the organic acid alone or in a mixture with the organic acid is a solution or a gaseous substance. 3. The de-N-acetylated product is a de-N-acetyl compound of carboxymethyl chitin or carboxymethyl chitin salt.
- The method according to claim 1 or 2, wherein the method is an acetylated product. 4. The method according to any one of claims 1 to 3, wherein the degree of de-N-acetylation of the de-N-acetylated product is 10 to 100%, preferably 20 to 60%. Method. 5. Claim 3, wherein the carboxymethyl chitin or carboxymethyl chitin salt has 0.1 to 1.0, preferably 0.3 to 1.0 carboxyl groups per N-acetyl-D-glucosamine structural unit. or the method described in Section 4. 6. The organic acid anhydride according to any one of claims 1 to 5, wherein the organic acid anhydride is one of acetic acid, propionic acid, butyric acid, and valeric acid anhydrides or a mixture thereof. Method.
JP16139078A 1978-12-29 1978-12-29 Preparation of unsoluble chitin derivative Granted JPS5590504A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP16139078A JPS5590504A (en) 1978-12-29 1978-12-29 Preparation of unsoluble chitin derivative
US06/105,250 US4308377A (en) 1978-12-29 1979-12-19 Shaped material comprising denatured chitin and process for preparing same
CA000342542A CA1148944A (en) 1978-12-29 1979-12-21 Shaped material comprising denatured chitin and process for preparing same
DK553379A DK553379A (en) 1978-12-29 1979-12-21 CHITINALLY FORMED MATERIALS AND FIVE-METHOD FOR PRODUCING SAME
DE7979303067T DE2963863D1 (en) 1978-12-29 1979-12-28 Chitin derivative, material comprising said derivative and process for the preparation thereof
EP79303067A EP0013181B1 (en) 1978-12-29 1979-12-28 Chitin derivative, material comprising said derivative and process for the preparation thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16139078A JPS5590504A (en) 1978-12-29 1978-12-29 Preparation of unsoluble chitin derivative

Publications (2)

Publication Number Publication Date
JPS5590504A JPS5590504A (en) 1980-07-09
JPS6144081B2 true JPS6144081B2 (en) 1986-10-01

Family

ID=15734174

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16139078A Granted JPS5590504A (en) 1978-12-29 1978-12-29 Preparation of unsoluble chitin derivative

Country Status (1)

Country Link
JP (1) JPS5590504A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56804A (en) * 1979-06-15 1981-01-07 Kureha Chem Ind Co Ltd Chitin molding material
JPS57145813A (en) * 1981-03-05 1982-09-09 Unitika Ltd Molded chitinous article for living body

Also Published As

Publication number Publication date
JPS5590504A (en) 1980-07-09

Similar Documents

Publication Publication Date Title
EP0013181B1 (en) Chitin derivative, material comprising said derivative and process for the preparation thereof
JPS6228697B2 (en)
Hudson et al. Polysaccharides: chitin and chitosan: chemistry and technology of their use as structural materials
US4301067A (en) Chitin containing poly-ion complex
US5668193A (en) Solid substrate coated with an aminopolysaccharide
JPH0151481B2 (en)
JPS6157335B2 (en)
CN107163238B (en) Based on the poly-lactic acid material and preparation method thereof for clicking bonding self assembly layer by layer
EP0028126B1 (en) Material produced from cross-linked ionic chitin derivative, its preparation and use
JP4356289B2 (en) Polysaccharide complex and method for producing the same
EP0018131B1 (en) Crosslinked, carboxyalkylated and deacetylated derivative of chitin, process for preparation thereof, and use thereof as an adsorbent material
JP4470410B2 (en) Polysaccharide complex
US4948814A (en) Ion exchanger based on cross-linked glucomannan
Tokura et al. Lysozyme-accessible fibers from chitin and its derivatives
JPS6144081B2 (en)
JP4021980B2 (en) Cellulosic particles and method for producing the same
JPS6354286B2 (en)
JPS6216962B2 (en)
JPS5829801A (en) Production of n-acylated chitosan
JP5110046B2 (en) Polysaccharide complex and method for producing the same
CN113171760A (en) High-strength imprinted composite membrane and preparation method and application thereof
CN116535540B (en) Quaternized modified chitin, sponge thereof, preparation method of porous microsphere and application of quaternized modified chitin
JPH10237106A (en) Production of acylated chitin and chitosan, and molded products thereof
US6025479A (en) Method of preparing water swellable gel from chitin
JPS624044B2 (en)