JPS6143995B2 - - Google Patents

Info

Publication number
JPS6143995B2
JPS6143995B2 JP57208947A JP20894782A JPS6143995B2 JP S6143995 B2 JPS6143995 B2 JP S6143995B2 JP 57208947 A JP57208947 A JP 57208947A JP 20894782 A JP20894782 A JP 20894782A JP S6143995 B2 JPS6143995 B2 JP S6143995B2
Authority
JP
Japan
Prior art keywords
oxygen
carbon dioxide
bacteria
present
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57208947A
Other languages
Japanese (ja)
Other versions
JPS5998686A (en
Inventor
Kyotaka Omote
Hachiro Nakamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP20894782A priority Critical patent/JPS5998686A/en
Publication of JPS5998686A publication Critical patent/JPS5998686A/en
Publication of JPS6143995B2 publication Critical patent/JPS6143995B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、嫌気性細菌を培養するための一定の
炭酸ガス濃度のガス雰囲気を簡単につくり出すた
めの脱酸素剤に関するものである。 嫌気性細菌は、チトクローム酵素系を持たない
ため、分子状酸素を利用することができず、普通
の培養方法では生育しないものである。すなわ
ち、無酸素状態のみで生育するものであるため、
細菌生育培地を完全に無酸素状態に保持する必要
があり、いろいろな工夫が必要であり、かつ特別
な器具、装置が必要であつた。そのうえ、これら
の器具、装置の操作にはかなりの熟練を要した。 この様な嫌気性細菌の培養のため、分子状酸素
すなわち遊離酸素を除去するためには、下記のよ
うに多くの方法が知られている。 (イ)重層法:最も簡単な方法であり、培地の表面
にワセリン、流動パラフイン、寒天などを重層し
て空気の侵入をさえぎる方法。 (ロ)高層固形培地培養法:ぶどう糖寒天地、普通
寒天地等予め煮沸、急冷したものに混合培養する
か、あるいは穿刺培養する方法。この方法は、培
地の内深部には酸素が侵入しない事を利用したも
のである。 (ハ)空気置換法:鉄槽またはデシケーター等の壁
の厚いガラス槽の中に菌を接種した培地を納め、
真空ポンプで槽内の空気を除き、そのままあるい
は水素または窒素ガス等で置換して発育させる。
この方法に比較的多く用いられるものに細谷の嫌
気性培養器がある。この方法は、物理的方法とし
て確実であるが、真空ポンプ、ガスボンベ、圧力
計等の諸器具が必要であり、また煩雑な操作が必
要である。 (ニ)化学的酸素吸収法:この方法は化学反応によ
り、酸素を吸収、除去してしまい密封系内を嫌気
性を保つものである。用いる化学薬品によりシユ
ートンサツク法およびローゼンタールのクロム硫
酸法がある。 シユートンサツク法:焦性没食子酸と炭酸ナト
リウムの混合物を吸収させ、嫌気性細菌を発育さ
せる方法。 ローゼンタールのクロム硫酸法:金属クロムと
硫酸の反応により、水素を発生させ酸素を吸収す
る方法。 Cr+H2SO4→CrSO4+H2 4CrSO4+2H2SO4+O2→2Cr(SO4)3+2H2O (ホ)還元剤等を培地に加える方法:培地内に還元
性物質を加えて培地内を嫌気性状態にするもので
ある。このような培地として肝片肝臓ブイヨン、
細谷システインブイヨン等がある。 (ヘ)生物学的方法:好気性細菌の呼吸を利用して
器内の分子状酸素を減らし、その中で嫌気性細菌
を培養する方法。 予め盛んに培養した霊菌又は枯草菌の菌苔が必
要である。 以上の方法は、その目的に応じてそれぞれ長所
を有しているが、嫌気性状態にするためには、そ
れぞれ煩雑な操作が必要である。又、近年嫌気性
細菌の培養においては、炭酸ガスが必要と考えら
れており、無酸素炭酸ガス存在雰囲気下の培養が
一般化しつつある。 本発明の目的は、上記の要望にかなつた一定炭
酸ガス濃度の嫌気性雰囲気を、簡便に作り出すた
めの脱酸素剤を提供し、従来細菌検査室の整つた
大規模病院又は医学研究機関においてのみ可能で
あつた嫌気性細菌の培養を、保健所や一般の医
院、病院にまで可能とするものである。 また本発明の目的は、本発明者等が出願した特
願昭56―147246号における嫌気性細菌の培養法に
おいて使用可能な機能を有する脱酸素剤を提供す
ることである。 本発明の脱酸素剤は、化学反応により、6時間
以内に密封系内の分子状酸素を吸収除去すると同
時に、炭酸ガスを発生させ嫌気性細菌の種類に応
じた適した炭酸ガス濃度雰囲気に達成させ、その
ままの状態で維持可能である。 具体的には、本発明の脱酸素剤は、アスコルビ
ン酸またはその塩、2種以上のアルカリ性化合物
および金属塩からなる。 以下本発明を詳細に説明する。 主剤で、粒径が50〜80メツシユのものが好まし
く、中でもL―アスコルビン酸ナトリウムが反応
性が優れている。 また2種以上のアルカリ性化合物は、以下に示
す反応の反応系内のPHを中性から弱アルカリ性
に維持し、かつ水分を均一に付与しながら発生す
る炭酸ガスの濃度を調節するものである。 このアルカリ性化合物は少なくとも結晶水を含
む炭酸アルカリ、炭酸水素アルカリを含むもので
ある。 具体的には、結晶水を有する炭酸アルカリは、
Na2CO3・10H2O,BeCO3・4H2O,MgCO3
3H2O,KNaCO3・6H2Oがあげられ、また炭酸水
素アルカリは、KHCO3・NaHCO3があげられ
る。 金属塩は、主剤の酸素吸収速度を速くするため
のもので、鉄化合物また銅化合物が適しており、
中でも溶解度の大きい硫酸第一鉄・7水塩が適し
ている。 以下本発明の脱酸素剤の反応を、主剤がL―ア
スコルビン酸ナトリウムを用いた場合で説明す
る。 また本発明の脱酸素剤は、上記反応をより速く
するため活性炭を加えたものである。 以下に本発明の具体的な配合例を示す。 Γ配合例 L―アスコルビン酸ナトリウム 6重量部 炭酸ナトリウム・10水塩 8〜12重量部 炭酸水素ナトリウム 6〜12重量部 硫酸第一鉄・7水塩 1重量部 活性炭 5重量部 上記組成比内で選定する事により、密封系内の
酸素濃度を、6時間以内にガスクロマトグラフに
て検出限度以下に減少させ、かつ30〜50%程度の
炭酸ガス濃度を得る事が出来る。又組成物の最終
形状には限定されず、粉末顆粒、ダブレツト状で
あつてもかまわない。そのために形状付与剤とし
て、結晶セルロースタルク、アラビアガム、デキ
ストリン、でんぷん、リン酸ナトリウム等を微量
添加する事が可能である。 本発明は、以上のような組成および配合比から
なるので、組成物中に均一に水分を分布すること
ができ、酸素吸収および炭酸ガス発生の反応を一
定にすることができる。 この反応に必要な水分を混合時、充填時または
使用時に外部から自由水を添加した場合、反応は
発生するが、水分が均一に分布されなかつたり、
反応が一定に進まず、所望のガス雰囲気を得るの
には好ましくない。 またアルカリ性化合物が少なくとも炭酸アルカ
リおよび炭酸水素アルカリを含むものでなく、炭
酸アルカリ単独の場合は、炭酸ガス濃度を30%以
上に保つことができず、一方炭酸水素アルカリ単
独の場合は酸素吸水速度が遅く、所望のガス濃度
を達成することができない。 次に本発明の脱酸素剤の使用方法について説明
する。 脱酸素剤の使用量は、密封系内の大気量及び酸
素吸収除去に要する許容時間によつて変り、一般
に5000〜10000秒/100c.c.(JIS P8117ガーレー式
透気度)の通気性を有する包装材料により包装
し、使用する。 本発明の脱酸素剤の実際の使用方法は、培養す
べき嫌気性細菌を接種したシヤーレ、コルベン培
養試験管や各種検査検体を収容したジヤー又は酸
素、炭酸ガス、水蒸気等のガス透過度の小さいフ
レキシブルな合成樹脂袋体に併置するだけで良
く、極めて簡便に嫌気状態を得る事が可能であ
る。 また、本発明の脱酸素剤は大気との反応開始に
おいて、発熱あるいは吸熱する事がほとんど無
く、かつ広い温度範囲で反応が開始する。そのた
め、中、高温細菌のみならず、低温細菌の培養に
も使用可能であり、更に大気との反応時水分を放
散又は吸収する事がないので、密封容器内の培地
を過度に乾燥させたり、露結現象を生じたりする
事はない。 以下、本発明の実施例について説明する。 <実施例1> 下記表1の組成の脱酸素剤を用いて、密封系内
の酸素濃度と炭酸ガス濃度を測定した。
The present invention relates to an oxygen scavenger for easily creating a gas atmosphere with a constant carbon dioxide concentration for culturing anaerobic bacteria. Since anaerobic bacteria do not have a cytochrome enzyme system, they cannot utilize molecular oxygen and cannot grow using normal culture methods. In other words, since it grows only in anoxic conditions,
It was necessary to maintain the bacterial growth medium completely in an oxygen-free state, requiring various measures and special equipment and devices. Moreover, the operation of these tools and devices required considerable skill. Many methods are known for removing molecular oxygen, that is, free oxygen, for culturing such anaerobic bacteria, as described below. (a) Multilayer method: This is the simplest method, and involves layering petrolatum, liquid paraffin, agar, etc. on the surface of the culture medium to prevent air from entering. (b) High-rise solid medium culture method: Mixed culture on glucose agar, ordinary agar, etc. that have been boiled and rapidly cooled, or puncture culture. This method takes advantage of the fact that oxygen does not penetrate deep into the culture medium. (c) Air displacement method: Place the culture medium inoculated with bacteria in a thick-walled glass tank such as an iron tank or a desiccator.
The air in the tank is removed using a vacuum pump and grown either as is or by replacing it with hydrogen or nitrogen gas.
Hosoya's anaerobic incubator is relatively commonly used in this method. Although this method is reliable as a physical method, it requires various equipment such as a vacuum pump, gas cylinder, and pressure gauge, and requires complicated operations. (d) Chemical oxygen absorption method: This method uses a chemical reaction to absorb and remove oxygen, keeping the inside of the sealed system anaerobic. Depending on the chemicals used, there are the Schuton-Sak method and Rosenthal's chromium sulfate method. Shutonsak method: A method in which anaerobic bacteria grow by absorbing a mixture of pyrogalic acid and sodium carbonate. Rosenthal's chromium sulfuric acid method: A method of generating hydrogen and absorbing oxygen through the reaction of metallic chromium and sulfuric acid. Cr+H 2 SO 4 →CrSO 4 +H 2 4CrSO 4 +2H 2 SO 4 +O 2 →2Cr(SO 4 )3+2H 2 O (e) Method of adding reducing agent etc. to the medium: Adding a reducing substance to the medium It creates an anaerobic state. Such media include liver slice liver broth,
Examples include Hosoya cysteine bouillon. (f) Biological method: A method of culturing anaerobic bacteria in a container by reducing molecular oxygen using the respiration of aerobic bacteria. Bacterium moss containing Bacillus marcescens or Bacillus subtilis that has been extensively cultured in advance is required. Each of the above methods has its advantages depending on its purpose, but each requires complicated operations to achieve an anaerobic state. Furthermore, in recent years, it has been thought that carbon dioxide gas is necessary for culturing anaerobic bacteria, and culture in an oxygen-free carbon dioxide atmosphere is becoming common. The purpose of the present invention is to provide an oxygen scavenger that can easily create an anaerobic atmosphere with a constant carbon dioxide concentration that meets the above-mentioned requirements, and which has been used only in large-scale hospitals or medical research institutions equipped with conventional bacteriological laboratories. This makes culturing of anaerobic bacteria, which was previously possible, now possible at public health centers, general clinics, and hospitals. Another object of the present invention is to provide an oxygen scavenger that can be used in the method for culturing anaerobic bacteria as disclosed in Japanese Patent Application No. 147246/1989 filed by the present inventors. Through a chemical reaction, the oxygen scavenger of the present invention absorbs and removes molecular oxygen in a sealed system within 6 hours, and at the same time generates carbon dioxide gas to achieve an atmosphere with a carbon dioxide concentration suitable for the type of anaerobic bacteria. and can be maintained in that state. Specifically, the oxygen scavenger of the present invention comprises ascorbic acid or a salt thereof, two or more alkaline compounds, and a metal salt. The present invention will be explained in detail below. The main agent preferably has a particle size of 50 to 80 mesh, and among them, sodium L-ascorbate has excellent reactivity. The two or more alkaline compounds are used to maintain the pH within the reaction system of the reaction shown below from neutral to weakly alkaline, and to adjust the concentration of carbon dioxide gas generated while uniformly adding moisture. This alkaline compound contains at least an alkali carbonate and an alkali hydrogen carbonate containing water of crystallization. Specifically, an alkali carbonate with water of crystallization is
Na 2 CO 3・10H 2 O, BeCO 3・4H 2 O, MgCO 3
Examples include 3H 2 O, KNaCO 3 .6H 2 O, and examples of alkali hydrogen carbonate include KHCO 3 .NaHCO 3 . The metal salt is used to speed up the oxygen absorption rate of the main agent, and iron compounds or copper compounds are suitable.
Among them, ferrous sulfate heptahydrate, which has a high solubility, is suitable. The reaction of the oxygen scavenger of the present invention will be explained below using sodium L-ascorbate as the main agent. Furthermore, the oxygen scavenger of the present invention contains activated carbon in order to speed up the above reaction. Specific formulation examples of the present invention are shown below. Γ Combination example Sodium L-ascorbate 6 parts by weight Sodium carbonate, decahydrate 8 to 12 parts by weight Sodium hydrogen carbonate 6 to 12 parts by weight Ferrous sulfate, heptahydrate 1 part by weight Activated carbon 5 parts by weight Select within the above composition ratio By doing so, the oxygen concentration in the sealed system can be reduced to below the detection limit by gas chromatograph within 6 hours, and a carbon dioxide concentration of about 30 to 50% can be obtained. Furthermore, the final shape of the composition is not limited, and may be in the form of powder granules or doublets. For this purpose, it is possible to add a small amount of crystalline cellulose talc, gum arabic, dextrin, starch, sodium phosphate, etc. as a shape-imparting agent. Since the present invention has the composition and blending ratio as described above, water can be uniformly distributed in the composition, and the reactions of oxygen absorption and carbon dioxide gas generation can be made constant. If free water is added externally during mixing, filling, or use, the reaction will occur, but the water may not be distributed uniformly or
The reaction does not proceed uniformly, which is not preferable for obtaining the desired gas atmosphere. In addition, if the alkaline compound does not contain at least alkali carbonate or alkali hydrogen carbonate, and if it is alkali carbonate alone, it will not be possible to maintain the carbon dioxide concentration above 30%, while if it is only alkali hydrogen carbonate, the oxygen absorption rate will be low. slow and unable to achieve the desired gas concentration. Next, a method of using the oxygen scavenger of the present invention will be explained. The amount of oxygen scavenger used varies depending on the amount of air in the sealed system and the allowable time required for oxygen absorption and removal, and generally an air permeability of 5,000 to 10,000 seconds/100 c.c. (JIS P8117 Gurley air permeability) is required. Packaging and use with packaging materials that have The actual method of using the oxygen scavenger of the present invention is to use a jar inoculated with anaerobic bacteria to be cultured, a Kolben culture test tube, a jar containing various test specimens, or a jar with low gas permeability such as oxygen, carbon dioxide, and water vapor. It is only necessary to place it in a flexible synthetic resin bag, and it is possible to obtain an anaerobic state extremely easily. Further, the oxygen scavenger of the present invention hardly generates heat or absorbs heat when it starts reacting with the atmosphere, and the reaction starts over a wide temperature range. Therefore, it can be used for culturing not only medium- and high-temperature bacteria, but also low-temperature bacteria. Furthermore, since it does not emit or absorb moisture during reaction with the atmosphere, it does not cause excessive drying of the culture medium in a sealed container. It does not cause dew condensation. Examples of the present invention will be described below. <Example 1> Using an oxygen absorber having the composition shown in Table 1 below, the oxygen concentration and carbon dioxide concentration in a sealed system were measured.

【表】 上記組成の脱酸素剤をそれぞれ通気性包材で包
装し、空気容量600mlのガスバリヤー性プラスチ
ツク袋(塩化ビニリデン塗工ポリプロピレン/ポ
リエチレン)に封入し、35〜37℃の状態で6時間
後のガス濃度を測定した。 その結果を表2に示す。
[Table] Each oxygen scavenger with the above composition was packaged in a breathable packaging material, sealed in a gas barrier plastic bag (vinylidene chloride coated polypropylene/polyethylene) with an air capacity of 600 ml, and kept at 35 to 37°C for 6 hours. The subsequent gas concentration was measured. The results are shown in Table 2.

【表】 表2から明らかなように本発明の脱酸素剤であ
るA―2は、所定のガス濃度が得られたが、それ
以外のものは、所定のガス濃度が得られなかつ
た。 <実施例 2> 実施例1の脱酸素剤を用い、第1図に示すよう
に通気性袋2に封入した脱酸素剤をガム寒天培地
(日水製薬)5にB・mecaninogenicus SS・
intermedius(以下A細菌という)、B・
mecaninogenicus SS・mecanigenicus(以下B
細菌という)およびレンサ球菌(以下C細菌とい
う)をそれぞれ接種したシヤーレ1と嫌気性指示
薬のフイルデスーマクルントツシス指示薬を含ん
だ脱脂綿とを実施例1で用いたガスバリヤー性プ
ラスチツク袋4により密封し、37℃で48時間培養
し、細菌の発育状態を外側から観察した。 また同時に実施例1の脱酸素剤以下に脱酸素剤
としてエージレスZ―200(三菱瓦斯化学社製)
を用い同様の実験をした。 その結果を表3に示す。
[Table] As is clear from Table 2, the oxygen scavenger A-2 of the present invention provided a predetermined gas concentration, but the others did not provide a predetermined gas concentration. <Example 2> Using the oxygen absorber of Example 1, the oxygen absorber sealed in a breathable bag 2 as shown in FIG.
intermedius (hereinafter referred to as A bacteria), B.
mecaninogenicus SS・mecanigenicus (hereinafter referred to as B
A sheath 1 inoculated with bacteria (hereinafter referred to as bacteria) and streptococcus (hereinafter referred to as C bacteria) and absorbent cotton containing an anaerobic indicator Fildesumaculantsis indicator were sealed in the gas barrier plastic bag 4 used in Example 1. The cells were cultured at 37°C for 48 hours, and the state of bacterial growth was observed from the outside. At the same time, Ageless Z-200 (manufactured by Mitsubishi Gas Chemical Co., Ltd.) was used as an oxygen scavenger below the oxygen scavenger in Example 1.
A similar experiment was conducted using The results are shown in Table 3.

【表】【table】

【表】 〓 ±:一部のみ繁殖〓
[Table] 〓 ±: Only partially bred〓

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の使用例を示す説明図であ
る。
FIG. 1 is an explanatory diagram showing an example of use of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1 アスコルビン酸またはその塩、少なくとも結
晶水を含む炭酸塩および炭酸水素アルカリを含む
アルカリ性化合物および金属化合物からなり、6
時間以内に密封系内の酸素ガス濃度を0.1%以
下、炭酸ガス濃度を30〜50%とする嫌気性細菌培
養用脱酸素剤。
1 Ascorbic acid or its salt, consisting of at least a carbonate containing water of crystallization and an alkaline compound containing an alkali bicarbonate, and a metal compound, 6
An oxygen absorber for anaerobic bacterial culture that reduces the oxygen gas concentration in a sealed system to 0.1% or less and the carbon dioxide concentration to 30-50% within hours.
JP20894782A 1982-11-29 1982-11-29 Disoxidant for cultivating anaerobic bacterium Granted JPS5998686A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20894782A JPS5998686A (en) 1982-11-29 1982-11-29 Disoxidant for cultivating anaerobic bacterium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20894782A JPS5998686A (en) 1982-11-29 1982-11-29 Disoxidant for cultivating anaerobic bacterium

Publications (2)

Publication Number Publication Date
JPS5998686A JPS5998686A (en) 1984-06-07
JPS6143995B2 true JPS6143995B2 (en) 1986-09-30

Family

ID=16564773

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20894782A Granted JPS5998686A (en) 1982-11-29 1982-11-29 Disoxidant for cultivating anaerobic bacterium

Country Status (1)

Country Link
JP (1) JPS5998686A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69818893T2 (en) * 1997-04-01 2004-05-19 Mitsubishi Gas Chemical Co., Inc. Culture atmosphere regulator and method for growing anaerobic bacteria

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5473140A (en) * 1977-11-21 1979-06-12 Toppan Printing Co Ltd Agent for preserving freshness of food
JPS54105288A (en) * 1978-01-31 1979-08-18 Toppan Printing Co Ltd Culturing of anaerobic bacteria

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5473140A (en) * 1977-11-21 1979-06-12 Toppan Printing Co Ltd Agent for preserving freshness of food
JPS54105288A (en) * 1978-01-31 1979-08-18 Toppan Printing Co Ltd Culturing of anaerobic bacteria

Also Published As

Publication number Publication date
JPS5998686A (en) 1984-06-07

Similar Documents

Publication Publication Date Title
JPS5856679A (en) Method for culturing anaerobic bacteria and agent for controlling cultivation atmosphere
US4904597A (en) Method for cultivation of bacteria of the genus campylobacter
GB2083496A (en) Cultivating anaerobic bacterium
JPS584913B2 (en) Cultivation method for anaerobic bacteria
JP3818324B2 (en) Gas concentration adjusting agent and method for adjusting low oxygen concentration environment
EP0111583B1 (en) Culture of anaerobic bacteria
JPS6143995B2 (en)
CN105087451A (en) Preparation method for denitrified microbial agent
EP0120111A1 (en) Process for culturing anaerobic bacteria and agents for preparing culture atmosphere
JP5714790B2 (en) Atmospheric conditioner and cell culture method using the same
JPS5978682A (en) Disoxidant for cultivating anaerobic microorganism
JPS5851890A (en) Cultivation of anaerobic bacterium
JPH10327845A (en) Atmoshohere adjusting agent and culture of anaerobic bacterium
JP3082956B2 (en) Method for cultivating Campylobacter bacteria
JP2666323B2 (en) Oxygen absorber for anaerobic bacteria culture
JP2674151B2 (en) Cultivation device and method for anaerobic bacteria
JP6593564B1 (en) Gas concentration regulator for bacterial culture and bacterial culture method using the same
JPS58141780A (en) Cultivation of anaerobic bacteria
JPS62265979A (en) Method for cultivating anaerobic mold and tool therefor
JPS58141781A (en) Cultivation of anaerobic bacteria
JPS6131085A (en) Preparation of immobilized microbial cell
JPS59232087A (en) Cultivation of anaerobic bacteria
JPS58141779A (en) Cultivation of anaerobic bacteria
JPH0540B2 (en)
EP0081202B1 (en) Compositions and methods for culturing microorganisms requiring special gaseous environments