JPS6143814B2 - - Google Patents

Info

Publication number
JPS6143814B2
JPS6143814B2 JP50106937A JP10693775A JPS6143814B2 JP S6143814 B2 JPS6143814 B2 JP S6143814B2 JP 50106937 A JP50106937 A JP 50106937A JP 10693775 A JP10693775 A JP 10693775A JP S6143814 B2 JPS6143814 B2 JP S6143814B2
Authority
JP
Japan
Prior art keywords
mask
axis
center
panel
color picture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP50106937A
Other languages
Japanese (ja)
Other versions
JPS5231661A (en
Inventor
Toshihiko Tanaka
Kuniharu Osakabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP10693775A priority Critical patent/JPS5231661A/en
Publication of JPS5231661A publication Critical patent/JPS5231661A/en
Publication of JPS6143814B2 publication Critical patent/JPS6143814B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Electrodes For Cathode-Ray Tubes (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はカラー受像管、特にインライン式のシ
ヤドウマスク形カラー受像管に関するものであ
る。 シヤドウマスク形カラー受像管はパネル内面に
形成される赤、緑、青のけか光体を互いに相接す
るように密に配列し、電子銃より発射された3本
のビームがけい光面の前に配設されたシヤドウマ
スクの色選別部を通過し、パネル内面上でけい光
体と同一の配列になり、所定のけい光体に衝突す
る時、最大の光と、色純度を得ることができ、こ
れにより画像を形成している。 第1図はカラー受像管の動作説明図である。 第1図に示すように偏向中心面での中心ビーム
1とサイドビーム2,3との間隔をSとし、偏向
中心とマスク4の距離をP、マスク4とパネル5
との距離をq、偏向中心とパネル5との距離をl
とする。特に管理上での値をS0,P0,q0,l0とす
る。 同色のけい光体の間隔W0はマスク4の穴のピ
ツチhとすると、 W0=l/Ph0 …(1) 隣接するけい光体の間隔μは μ=q/PS0 …(2) 互いに相接するようにけい光体を配列するために
は W0=3μ …(3) となる。以上の関係から管軸上で qn=hl/3S …(4) という関係式が得られる。 従来知られているカラー受像管では、管軸上で
のマスク4とパネル5との距離q0寸法は(4)式で与
えられる値に設定された。また周辺でも(3)式の関
係が成立するように、パネルの内面曲率半径Rp
を考慮してマスクの曲率半径Rmが選ばれてい
る。しかしインライン方式のカラー受像管では、
単一のマスクの曲率半径Rmではパネルの場所に
よつて同色のけい光体の間隔wと隣接するけい光
体の間隔μの関係は一定ではなく異なつている。 この関係を次式の如く定義し、gをグルーピン
グ比とよぶことにする。 3μ/w=g …(5) gが1より小さいときグルーピングといい、gが
1より大きいときデグルーピングという。 グルーピングの場合、μの最小値は第2図aか
ら μmin=μ=w(g/3) (g≦1) …(6) デグルーピングの場合、μの最小値は第2図bか
ら μmin=w−2/3gw=w(1−2/3g) (g≧1)
… (7) となる。したがつて2n%のグルーピングの場合
とn%のデグルーピングの場合にμminは同一に
なる。 従来の単一のマスク曲率Rmではgの値を全面
にわたつて一定にすることができないため、グル
ーピング量がデグルーピング量の2倍になるよう
にRmを定める。この場合20″90゜球で3%のデ
グルーピングおよび6%のグルーピングになり、
ビーム配列が劣化し、色純度が低下する欠点を有
する。 本発明は上記従来の欠点に鑑みなされたもの
で、グルーピング比gを1に近ずけてビーム配列
の改善されたカラー受像管を提供することを目的
とする。 本発明は上記目的を達成するために、単一のマ
スク曲率半径Rmからなる球面でなく、xとyの
4次式で示す非球面マスクとしたことを特徴とす
る。 以下本発明の実施例を図面に基づき説明する。
第3図はマスクの曲率半径を求めるための説明図
である。第3図において、中心ビーム1より管軸
方向にZ軸を、マスクの長軸方向にx軸を、マス
クの短軸方向にy軸をそれぞれとる。偏向中心面
で中心ビーム1からサイドビーム3へのベクトル
を〓とし、の方向β偏向した場合。 〓=Scos・ei〓+Ssin・ei〓/i …(8) となる。ビームの投射されたけい光面5a上の接
線とZ軸に垂直な面との角をδとし、ベクトル〓
をマスク4を介してけい光面5a上に写影する
と、隣接するけい光体の間隔のベクトルμιは、 μι=Scos・q/P・cosβ/cos(β−δ)e
i〓 +Ssin・q/P・ei〓/i …(9) μιの実数部Reμιをとると、 ∴ Reμι=(sin2+cos2・cosβ/cos(β
−δ))q/P S …(10) δはRpをパネルの内面曲率とすると、 δ=β−arcsin{(Rp−l/Rp)sinβ}…(
11) Reμι=Reμι|〓=0より (sin2+cos2cosβ/cos(β−δ))q/P
S =q/PS0 …(12) ∴ P/q=(sin2+cos2cosβ/cos(β−
δ))・PS/qS …(13) ここで、 l=sinδ/sinβRp …(14) q=l−P …(15) 上記式(11)において、Rp,l0は既知であり、βを
与えればδを求めることができる。また式(13)
において、P0,q0,S0,Sは既知であるので,
βに対するP/qの値が求められる。したがつて
式(14),(15)によりグルーピング比gを求める
ことができる。以上のように,βに対してqを
求めることができ、マスク曲面を知ることができ
る。 なおマスクの曲面を左右する重要なとβの値
がある。これを調べるため20″90゜のインライン
球でマスク曲面が球面である場合についてグルー
ピング比gを調査したところ、第4図に示すよう
に短辺中央部で6%グルーピングし、長辺中央部
で2%デグルーピングする。最もデグルーピング
する場所は長辺中央とコーナーとの中間点であり
3%のデグルーピング量を持つ。 したがつてマスク曲面を決定する重要な点とし
て第5図に示す1〜9の9点を選ぶことができ
る。9番目の点はできるだけマスクの中心から離
れた有効部内にとる。これら9点について前述の
方法でq寸法を求め、マスクの中心面とこれらの
点でのマスク面の高さM1〜M9(第6図参照)を
計算する。マスクの長軸をx軸、短軸をy軸と
し、マスク面の高さをM(x,y)とすると、M
(x,y)はx軸およびy軸に対して対称である
から、 M(x,y)=M(−x,y)=M(x,−y) =M(−x,−y) …(16) である。
The present invention relates to a color picture tube, and more particularly to an in-line shadow mask type color picture tube. A shadow mask type color picture tube has red, green, and blue luminescent bodies formed on the inner surface of the panel arranged densely so that they are in contact with each other. Maximum light and color purity can be obtained when the light passes through the color sorting part of the shadow mask placed on the panel, aligns with the phosphor on the inner surface of the panel, and hits the designated phosphor. , thereby forming an image. FIG. 1 is an explanatory diagram of the operation of a color picture tube. As shown in FIG. 1, the distance between the center beam 1 and the side beams 2 and 3 on the deflection center plane is S, the distance between the deflection center and the mask 4 is P, and the distance between the mask 4 and the panel 5 is
The distance between the center of deflection and panel 5 is q, and the distance between the center of deflection and panel 5 is l.
shall be. In particular, let the management values be S 0 , P 0 , q 0 , and l 0 . If the distance W 0 between phosphors of the same color is the pitch h of the holes in the mask 4, then W 0 = l 0 /P 0 h 0 ...(1) The distance μ 0 between adjacent phosphors is μ 0 = q 0 / P 0 S 0 ...(2) In order to arrange the phosphors so that they are adjacent to each other, W 0 =3μ 0 ...(3). From the above relationship, the following relational expression can be obtained on the tube axis: qn=hl 0 /3S 0 (4). In the conventionally known color picture tube, the distance q 0 dimension between the mask 4 and the panel 5 on the tube axis is set to the value given by equation (4). Also, so that the relationship of equation (3) holds in the surrounding area, the inner curvature radius Rp of the panel is
The radius of curvature Rm of the mask is selected with this in mind. However, with an in-line color picture tube,
With the radius of curvature Rm of a single mask, the relationship between the distance w between phosphors of the same color and the distance μ between adjacent phosphors is not constant but varies depending on the location of the panel. This relationship will be defined as shown in the following equation, and g will be called the grouping ratio. 3μ/w=g (5) When g is smaller than 1, it is called grouping, and when g is larger than 1, it is called degrouping. In the case of grouping, the minimum value of μ is from Figure 2 a. μmin = μ = w (g/3) (g≦1) ...(6) In the case of degrouping, the minimum value of μ is from Figure 2 b. w-2/3gw=w(1-2/3g) (g≧1)
… (7) becomes. Therefore, μmin is the same in the case of 2n% grouping and in the case of n% degrouping. Since the value of g cannot be made constant over the entire surface with the conventional single mask curvature Rm, Rm is determined so that the grouping amount is twice the degrouping amount. In this case, the 20″90° ball will result in 3% degrouping and 6% grouping,
It has the disadvantage that the beam alignment deteriorates and the color purity decreases. The present invention was made in view of the above-mentioned drawbacks of the conventional art, and it is an object of the present invention to provide a color picture tube with improved beam arrangement by bringing the grouping ratio g closer to 1. In order to achieve the above object, the present invention is characterized in that it is not a spherical mask having a single mask radius of curvature Rm, but an aspherical mask expressed by a quartic equation of x and y. Embodiments of the present invention will be described below based on the drawings.
FIG. 3 is an explanatory diagram for determining the radius of curvature of the mask. In FIG. 3, the Z axis is taken from the central beam 1 in the tube axis direction, the x axis is taken in the long axis direction of the mask, and the y axis is taken in the short axis direction of the mask. When the vector from the center beam 1 to the side beam 3 is 〓 on the center plane of deflection, and the beam is deflected in the direction β. 〓=Scos・e i 〓+Ssin・e i 〓/i…(8). Let δ be the angle between the tangent on the fluorescent surface 5a on which the beam is projected and the plane perpendicular to the Z axis, and the vector 〓
is projected onto the phosphor surface 5a through the mask 4, the vector μι of the spacing between adjacent phosphors is expressed as μι=Scos・q/P・cosβ/cos(β−δ)e
i 〓 +Ssin・q/P・e i 〓/i …(9) Taking the real part Reμι of μι, ∴ Reμι=(sin 2 +cos 2・cosβ/cos(β
-δ))q/P S...(10) δ is the inner curvature of the panel, and δ=β-arcsin {(Rp-l 0 /Rp) sinβ}...(
11) Reμι=Reμι|〓 From =0 (sin 2 + cos 2 cos β/cos (β-δ)) q/P
S = q 0 / P 0 S 0 …(12) ∴ P/q = (sin 2 + cos 2 cos β/cos (β-
δ))・P 0 S/q 0 S 0 S…(13) Here, l=sin δ/sin βRp…(14) q=l−P…(15) In the above formula (11), Rp, l 0 are It is known, and if β is given, δ can be found. Also, formula (13)
In, P 0 , q 0 , S 0 , and S are known, so
The value of P/q for β is determined. Therefore, the grouping ratio g can be determined using equations (14) and (15). As described above, q can be found for β, and the mask curved surface can be known. Note that there is an important value of β that influences the curved surface of the mask. To investigate this, we investigated the grouping ratio g for the case where the mask curved surface was a spherical surface using a 20" 90° inline sphere. As shown in Figure 4, 6% grouping occurred at the center of the short side and 6% at the center of the long side. 2% degrouping is performed.The most degrouping location is the midpoint between the center of the long side and the corner, and has a degrouping amount of 3%.Therefore, the important point for determining the mask surface is 1 shown in Figure 5. You can select 9 points ~9. Take the 9th point in the effective area as far away from the center of the mask as possible. Obtain the q dimension for these 9 points using the method described above, and calculate the distance between the center plane of the mask and these points. Calculate the heights M 1 to M 9 (see Figure 6) of the mask surface.If the long axis of the mask is the x axis, the short axis is the y axis, and the height of the mask surface is M (x, y). ,M
Since (x, y) is symmetrical about the x and y axes, M(x, y) = M(-x, y) = M(x, -y) = M(-x, -y) …(16).

【表】 式(16)を満足するM(x,y)はxおよびy
についての偶関数であるから、多項式であらわす
と M(x,y)=a1x2+a2x4+b1y2+b2y4 +c11x2y2+c12x2y4+c21x4y2+c22x4y4
…(18) ここでa1,a2,b1,b2,c11,c12,c21,c22は式
(18)に式(17)の条件を入れ、a1,a2,b1
b2,c11,c12,c21,c22はの連立一次方程式を解く
ことによつて求めることができる。〔a1x2
a2x4〕の2項は長軸状のマスク面を示し、同様に
〔b1y2+b2y4〕の2項は短軸上のマスク面を示して
いる。(c11x2y2+c12x2y4+c21x4y2+c22x4y4)の4
項は点(x,y)に於ける点(x,O)のマスク
位置M(x,O)と点(O,y)のマスク位置M
(O,y)との和(M(x,O)+M(O,y)=
a1x2+a2x4+b1y2+b2y4)からのマスク面の微小補
正を示している。またb1/a1はX方向とY方向の
曲率の差を示す値であり、非球面程度を表わし、
その値は0.90〜0.95とする。 たとえば20″90°均一ピツチマスクの場合にこ
の方法で式(18)の係数を求める。x0=80mm、y0
=60mmとし、9点のマスク面の高さを求めると M1=0 M2=4.43 M3=17.90 M4=2.32 M5=6.70 M6=20.0 M7=9.33 M8=13.72 M9=27.15 よつて式(18)の係数は a1=6.898×10-4 a2=3.662×10-10 b1=6.433×10-4 b1=3.215×10-4 c11=−2.628×10-9 c12=5.305×10-10 c21=7.234×10-11 c22=4.823×10-11 b1/a1=6.433/6.898=0.93 この曲面を持つマスクを20″90゜球に使用した
場合、前記の9点のみならず全面にわたつてグル
ーピング比gを0.99〜1.00にすることができた。
なお、前記a1〜c22についてはシヤドウマスクの
大きさにより異なるが、一般的には次の通りであ
る。 a1=6〜9×10-4 a1=3〜9×10-10 b1=5〜9×10-4 b1=2〜7×10-10 またC11〜c22については上記a1,a2,b1,b2
基に決定すればよい。 以上の説明から明らかな如く、本発明になるシ
ヤドウマスクを備えたカラー受像管によれば従来
の単一球面のマスクに比較してビームの配列を改
善することができ、色純度、輝度など品質を一段
と向上することができる。
[Table] M(x, y) that satisfies equation (16) is x and y
Since it is an even function of _ _ _ _ _ _ _ _ 4 y 2 + c 22 x 4 y 4
…(18) Here, a 1 , a 2 , b 1 , b 2 , c 11 , c 12 , c 21 , c 22 is obtained by inserting the condition of equation (17) into equation (18), and a 1 , a 2 , b1 ,
b 2 , c 11 , c 12 , c 21 , and c 22 can be found by solving simultaneous linear equations. [a 1 x 2 +
The two terms [a 2 x 4 ] indicate the mask surface on the long axis, and similarly the two terms [b 1 y 2 +b 2 y 4 ] indicate the mask surface on the short axis. (c 11 x 2 y 2 + c 12 x 2 y 4 + c 21 x 4 y 2 + c 22 x 4 y 4 ) 4
The term is the mask position M(x, O) of point (x, O) at point (x, y) and the mask position M of point (O, y)
(O, y) (M(x, O) + M(O, y) =
a 1 x 2 + a 2 x 4 + b 1 y 2 + b 2 y 4 ). In addition, b 1 /a 1 is a value that indicates the difference in curvature in the X direction and Y direction, and represents the degree of asphericity,
Its value shall be between 0.90 and 0.95. For example, in the case of a 20″ 90° uniform pitch mask, use this method to find the coefficients of equation (18). x 0 = 80 mm, y 0
= 60 mm, and find the height of the mask surface at 9 points: M 1 = 0 M 2 = 4.43 M 3 = 17.90 M 4 = 2.32 M 5 = 6.70 M 6 = 20.0 M 7 = 9.33 M 8 = 13.72 M 9 = 27.15 Therefore, the coefficients of equation (18) are a 1 = 6.898×10 -4 a 2 = 3.662×10 -10 b 1 = 6.433×10 -4 b 1 = 3.215×10 -4 c 11 = −2.628×10 - 9 c 12 = 5.305×10 -10 c 21 = 7.234× 10 -11 c 22 = 4.823 In this case, the grouping ratio g could be set to 0.99 to 1.00 not only at the nine points but also over the entire surface.
Note that the above a 1 to c 22 vary depending on the size of the shadow mask, but are generally as follows. a 1 = 6 to 9 × 10 -4 a 1 = 3 to 9 It can be determined based on 1 , a 2 , b 1 , and b 2 . As is clear from the above explanation, the color picture tube equipped with the shadow mask according to the present invention can improve the beam arrangement compared to the conventional single spherical mask, and improve quality such as color purity and brightness. It can be improved further.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はカラー受像管の動作説明図、第2図は
けい光面のビーム配列の説明図、第3図はマスク
曲面を求めるための説明図、第4図は従来の球面
マスクを用いたグルーピング比の例を示す説明
図、第5図は本発明になるマスク面を計算する9
点の説明図、第6図は本発明になるマスク面の9
点の高さを示す図である。 1……中心ビーム、2,3……サイドビーム、
4……シヤドウマスク、5……パネル、5a……
けい光面、x……シヤドウマスクの短軸、y……
シヤドウマスクの長軸、M(x,y)……管軸方
向の高さ。
Fig. 1 is an explanatory diagram of the operation of a color picture tube, Fig. 2 is an explanatory diagram of the beam arrangement on the fluorescent surface, Fig. 3 is an explanatory diagram for determining the mask curved surface, and Fig. 4 is an explanatory diagram of the method using a conventional spherical mask. An explanatory diagram showing an example of the grouping ratio, FIG. 5 is a diagram 9 for calculating the mask surface according to the present invention.
An explanatory diagram of points, FIG. 6 is 9 of the mask surface according to the present invention.
It is a figure showing the height of a point. 1...center beam, 2,3...side beam,
4...Shadow mask, 5...Panel, 5a...
Fluorescent surface, x...Short axis of shadow mask, y...
Long axis of the shadow mask, M(x, y)...height in the tube axis direction.

Claims (1)

【特許請求の範囲】 1 シヤドウマスク形カラー受像管において、シ
ヤドウマスクの中心を原点にとり長軸をX軸、短
軸をY軸として、短軸からx、長軸からy離れた
点(x,y)のマスクの面とシヤドウマスクの中
心(O,O)のマスクの面の管軸方向の高さM
(x,y)とする時、M(x,y)がxおよびy
につての4次式 M(x,y)=a1x2+a2x4+b1y2+b2y4 +c11x2y2+c12x2y4+c21x4y2+c22x4y4 とし、かつb1/a1=0.90〜0.95としたマスクの面
を形成したことを特徴とするシヤドウマスクを備
えてなるカラー受像管。
[Claims] 1. In a shadow mask type color picture tube, with the center of the shadow mask as the origin, the long axis as the X axis, and the short axis as the Y axis, a point (x, y) that is x away from the short axis and y away from the long axis. The height M of the mask surface at the center of the shadow mask and the mask surface at the center (O, O) in the tube axis direction
(x, y), M(x, y) is x and y
The quartic equation M(x,y)=a 1 x 2 +a 2 x 4 +b 1 y 2 +b 2 y 4 +c 11 x 2 y 2 +c 12 x 2 y 4 +c 21 x 4 y 2 +c 22 x A color picture tube comprising a shadow mask characterized by forming a mask surface with 4 y 4 and b 1 /a 1 =0.90 to 0.95.
JP10693775A 1975-09-05 1975-09-05 Color receiving tube Granted JPS5231661A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10693775A JPS5231661A (en) 1975-09-05 1975-09-05 Color receiving tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10693775A JPS5231661A (en) 1975-09-05 1975-09-05 Color receiving tube

Publications (2)

Publication Number Publication Date
JPS5231661A JPS5231661A (en) 1977-03-10
JPS6143814B2 true JPS6143814B2 (en) 1986-09-30

Family

ID=14446292

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10693775A Granted JPS5231661A (en) 1975-09-05 1975-09-05 Color receiving tube

Country Status (1)

Country Link
JP (1) JPS5231661A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62278910A (en) * 1986-05-27 1987-12-03 株式会社クボタ Float structure of rice planter
JPH0626095Y2 (en) * 1988-03-24 1994-07-20 株式会社クボタ Rice transplanter

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5575782U (en) * 1978-11-21 1980-05-24
US4583022A (en) * 1984-05-31 1986-04-15 Rca Corporation Color picture tube having shadow mask with specific curvature and column aperture spacing
JP2677992B2 (en) * 1987-03-26 1997-11-17 松下電子工業株式会社 Color picture tube
JP4531274B2 (en) * 2001-02-14 2010-08-25 大日本印刷株式会社 Pattern correction method and pattern correction apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS48101875A (en) * 1972-04-03 1973-12-21
JPS506292U (en) * 1973-05-14 1975-01-22

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5535721Y2 (en) * 1973-06-20 1980-08-22

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS48101875A (en) * 1972-04-03 1973-12-21
JPS506292U (en) * 1973-05-14 1975-01-22

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62278910A (en) * 1986-05-27 1987-12-03 株式会社クボタ Float structure of rice planter
JPH0626095Y2 (en) * 1988-03-24 1994-07-20 株式会社クボタ Rice transplanter

Also Published As

Publication number Publication date
JPS5231661A (en) 1977-03-10

Similar Documents

Publication Publication Date Title
EP0077117A1 (en) Rear projection apparatus
JPS6143814B2 (en)
KR880011875A (en) Shadow Mask Type Color Water Tube
JPH01210942A (en) Screen for rear side projection type projection television
KR100288030B1 (en) Color picture tube device having tension-type shadow grille
SU1176859A3 (en) Aperture mask for colour picture tube
GB1316624A (en) Shadow masks for use in cathode ray tubes
CA1067560A (en) Shadow mask having slot-like apertures with variable vertical pitch
JPS60257042A (en) Color picture tube
JPS5332753A (en) Microscope objective lens
JPS54109456A (en) Lens of refractive index distribution type
JP2677992B2 (en) Color picture tube
KR930011242B1 (en) Manufacture of correction lens for forming fluorescent screen or color picture tube
GB807129A (en) Improvements in or relating to colour-television picture tubes
GB1577503A (en) Method and apparatus for exposure of phosphor scrren
JPH0421843B2 (en)
JPS61214333A (en) Color video tube
JPS58201228A (en) Exposure device for forming phosphor screen of color picture tube
JPS5449062A (en) Color picture tube
CN1004728B (en) Back projection screen
JPS5868850A (en) Projection type television device
JP3298165B2 (en) Color cathode ray tube and design method thereof
JPS57180858A (en) Color cathode-ray tube
JPS5834675Y2 (en) Color picture tube shadow mask
JPS57151151A (en) Color picture tube