JPS6143702A - Optical filter and its production - Google Patents

Optical filter and its production

Info

Publication number
JPS6143702A
JPS6143702A JP59165927A JP16592784A JPS6143702A JP S6143702 A JPS6143702 A JP S6143702A JP 59165927 A JP59165927 A JP 59165927A JP 16592784 A JP16592784 A JP 16592784A JP S6143702 A JPS6143702 A JP S6143702A
Authority
JP
Japan
Prior art keywords
liquid crystal
cholesteric liquid
handed
films
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59165927A
Other languages
Japanese (ja)
Inventor
Yoshihiro Matsuo
嘉浩 松尾
Shoichi Ishihara
將市 石原
Kazuhisa Morimoto
和久 森本
Seiichi Nagata
清一 永田
Tetsu Ogawa
小川 鉄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP59165927A priority Critical patent/JPS6143702A/en
Priority to DE8585102700T priority patent/DE3581546D1/en
Priority to EP85102700A priority patent/EP0154953B1/en
Priority to US06/711,012 priority patent/US4725460A/en
Publication of JPS6143702A publication Critical patent/JPS6143702A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an optical notch filter having excellent function by laminating a pair of solid polymer films having the cholesteric liquid crystal structures of the spiral structures opposite from each other in the winding direction in such a manner that the optical axes thereof are made approximately parallel with each other and that both films are held in direct contact with each other. CONSTITUTION:The solid polymer film 1 fixed with the cholesteric liquid crystal of the either right-handed or left-handed spiral structure having the spiral pitch to scatter selectively the light of the specific wavelength in a visible region is manufactured by subjecting the cholesteric liquid crystal consisting of a soln. mixture composed of a polypeptide compd. and radiation polymerizable monomer to planar orientation then to radiation polymn. The solid polymer film 2 fixed with the cholesteric liquid crystal of the spiral structure having the winding direction opposite from the above-mentioned winding direction is formed by using the soln. mixture consisting of the components or component ratio different from the above-mentioned soln. mixture and is laminated on the surface of the above-mentioned polymer film in such a manner that the optical axes of both films are made approximately parallel with each other and that both films are held in direct contact with each other.

Description

【発明の詳細な説明】 産業上の利用分野 本発明に、カラーディスプレイなどに用いる光学フィル
タに関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to an optical filter used in color displays and the like.

従来例の構成とその問題点 従来カラーディスプレイなどに赤色(R)フィルタ(赤
色の光のみを透過させるフィルタ)、緑色(G)フィル
タ、および青色(B)フィルタが一般に用いられている
。例えばフルカラー画像表示にiR,G、Bの各微細フ
ィルタを一画素として、それらを多数配列した構成のフ
ィルタが用いられる。この場合、R,G、Bの各フィル
タの分光学的波長領域が互いに重畳しないことが、01
1色度図において色再現範囲をより広くする上で望まし
い。しかし実際には第1図に一例を示すようKR,G、
Hの各フィルタの分光学的波長領域に互いに重畳する部
分を有している。したがって、RとGとの間の重畳する
波長領域、GとBとの間の重畳する波長領域、あるいは
光源からのノイズ波長の光をカットする(透過させない
)フィルタ。
2. Description of the Related Art Conventional Structure and Problems Conventional color displays generally use a red (R) filter (a filter that transmits only red light), a green (G) filter, and a blue (B) filter. For example, for full-color image display, a filter is used in which a large number of iR, G, and B fine filters are arranged as one pixel. In this case, the 01
This is desirable for widening the color reproduction range in a chromaticity diagram. However, in reality, KR, G,
Each of the H filters has a mutually overlapping portion in the spectral wavelength region. Therefore, a filter that cuts (does not transmit) light in the overlapping wavelength range between R and G, the overlapping wavelength range between G and B, or the noise wavelength from the light source.

すなわち光ノツチフィルタが必要となる。In other words, an optical notch filter is required.

一方、コレステリック液晶が選択光散乱、旋光性1円偏
光2色性などの光学的性質を示すことに従来からよく知
られていた。このコレステリック液晶の光学的性質を光
ノツチフィルタに応用する技術が発明されている(特公
昭53−2330)。
On the other hand, it has been well known that cholesteric liquid crystals exhibit optical properties such as selective light scattering, optical rotation, and circular dichroism. A technique for applying the optical properties of cholesteric liquid crystal to an optical notch filter has been invented (Japanese Patent Publication No. 53-2330).

すなわち、右巻きら旋コレステリック液晶フィルムと左
巻きう旋コレステリック液晶フィルムの1対の液晶フィ
ルムにより、入射光のうち特定波長領域の光にカットさ
れる(透過しない)が、特定波長領域以外の光に透過す
る、いわゆるコレステリック液晶を利用した光ノツチフ
ィルタの原理が開示されている。しかし、このコレステ
リヴク液晶フィルムに、コレステリック液晶組成物を一
度有機溶剤、例えばりooホルム、石油エーテルなどに
溶解し、フィルム状に展開した後、コレステリック液晶
成分が等方性液体に転移する温度、通常60’C以上に
加熱し、有機溶剤成分を蒸発させ、コレステリック液晶
成分を直接的に結合させることにより、常温近辺の温度
でコレステリック液晶構造をもつフィルムとして得られ
るものである。
In other words, a pair of liquid crystal films, a right-handed spiral cholesteric liquid crystal film and a left-handed spiral cholesteric liquid crystal film, cuts (does not transmit) light in a specific wavelength range of incident light, but blocks light outside the specific wavelength range. The principle of an optical notch filter using a so-called cholesteric liquid crystal that transmits light is disclosed. However, after dissolving the cholesteric liquid crystal composition in an organic solvent such as oo-form or petroleum ether and developing it into a film, the temperature at which the cholesteric liquid crystal component transforms into an isotropic liquid is normally set in this cholesteric liquid crystal film. By heating to 60'C or more to evaporate the organic solvent component and directly bond the cholesteric liquid crystal component, a film having a cholesteric liquid crystal structure can be obtained at a temperature around room temperature.

このコレステリ・ツタ液晶フィルムのら旋ピッチに本質
的に温度、圧力、電界、磁界、化学的蒸気。
The helical pitch of this cholesteri ivy liquid crystal film essentially depends on temperature, pressure, electric field, magnetic field, and chemical vapor.

紫外光線などの外部からの刺激によって変化するもので
ある。したがって、このコレステリック液晶フィルムを
光ノ・ソチフィルタとして実用するためKHlその保持
温度を一定に保つ恒温槽が必要でるり、また、大気中の
水分やアルコール、その他の化学的蒸気からフィルムを
保護するための保護膜、例えばガラス板、マイラーシー
トなどが必要でめるなどの欠点を有し、安定な光ノツチ
フィルタとして実用に耐えるコレステリック液晶フィル
ムでになかった。また、このフィルムに通常粘着性で軟
らかく、粘性のガラス状又は液体であり、したがって、
ちり、虫等の異物質からそのフィル、ムを保護するため
の保護膜が必要である。また、光ノツチフィルタとしで
に右巻きコレステリック液晶フィルムと左巻きコレステ
リック液晶フィルムとの1対のフィルムが必要でめるが
、従来のフィルムでにこの1対のフィルムの間に透明な
間隔部材が必要となり、このため光の反射損失、吸収損
失が生じ、その分だけ光ノリチフィルタの特定波長の領
域以外の波長の光に対する光透過率が低下するという本
質的な欠点を有していた。
It changes due to external stimuli such as ultraviolet light. Therefore, in order to put this cholesteric liquid crystal film into practical use as a light filter, a constant temperature bath is required to keep the KHl holding temperature constant, and to protect the film from moisture, alcohol, and other chemical vapors in the atmosphere. This cholesteric liquid crystal film had the disadvantage of requiring a protective film such as a glass plate or Mylar sheet, and was not a practical cholesteric liquid crystal film as a stable optical notch filter. Additionally, this film is usually sticky, soft, viscous, glassy or liquid, and therefore
A protective film is required to protect the film from foreign substances such as dust and insects. In addition, an optical notch filter requires a pair of films, a right-handed cholesteric liquid crystal film and a left-handed cholesteric liquid crystal film, but conventional films require a transparent spacing member between the pair of films. Therefore, reflection loss and absorption loss of light occur, and the optical Norichi filter has the essential drawback that the light transmittance of the optical Norichi filter for light having wavelengths other than the specific wavelength range decreases accordingly.

一方、コレステリック液晶成分と重合性不飽和基をもつ
化合物との混合溶液から成るリオトロピック液晶を重合
させることにより、コレステリック液晶構造を固定した
、そのら旋ピッチが温度。
On the other hand, by polymerizing a lyotropic liquid crystal consisting of a mixed solution of a cholesteric liquid crystal component and a compound with a polymerizable unsaturated group, the cholesteric liquid crystal structure is fixed, and its helical pitch changes at a certain temperature.

光、電場、磁場などの外部刺激に対して極めて安定な固
体ポリマーフィルムを作成する技術が発明された(特開
昭56−139506 )。このコレステリック液晶・
ポリマー複合体の発明により、コレステリック液晶のも
つ光学的特性を利用した受動的光学素子の実用化への道
が開かれたと言える。しかし、この発明でに光ノ・ソチ
フィルタとして必要な少なくとも1対のコレステリック
液晶フィルムを、両者のフィルムの光軸を平行に配向さ
せて、両者のフィルムを直接接触させて積層させる技術
に開示されていない。
A technique for producing solid polymer films that are extremely stable against external stimuli such as light, electric fields, and magnetic fields has been invented (Japanese Patent Application Laid-Open No. 139506/1983). This cholesteric liquid crystal
It can be said that the invention of polymer composites has paved the way for the practical application of passive optical elements that utilize the optical properties of cholesteric liquid crystals. However, the present invention does not disclose a technique in which at least one pair of cholesteric liquid crystal films necessary for the optical filter is laminated by aligning the optical axes of both films in parallel and bringing the two films into direct contact. do not have.

発明の目的 本発明に、コレステリック液晶・ポリマー複合体の発明
を基盤とし、光ノツチフィルタとして優れた機能を示す
安定な光学フィルタを提供することを目的とする。更に
詳述すれば、カットすべき光の波長領域を自由に選択で
き、しかもカットすべき光の波長領域の巾を制御するこ
とができるとともに、さらに力、フトすべき光の波長領
域内の透過光をほぼ完全にカットすることができ、さら
にまたカットすべき光の波長領域外の透過光をほぼ完全
に透過することができる光ノツチフィルタを提供するこ
とを目的とする。
OBJECTS OF THE INVENTION It is an object of the present invention to provide a stable optical filter that is based on the invention of a cholesteric liquid crystal/polymer composite and exhibits excellent functionality as an optical notch filter. To be more specific, it is possible to freely select the wavelength range of the light to be cut, and also to control the width of the wavelength range of the light to be cut, and also to control the transmission within the wavelength range of the light to be cut. It is an object of the present invention to provide an optical notch filter that can almost completely cut out light and can also almost completely transmit transmitted light outside the wavelength range of the light to be cut.

発明の構成 本発明の光学フィルタに、ポリペプチド化合物と放射線
重合性モノマーとの混合溶液から成るコレステリック液
晶をプレーナ配向させ、放射線重合嘔せ℃得る、可視領
域の特定波長の光を選択散乱させるら旋ピッチをもつ、
右巻きあるいに左巻きのいずれか一方のら旋構造のコレ
ステリック液晶構造をもつ固体ポリマーフィルムと、前
記混合溶液とは化学成分めるいに成分比を異にする、ポ
リペプチド化合物と放射線重合性モノマーとの混合溶液
から成るコレステリック液晶をプし′−す配向させ、放
射線重合させて得る、前記特定波長と同じ波長の光を選
択散乱きせるら旋ビ、ソチをもつ、前記ら旋の巻き方向
とは逆の巻き方向のら旋構造のコレステリック液晶構造
をもつ固体ポリマーフィルムとを、両者のフィルムの光
軸(コレステリック液晶のら施紬の方向)をほぼ平行に
し、かつ両者のフィルムを直接接触きせて積層した構成
からなる。白色光をこのフィルタに入射させると、両層
により前記特定波長の右円偏光成分(右巻きら旋コレス
テリック液晶フィルムHIVcよす)及ヒ左円偏光成分
(左巻きら旋コレステリヴク液晶フィルム層により)が
反射されるので、最終的に透過した光から前記特定波長
の光がカットされることになる。また本発明のフィルタ
σ両層が直接積層されているので、しかも両層の光の平
均屈折率を容易に等しくすることができるので、フィル
タ内を透過する光の反射損失rrf!<、前記特定波長
以外の波長の光の透過率に極めて大きいという特徴があ
る。
Components of the Invention The optical filter of the present invention has a cholesteric liquid crystal made of a mixed solution of a polypeptide compound and a radiation-polymerizable monomer in a planar orientation, and selectively scatters light of a specific wavelength in the visible region that undergoes radiation polymerization. with a circular pitch,
A solid polymer film having a cholesteric liquid crystal structure with either a right-handed or left-handed helical structure, and a polypeptide compound and a radiation-polymerizable monomer having chemical components whose ratios are different from those of the mixed solution. A cholesteric liquid crystal consisting of a mixed solution of In this method, a solid polymer film having a cholesteric liquid crystal structure with a helical structure and a solid polymer film having a helical structure wound in the opposite direction are made so that the optical axes of both films (the direction in which the cholesteric liquid crystal is laid) are almost parallel to each other, and the two films are brought into direct contact with each other. It consists of a laminated structure. When white light is incident on this filter, the right-handed circularly polarized light component (by the right-handed helical cholesteric liquid crystal film layer) and the left-handed circularly polarized light component (by the left-handed helical cholesteric liquid crystal film layer) of the specific wavelength are separated by both layers. Since it is reflected, the light of the specific wavelength is ultimately cut out from the transmitted light. Furthermore, since both layers of the filter σ of the present invention are directly laminated, and the average refractive index of light in both layers can be easily made equal, the reflection loss of light transmitted through the filter is rrf! <The characteristic is that the transmittance of light having wavelengths other than the specific wavelength is extremely high.

次に、本発明の光学フィルタの製造方法に、ポリペプチ
ド化合物と放射線重合性モノマーとの混合溶液から成る
コレステリック液晶をプレーナ配向でせた後、その保持
温度を所定の一定温度に保ちつつ、放射線重合させるこ
とにより、可視領域の特定波長の光を選択散乱させるら
族ピンチをもつ、右巻@あるいは左巻きのいずれか一方
のら旋構造のコレステリック液晶を固定した固体ポリマ
ーフィルムを作成し、そのフィルムの面上に、前記混合
溶液とは化学成分あるいに成分比を異にする、ポリペプ
チド化合物と放射線重合性モノマーとの混合溶液から成
るコレステリック液晶をプレーナ配向させた後、その保
持温度を所定の一定温度に保ちつつ、放射線重合させる
ことにより、前記特定波長と同じ波長の光を選択散乱さ
せるら族ピンチをもつ、前記ら旋の巻き方向とは逆の巻
き方向のら旋構造のコレステリック液晶を固定した固体
ポリマーフィルムを、両者のフィルムの光軸をほぼ平行
にし、かつ両者のフィルムを直接接触させて積層する工
程からなる。
Next, in the method for producing an optical filter of the present invention, a cholesteric liquid crystal made of a mixed solution of a polypeptide compound and a radiation-polymerizable monomer is applied in a planar orientation, and then, while maintaining the holding temperature at a predetermined constant temperature, the cholesteric liquid crystal is By polymerization, we create a solid polymer film fixed with a cholesteric liquid crystal with either a right-handed or left-handed helical structure that has a helical group pinch that selectively scatters light of a specific wavelength in the visible region, and A cholesteric liquid crystal made of a mixed solution of a polypeptide compound and a radiation-polymerizable monomer, which has a different chemical component or component ratio from the mixed solution, is planarly oriented on the surface of a cholesteric liquid crystal having a helical structure in a winding direction opposite to the helical winding direction, having a helical group pinch that selectively scatters light of the same wavelength as the specific wavelength by radiation polymerization while maintaining the temperature at a constant temperature; The method consists of the step of laminating solid polymer films with fixed polymers such that the optical axes of both films are substantially parallel and the two films are in direct contact with each other.

ポリペプチド化合物と放射線重合性モノマーとの混合溶
液の化学組成が固定された場合、前記特定波長の光選択
散乱に対応するコレステリック液晶のら旋ピッチは放射
線重合時の保持温度によって決定でれる。したがって、
放射線重合工程が終了するまでコレステリック液晶の保
持温度に所定の一定温度に保っておく必要かめる。放射
線重合が終了した後Vci、コレステリック液晶のら旋
ピッチに重合体の3次元網目構造により固定されるので
、その環境温度が変化してももはやら旋ピッチにほとん
ど変化せず、放射線重合時に決定されたら旋ピッチの大
きさを保っている。また本発明の製造方法に、すでにプ
レーナ配向させた、ら旋釉の方向がフィルム面に垂直な
コレステリック液晶を放射線重合により固定したポリマ
ーフィルムの面上に別のコレステリック液晶溶液を直接
塗布するので、ら旋の右巻き、左巻きの方向とは関係な
く、塗布したコレステリック液晶にプレーナ配向(その
ら旋釉が下地のフィルム面に極めて垂直に配向)し易い
。したがって、右巻きら旋コレステリック液晶フィルム
のら旋釉(光軸)の方向と左巻きら旋コレステリック液
晶フィルムのら旋釉(光軸)の方向とを平行にして、積
層、一体化することが容易であり、これが本発明の製造
方法の特徴の1つでめる。
When the chemical composition of the mixed solution of a polypeptide compound and a radiation-polymerizable monomer is fixed, the helical pitch of the cholesteric liquid crystal corresponding to the selective scattering of light at the specific wavelength is determined by the holding temperature during radiation polymerization. therefore,
It is necessary to maintain the cholesteric liquid crystal at a predetermined constant temperature until the radiation polymerization process is completed. After radiation polymerization is completed, Vci is fixed to the helical pitch of the cholesteric liquid crystal by the three-dimensional network structure of the polymer, so even if the environmental temperature changes, the helical pitch hardly changes, and it is determined during radiation polymerization. If it is, the magnitude of the rotational pitch is maintained. Furthermore, in the manufacturing method of the present invention, another cholesteric liquid crystal solution is directly applied onto the surface of the polymer film on which the cholesteric liquid crystal, which has already been planarly oriented and whose spiral glaze direction is perpendicular to the film surface, is fixed by radiation polymerization. Regardless of whether the spiral is right-handed or left-handed, the coated cholesteric liquid crystal tends to have a planar orientation (the spiral glaze is oriented extremely perpendicular to the underlying film surface). Therefore, it is easy to stack and integrate the right-handed spiral cholesteric liquid crystal film by making the direction of the spiral glaze (optical axis) parallel to the direction of the spiral glaze (optical axis) of the left-handed spiral cholesteric liquid crystal film. This is one of the features of the manufacturing method of the present invention.

実施例の説明 第2図に本発明の一実施例における光ノツチフィルタを
示す。この例に、単一の波長領域をカットするための構
成である。1げ右巻きら旋液晶フィルムであり、右巻き
ら旋構造のコレステリック液晶を固定した固体ポリマー
フィルムである。コレステリック液晶のら旋釉に、フィ
ルム面に垂直な方向に配向している。右巻きら旋液晶フ
ィルム1に汀、左巻きら旋液晶フィルム2が直接、積層
されている。左巻きら旋液晶フィルム2に、左巻きら旋
構造のコレステリック液晶を固定した固体ポリマーフィ
ルムであり、液晶のら旋釉にフィルム面に垂直な方向に
配向している。上記積層フィルムに、右巻きら旋液晶フ
ィルム1の側から、フィルム面にほぼ垂直に白色光を照
射した場合、白色光のうち特定波長λo3の右円偏光成
分4のみが右巻きら旋液晶フィルム1によってまず反射
され、次に右巻きら旋液晶フィルム1を透過してきた光
のうち特定波長λ0の左円偏光成分6のみが左巻きら旋
液晶フィルム2によって反射され、その左円偏光の反射
光5げそのまま右巻きら旋液晶フィルム1を透過してい
〈0その結果、本発明の光学フィルタによって白色光の
うち特定波長λ0の光4及び6のみが反射され、λ0以
外の光θに透過したことになる。すなわち、本発明の光
学フィルタに特定波長λ0の光のみを力y)する光ノツ
チフィルタとして機能する。
DESCRIPTION OF THE EMBODIMENTS FIG. 2 shows an optical notch filter according to an embodiment of the present invention. This example is a configuration for cutting a single wavelength region. This is a right-handed helical liquid crystal film, which is a solid polymer film on which cholesteric liquid crystal with a right-handed helical structure is fixed. The cholesteric liquid crystal spiral glaze is oriented in the direction perpendicular to the film surface. A left-handed spiral liquid crystal film 2 is directly laminated on a right-handed spiral liquid crystal film 1. This is a solid polymer film in which a cholesteric liquid crystal with a left-handed spiral structure is fixed to a left-handed spiral liquid crystal film 2, and the liquid crystal spiral glaze is oriented in a direction perpendicular to the film surface. When the above laminated film is irradiated with white light almost perpendicularly to the film surface from the side of the right-handed helical liquid crystal film 1, only the right-handed circularly polarized light component 4 with a specific wavelength λo3 of the white light is emitted from the right-handed helical liquid crystal film. 1 and then transmitted through the right-handed helical liquid crystal film 1. Of the light, only the left-handed circularly polarized light component 6 with a specific wavelength λ0 is reflected by the left-handed helical liquid crystal film 2, and the reflected light of the left-handed circularly polarized light is As a result, by the optical filter of the present invention, only lights 4 and 6 with a specific wavelength λ0 are reflected by the optical filter of the present invention, and light θ other than λ0 is transmitted through the right-handed helical liquid crystal film 1. It turns out. In other words, it functions as an optical notch filter that inputs only light having a specific wavelength λ0 to the optical filter of the present invention.

ここで、固体ポリマーフィルムとして固定されているコ
レステリック液晶のら旋ピつチをp、平均の光屈折率を
n、コレステリック層の複屈折をΔnとすると、光学フ
ィルタ(光ノツチフィルタ)によりカフ)された光の波
長に本質的にλ0を中心としてΔλの巾をもつ。ここで
λ(Irrp”n積に等しく、ΔλH2p・Δn/πに
等しい(フィルムの厚みが十分に大きい場合)。また入
射光がフィルム面に垂直な方向から角度θだけずれた場
合はλG=1)@ncO8θ となる。実際にはら旋軸
の配向度合、ら旋のねじれ度合、ら旋ピッチなどにも分
布が存在するためにλ0に分光学的に分布をもっている
。すなわち、λ0の分布の巾にコレステリック液晶のら
旋軸の配向度合(例えばフィルム面に垂直な方向への配
向度合)およびら旋ピ、ソチの分布の巾を調節すること
により制御することができる。本発明の光学フィルタの
構成において重要な点[1)r−nr= pI”gの条
件を必ず満足させることでるる。ここでprに右巻きコ
レステリック液晶のら旋ピッチ、nruその平均屈折率
であり、p6rz左巻きココステリツク液晶のら旋ピッ
チ、ng框その平均屈折率である。さらに本発明の望ま
しい光学フィルタの構成rx nr = n6(したが
ってpr=pl  )の条件を満たすことでめる。この
時特定波長λ0以外の光がフィルタ内部を透過する際に
反射損失を無くすることができる。各フィルム層の平均
屈折率に液晶溶液の化学組成調合により調節することが
でき、ら旋ピッチの大きさに光重合時の保持温度の設定
により調節することができる。
Here, if the helical pitch of the cholesteric liquid crystal fixed as a solid polymer film is p, the average optical refractive index is n, and the birefringence of the cholesteric layer is Δn, then an optical filter (optical notch filter) is used to cuff) The wavelength of the emitted light essentially has a width of Δλ centered at λ0. Here, λ(Irrp” is equal to the product ΔλH2p・Δn/π (if the film thickness is sufficiently large). If the incident light is deviated from the direction perpendicular to the film surface by an angle θ, then λG=1 )@ncO8θ.Actually, since there is a distribution in the degree of orientation of the helical axis, the degree of twist of the helix, the helical pitch, etc., there is a spectroscopic distribution in λ0.In other words, the width of the distribution of λ0 This can be controlled by adjusting the degree of orientation of the helical axis of the cholesteric liquid crystal (for example, the degree of orientation in the direction perpendicular to the film plane) and the width of the distribution of the helical axis and Sochi. An important point in the configuration is that [1] the condition r-nr=pI''g must be satisfied. Here, pr is the helical pitch of the right-handed cholesteric liquid crystal, nru is its average refractive index, p6rz is the helical pitch of the left-handed coccosteric liquid crystal, and ng is its average refractive index. Furthermore, it can be determined that the desirable configuration of the optical filter of the present invention satisfies the condition rx nr = n6 (therefore, pr = pl). At this time, reflection loss can be eliminated when light other than the specific wavelength λ0 passes through the filter. The average refractive index of each film layer can be adjusted by adjusting the chemical composition of the liquid crystal solution, and the size of the helical pitch can be adjusted by setting the holding temperature during photopolymerization.

本発明のポリマーフィルムの典型的な作成工程例に、ま
ず液晶原料としてポリペプチド化合物と溶媒として放射
線重合性不飽和基をもつモノマーとを十分に混合し、コ
レステリック液晶溶液(リオトロピック液晶状態)にな
るよう濃度を調節し、所定のら旋ピッチになるように温
度を調節し、その温度を保持しつつ放射線重合を行なう
ものでろる。使用したポリペプチド化合物および放射線
重合性モノマーの種類にもちろんのこと、コレステリッ
ク液晶溶液を調製する場合の濃度Cおよび温度Tを変え
ることによって、でき上ったボIJマーフィルム中に固
定されているコレステ1ルツク液晶のビヴチpを容易に
制御することができるとともに右巻き、左巻きの方向を
も変えること力;できる。
In a typical example of the production process of the polymer film of the present invention, first, a polypeptide compound as a liquid crystal raw material and a monomer having a radiation-polymerizable unsaturated group as a solvent are sufficiently mixed to form a cholesteric liquid crystal solution (lyotropic liquid crystal state). The concentration is adjusted so that a predetermined helical pitch is achieved, the temperature is adjusted, and radiation polymerization is carried out while maintaining this temperature. By changing the concentration C and temperature T when preparing the cholesteric liquid crystal solution, as well as the types of polypeptide compounds and radiation-polymerizable monomers used, the cholesterol fixed in the finished VoIJmer film can be adjusted. It is possible to easily control the visibility of a liquid crystal, and also to change the direction of right-handed or left-handed.

したがって、カットしたい可視領域の特定波長λ0に等
しくなるようにpr−nr積を制御した右巻きコレステ
リック液晶を固定したポリマーフィルムを作成し、その
フィルム面上にさらにpl”nll積がλ0に等しくな
るように(望ましくにpl=prおよびn1=nrにな
るように)制御した左巻きココレステリツク液晶を固定
したポリマーフィルムを作成することによって、光ノツ
チフィルタとしての優れた機能を有する積層フィルムを
得ることができる。
Therefore, we create a polymer film fixed with a right-handed cholesteric liquid crystal whose pr-nr product is controlled so that it is equal to the specific wavelength λ0 in the visible region that we want to cut, and further on the film surface, the pl”nll product becomes equal to λ0. By creating a polymer film fixed with a left-handed coccholesteric liquid crystal controlled as follows (preferably so that pl=pr and n1=nr), a laminated film having an excellent function as an optical notch filter can be obtained. .

ここでもう1つの重要な点は、ポリマーフィルム中に固
定1れる各コレステリック液晶部分のら旋軸(光軸)の
方向をそろえ、かつ右巻きコレステリック液晶のら旋軸
の方向と左巻きコレステリック液晶のら旋軸の方向を互
いに平行にする必要がめることであり、さらにこれらの
ら旋軸の方向をポリマーフィルムの面に垂直に配向でせ
ることか、シャープな光ノツチフィルタを得る上に望ま
しい。一般に、コレステリック液晶溶液(リオトロピッ
ク液晶状態)を清純な表面のガラス板あるいに表面を配
向処理したガラス板で挾持することによってコレステリ
ック液晶をプレーナー配向(ら旋軸がガラス面に垂直配
向)させることができる。また、すでにプレーナー配向
させたコレステリック液晶を含有するポリマーフィルム
の面上に別のコレステリック液晶溶液を塗布すると右巻
き、左巻きのら旋の方向とに関係なく、そのら旋軸が下
地のフィルム面に極めて垂直に配向(コレステリック液
晶がプレーナー配向)し易い。したがって、右巻きら旋
構造のコレステリ・ツク液晶を配向させて含有するボリ
マーフィへ・ムと左巻きら旋構造のコレステリック液晶
を配向させて含有するポリマーフィルムを積層し、一体
化することが容易でメリ、これが本発明の特徴の1つで
める。
Another important point here is to align the directions of the helical axes (optical axes) of each cholesteric liquid crystal part fixed in the polymer film, and to align the directions of the helical axes of the right-handed cholesteric liquid crystal and the directions of the helical axes of the left-handed cholesteric liquid crystal. It is necessary to make the directions of the helical axes parallel to each other, and it is desirable to orient the helical axes perpendicularly to the plane of the polymer film in order to obtain a sharp optical notch filter. In general, a cholesteric liquid crystal solution (lyotropic liquid crystal state) is held between glass plates with a pure surface or glass plates whose surfaces have been subjected to alignment treatment to make the cholesteric liquid crystal planarly aligned (the helical axis is aligned perpendicular to the glass surface). I can do it. Furthermore, when another cholesteric liquid crystal solution is applied onto the surface of a polymer film containing cholesteric liquid crystals that have already been planarly oriented, the helical axis will align with the underlying film surface, regardless of the right-handed or left-handed helical direction. Very easy to align vertically (planar alignment of cholesteric liquid crystal). Therefore, it is easy and advantageous to laminate and integrate a polymer film containing oriented cholesteric liquid crystal with a right-handed helical structure and a polymer film containing oriented cholesteric liquid crystal with a left-handed helical structure. This is one of the features of the present invention.

また本発明の光学フィルタに、特定波長λ0の光を選択
散乱させるら旋ピッチ1)rをもつ右巻きコレステリッ
ク液晶(屈折率nr  )ポリマーフィルムと同じ波長
λ0の光を選択散乱させるら旋ビ、ソチTelをもつ左
巻きコレステ1月ツク液晶(屈折糸ng)ポリマーフィ
ルムとの2層に更に、λ0とは異なるもう1つの特定波
長λ0′の光を選択散乱させるら族ピッチpr′をもつ
右巻きコレステリック液晶(屈折率nr’ )ポリマー
フィルムおよび同じ波長λ0′の光を選択散乱嘔せるら
族ピッチpe’をもつ左巻きコレステリック液晶(屈折
率ne’)ポリマーフィルムの2層を加え、これらのフ
ィルムの光軸を互にほぼ平行にして積層した構成とする
こともできる。ここでコレステリック液晶のら旋軸(光
軸)を各フィルム面に垂直に配向膜せ、白色光をら旋軸
に平行に照射する場合、λ0=pr” ”r=1) l
 ” n l*λo’ =1)r” nr’ =pe’
In addition, the optical filter of the present invention includes a helical pitch that selectively scatters light with the same wavelength λ0 as a right-handed cholesteric liquid crystal (refractive index nr) polymer film with a helical pitch 1) r that selectively scatters light with a specific wavelength λ0; Left-handed Coreste with Sochi Tel January Tsuku liquid crystal (refraction thread ng) and right-handed with a two-layered polymer film and a group pitch pr' that selectively scatters light with another specific wavelength λ0' different from λ0. Adding two layers of a cholesteric liquid crystal (refractive index nr') polymer film and a left-handed cholesteric liquid crystal (refractive index ne') polymer film with selective scattering of light of the same wavelength λ0' and a pitch pe', It is also possible to have a structure in which the optical axes are made substantially parallel to each other and stacked. Here, when the helical axis (optical axis) of the cholesteric liquid crystal is aligned perpendicularly to each film surface and white light is irradiated parallel to the helical axis, λ0=pr'' ``r=1) l
"n l*λo' = 1) r"nr' = pe'
.

n6’(但しλ0\λo’ )の条件を満足するように
材料設計を行なう。上記4層のフィルムに白色光を照射
すると特定波長λ0の光と別の特定波長λ0′の光のみ
が選択的に反射され、その他の波長の光にすべて4層の
フィルムを透過する。従って、λGの光およびλ0′の
光を同時に力・ノドすることができるマルチノツチフィ
ルタとして機能する。このようにカットすべき光の波長
λに対応する右巻きら旋ビ1.チ1)rをもつ;レステ
リンク液晶フィルムと左巻きら旋ビ・ノチpeをもつコ
レステリック液晶フィルムを1対にして、カットすべき
光の波長λを変えながら1対のフィルム層の数を増すこ
とにより、希望するマルチノツチフィルタを得ることが
できる。さらに望ましくにnr=no−nr’=ne′
の条件を満たすように材料設計をすることができる。
The material is designed to satisfy the condition n6' (where λ0\λo'). When the four-layer film is irradiated with white light, only the light with a specific wavelength λ0 and another specific wavelength λ0' are selectively reflected, and all the light with other wavelengths is transmitted through the four-layer film. Therefore, it functions as a multi-notch filter that can simultaneously filter the light of λG and the light of λ0'. In this way, the right-handed spiral beam corresponding to the wavelength λ of the light to be cut1. H1) Having r; Making a pair of Lestelink liquid crystal film and a cholesteric liquid crystal film with left-handed spiral bi-nochipe, and increasing the number of film layers in the pair while changing the wavelength λ of the light to be cut. Thus, a desired multi-notch filter can be obtained. More preferably, nr=no-nr'=ne'
Materials can be designed to meet these conditions.

また本発明の光学フィルタに、透明膜、透明板。The optical filter of the present invention also includes a transparent film and a transparent plate.

カラーフィルタ、多色カラーフィルタ、偏光板。Color filters, multicolor color filters, polarizing plates.

カラー偏光板、V4波長板およびA波長板等の膜や板の
1種もしくに2種以上のものと積層、一体化した構成と
することもできる。一般に、液晶表示。
It can also be laminated or integrated with one or more types of films and plates such as a color polarizing plate, a V4 wavelength plate, and an A wavelength plate. Generally, LCD display.

エレクトロクロミヴク表示、エレクトロルミネッセンス
表示、陰極線管表示などのディスプレイにおいてに、そ
れぞれの目的に応じて透明板(ガラス基板など)、透明
膜(透明有機保護膜、透明有機配向膜、透明電極など)
、カラーフィルタ、多色カラーフィルタ、偏光板(直線
偏光板9円偏光板)、カラー偏光板、1/4波長板およ
びぬ波長板などが用いられている。本発明のコレステリ
ック液晶ポリマーフィルムを製造する工程で、上記のよ
うな膜や板を積層、一体化することにより、作業性の向
上、コストダウンなどを図ることができる。
Transparent plates (glass substrates, etc.) and transparent films (transparent organic protective films, transparent organic alignment films, transparent electrodes, etc.) are used in displays such as electrochromic displays, electroluminescent displays, and cathode ray tube displays, depending on the purpose.
, color filters, multicolor color filters, polarizing plates (linear polarizing plates, 9 circularly polarizing plates), color polarizing plates, quarter-wave plates, double-wave plates, and the like are used. In the process of manufacturing the cholesteric liquid crystal polymer film of the present invention, by laminating and integrating the above films and plates, it is possible to improve workability and reduce costs.

また本発明の光学フィルタフィルムの表面に透明保護膜
を設けることにより、耐湿性、耐光性、耐ガス性などを
向上させることができる。
Further, by providing a transparent protective film on the surface of the optical filter film of the present invention, moisture resistance, light resistance, gas resistance, etc. can be improved.

本発明の光学フィルタにおいて用いる液晶原料げ、基本
的にはりオトロビ・ツクコレステリック液晶(但し溶媒
に放射線重合性不飽和基をもつモノマー)となりうる物
質であればよい。有機溶媒中でリオトロピック液晶とな
りうる物質にげ高分子がよく知られており、その中でも
ペプチド結合をもつ高分子(ヘリカル構造をもつ棒状分
子)が安定なコレステリック液晶溶液になり易い。さら
にポリペプチド化合物の中でも酸性アミノ酸およびその
エステル誘導体の高分子框、溶媒である不飽和基をもつ
モノマーを放射線重合してポリマーフィルム中に固定き
れた後も極めて安定なコレステリック液晶構造を保持す
ることができる。酸性アミノ酸としてにアスパラギン酸
、グルタミン酸およびオキシグルタミン酸の3種類があ
る。またそれらのエステル誘導体とじては酸性アミノ酸
のメチルエステル、エチルエステル、7”aヒルエステ
ル、グチルエステル、ペンチルエステル、ヘキシルエス
テル、シクロヘキシルエステル、ベンジルエステル、ク
ロロベンジルエステルなどの多くの物質がめる。これら
の酸性アミノ酸およびその誘導体を重合させて得た高分
子アミノ酸および高分子アミノ酸誘導体を液晶原料とし
て用いる、また放射線重合性モノマーとしてに、少なく
とも1個の不飽和基をもつアクリル系、メタアクリル系
、またにアリル系化合物が望ましい。アクリル系、メタ
アクリル系としてげ脂肪族ポリオール。
The liquid crystal raw material used in the optical filter of the present invention may basically be any material that can form a cholesteric liquid crystal (provided that the solvent is a monomer having a radiation-polymerizable unsaturated group). Polymers are well known as substances that can form lyotropic liquid crystals in organic solvents, and among them, polymers with peptide bonds (rod-like molecules with a helical structure) tend to form stable cholesteric liquid crystal solutions. Furthermore, among polypeptide compounds, polymer frames of acidic amino acids and their ester derivatives, as well as monomers with unsaturated groups as solvents, are radiation-polymerized to maintain an extremely stable cholesteric liquid crystal structure even after they are fixed in a polymer film. I can do it. There are three types of acidic amino acids: aspartic acid, glutamic acid, and oxyglutamic acid. In addition, these ester derivatives include many substances such as methyl ester, ethyl ester, 7"a hill ester, butyl ester, pentyl ester, hexyl ester, cyclohexyl ester, benzyl ester, and chlorobenzyl ester of acidic amino acids. Polymeric amino acids and polymeric amino acid derivatives obtained by polymerizing acidic amino acids and their derivatives are used as liquid crystal raw materials, and acrylic, methacrylic, or methacrylic monomers having at least one unsaturated group are used as radiation polymerizable monomers. Allyl-based compounds are preferable, including acrylic and methacrylic-based aliphatic polyols.

ポリ(メタ)アクリレート、アルキレンオキサイドの(
メタ)アクリル酸エステル化物、フェノール類にアルキ
レンオキサイドを付加したポリオールの(メタ)アクリ
ル酸エステル化物、シクロペンタジェン系(メタ)アク
リレート、ビスフェノール人とエチレンオキサイド付加
物のジ(メタ)ケタリレートなどを用いることができる
が、低粘度、放射線重合性の容易さからポリエチレング
リコールジメタアクリレートたとえばトリエチレングリ
コールジメタアクリレートまたにテトラエチレングリコ
ールジメタアクリレートなどが好ましい。放射線重合の
うち紫外線を用いる場合[[光増感剤としてベンゾフェ
ノン、ベンゾイン系、アセトフェノン系重合開始剤を用
いることができる。
Poly(meth)acrylate, alkylene oxide (
Uses meth)acrylic esters, (meth)acrylic esters of polyols with alkylene oxide added to phenols, cyclopentadiene (meth)acrylates, di(meth)ketarylates of bisphenols and ethylene oxide adducts, etc. However, polyethylene glycol dimethacrylate such as triethylene glycol dimethacrylate or tetraethylene glycol dimethacrylate is preferred because of its low viscosity and ease of radiation polymerization. When ultraviolet rays are used in radiation polymerization, benzophenone, benzoin, and acetophenone polymerization initiators can be used as photosensitizers.

実施例1 液晶原料としてポリ−L−グルタミン酸n−ブチルエス
テルを60重量%、溶媒かつ光重合性モノマーとしてト
リエチレングリコールジメタクリレートを60重量%、
それぞれ秤量し、40〜60°Cの温度に保持しながら
、両者を充分に攪拌・混合した。このようにして得た均
一な液晶溶液にさらに光増感剤として1チのベンゾフェ
ノ/を添加した。この混合溶液人を清純な2枚のガラス
板の間に挾持し、かつそれらの温度を30″Cの一定温
度に保持しながら超高圧水銀ランプを用いて紫外線を6
時間照射してモノマーを重合させ、コレステリック液晶
を固定した厚み0.2mのポリマーフィルムを得た。こ
のフィルムについて光学的測定をした結果、このフィル
ムに中心波長490nmに強い選択反射(反射率46%
)を示し、右廻り円偏光反射を示すことが確認された。
Example 1 60% by weight of poly-L-glutamic acid n-butyl ester as a liquid crystal raw material, 60% by weight of triethylene glycol dimethacrylate as a solvent and photopolymerizable monomer,
Each was weighed, and both were thoroughly stirred and mixed while maintaining the temperature at 40 to 60°C. To the thus obtained homogeneous liquid crystal solution, 1 g of benzophenol was further added as a photosensitizer. This mixed solution was sandwiched between two clean glass plates, and while the temperature of the plates was maintained at a constant temperature of 30"C, ultraviolet rays were applied to the mixture using an ultra-high pressure mercury lamp.
The monomer was polymerized by irradiation for a period of time to obtain a polymer film with a thickness of 0.2 m on which cholesteric liquid crystal was fixed. As a result of optical measurements on this film, it was found that this film has strong selective reflection (reflectance of 46%) at the center wavelength of 490 nm.
), and it was confirmed that the light reflected right-handed circularly polarized light.

次に、液晶原料としてポリ−D−グルタミン酸n−ブチ
ルエステル(分子量に5体とほぼ同じ7万)を60重i
ll溶媒かつ光重合性モノマーとしてトリエチレングリ
コールジメタクリレートを50重■チ、それぞれ秤量し
、4o〜60°Cの温度に保持しながら、両者を充分に
攪拌・混合した。
Next, as a raw material for liquid crystal, poly-D-glutamic acid n-butyl ester (70,000 mol.
Fifty grams of triethylene glycol dimethacrylate as a solvent and a photopolymerizable monomer were each weighed out, and the two were sufficiently stirred and mixed while maintaining the temperature at 4°C to 60°C.

このようにして得た均一な液晶溶液にさらに光増感剤と
して1チのベンゾフェノンを添加した。この混合溶液B
を前記石巻きコレステリック液晶ポリマーフィルムとガ
ラス板との間に挾持し、かつそれらの温度を30°Cの
一定温度に保持しながら紫外線を6時間照射してモノマ
ーを重合させ、コレステリ・ンク液晶を固定した厚み0
.2mのポリマーフィルムを新たに積層し、2層の積層
フィルムを作成した。一方、このポリマーフィルムのみ
のぬ学特性を測定した結果、中心波長490nmに強い
選択反射(反射率46%)を示し、左廻り円偏光反射を
示すことが確認された。次に2層の積層フィルムについ
て光学的測定をした結果、この積層フィルムに中心波長
490nllに強い選択反射(反射率90%)を示し、
右廻り円偏光反射と左廻り円偏光反射を示すことが確認
された。すなわち、この積層フィルムに可視領域の特定
波長490nm土15nmの光をほぼ(90%)カント
し、490nm±151m以外の光をほぼ(88チ)透
過させる光ノヮチフィルタの機能をもつ光学フィルタと
して使用することができる。
To the homogeneous liquid crystal solution thus obtained was further added 1 g of benzophenone as a photosensitizer. This mixed solution B
was sandwiched between the stone-wrapped cholesteric liquid crystal polymer film and a glass plate, and while maintaining the temperature of both at a constant temperature of 30°C, UV rays were irradiated for 6 hours to polymerize the monomer, thereby forming cholesteric liquid crystal. Fixed thickness 0
.. 2 m of polymer films were newly laminated to create a two-layer laminated film. On the other hand, as a result of measuring the mechanical properties of this polymer film alone, it was confirmed that it exhibited strong selective reflection (reflectance of 46%) at a center wavelength of 490 nm and exhibited left-handed circularly polarized light reflection. Next, as a result of optical measurement of the two-layer laminated film, this laminated film showed strong selective reflection (reflectance 90%) at a center wavelength of 490 nll.
It was confirmed that it exhibits right-handed circularly polarized light reflection and left-handed circularly polarized light reflection. In other words, this laminated film is used as an optical filter that has the function of an optical notch filter that almost (90%) cant light with a specific wavelength of 490 nm or 15 nm in the visible region, and transmits almost (88%) light other than 490 nm ± 151 m. be able to.

実施例2 実施例1で得た2層の積層フィルムの上に、さらに別の
ポリマーフィルムをm層した。
Example 2 On top of the two-layer laminated film obtained in Example 1, m layers of another polymer film were formed.

まず、実施例1で調整した混合溶液人を、実施例1で得
た積層フィルムとガラス板との間に挾持し、かつそれら
の温度を43°Cの一定温度に保持しながら超高圧水銀
ランプを用いて紫外線を6時間照射してモノマーを重合
させ、コレステリ9.り液晶を固定した厚み0.2鵬の
ポリマーフィルムを新たに積層し、3層の積層フィルム
を作成した。
First, the mixed solution prepared in Example 1 was sandwiched between the laminated film obtained in Example 1 and a glass plate, and an ultra-high pressure mercury lamp was used while keeping the temperature of both at a constant temperature of 43°C. The monomer was polymerized by irradiating ultraviolet rays for 6 hours using a cholesteri 9. A 3-layer laminated film was created by newly laminating a polymer film with a thickness of 0.2 mm on which the liquid crystal was fixed.

一方、このポリマーフィルムのみの光学特性を測定した
結果、中心波長5801uに強い選択反射(反射率43
%)を示し、右廻り円偏光反射を示すことが確認された
On the other hand, as a result of measuring the optical properties of this polymer film alone, we found that there was strong selective reflection at the center wavelength of 5801u (reflectance of 43
%) and was confirmed to exhibit right-handed circularly polarized light reflection.

次に、実施例1で調整した混合溶液Bを、上記3層の積
層フィルムとガラス板との間に挾持し、かつそれらの温
度を43°Cの一定温度に保持しながら紫外線を5時間
照射してモノマーを重合させ、コレステリック液晶を固
定した厚み0,2 nのポリマーフィルムを新たに積層
し、4層の積層フィルムを作成した。一方、このポリマ
ーフィルムのみの光学特性を測定した結果、中心波長5
801mに強い選択反射(反射率44チ)を示し、左廻
り円偏光反射を示すことが確認された。
Next, the mixed solution B prepared in Example 1 was sandwiched between the three-layer laminated film and the glass plate, and irradiated with ultraviolet rays for 5 hours while maintaining the temperature of both at a constant temperature of 43°C. The monomers were polymerized, and a 0.2 nm thick polymer film on which cholesteric liquid crystal was fixed was newly laminated to create a four-layer laminated film. On the other hand, as a result of measuring the optical properties of this polymer film alone, the center wavelength was 5.
It was confirmed that strong selective reflection (reflectance of 44 cm) was observed at 801 m, and counterclockwise circularly polarized light was reflected.

次に、上記4層の積層フィルムについて光学的測定をし
た結果、第3図の分光特性に示すように中心波長490
nmと580nmの2箇所に強い選択反射(それぞれの
波長における反射率にそれぞれ90チおよび87チ)を
示し、それぞれの波長において右廻り円偏光反射と左廻
り円偏光反射とを示すことが確認された。
Next, as a result of optical measurement of the above four-layer laminated film, as shown in the spectral characteristics in Figure 3, the center wavelength was 490.
It was confirmed that strong selective reflection was observed at two locations at nm and 580 nm (reflectance at each wavelength was 90 cm and 87 cm, respectively), and clockwise circularly polarized light reflection and counterclockwise circularly polarized light reflection were exhibited at each wavelength. Ta.

すなわち、この4層の積層フィルムに可視領域の特定波
長4901m±15nmの光とssonm±151mの
光とを同時にほぼカットし、それらの特定波長以外の光
をほぼ(8了チ)透過きせるマルチノツチフィルタの機
能をもつ光学フィルタとして使用することができる。
In other words, this four-layer laminated film has a multi-notch that simultaneously cuts light with a specific wavelength of 4901 m ± 15 nm in the visible region and light with a wavelength of ssonm ± 151 m, and allows light other than those specific wavelengths to pass through almost (8 ends). It can be used as an optical filter with a filter function.

次に、白色光源および第1図の分光特性をもつ3原色モ
ザイクカラーフィルタを配した液晶セルを用いて、フル
カラー画像表示の実験を行なった。
Next, a full-color image display experiment was conducted using a liquid crystal cell equipped with a white light source and a three-primary mosaic color filter having the spectral characteristics shown in FIG.

この時、白色光源と上記カラーフィルタのみの場合と白
色光源と上記カラーフィルタとの間に、さらに第3図の
分光特性をもつ本発明のノ・ノチフィルタを配置した場
合の色再現範囲を各々測定比較した結果、前者の場合(
従来例)の色再現範囲に比べて、後者の場合(本発明例
)の色再現範囲に広くなった(色度図の面積で約12チ
)。
At this time, the color reproduction range was measured in the case where only the white light source and the above color filter were used, and in the case where the No-Nochi filter of the present invention having the spectral characteristics shown in Fig. 3 was further placed between the white light source and the above color filter. As a result of comparison, in the former case (
Compared to the color reproduction range of the conventional example), the color reproduction range of the latter case (present invention example) is wider (approximately 12 inches in area of the chromaticity diagram).

実施例3 透明なガラス基板の表面にポリイミドの水平配向膜を形
成し、その配向膜の上に実施例1で用いたのと同じ混合
溶液人をスピンナーで均一な厚みに塗布し、30″Cの
温度に保持しながら紫外線を1時間照射してモノマーを
重合させ、厚み20μmのlきコレステリック液晶ポリ
マーフィルムを積層し一体化した。さらに、そのフィル
ムの上に、実施例1で用いたのと同じ混合溶液Bをスピ
ンナーで均一な厚みに塗布し、30°Cの温度に保持し
ながら紫外線を1時間照射してモノマーを重合させ、厚
み20μmの左巻きコレステリック液晶ポリマーフィル
ムを積層し、そのフィルムの上に、同じ混合溶液ムを均
一な厚みに塗布し、43°Cの温度に保持しながら紫外
線を1時間照射してモノマーを重合場せ、厚み2層μm
の右巻きコレステリック液晶ポリマーフィルムを積層し
、最後に、そのフィルムの上に同じ混合溶液Bを均一な
厚みに塗布し、43°Cの温度に保持しながら紫外線1
時間照射してモノマーを重合させ、厚み20μmの圧巻
キコレステリック液晶ポリマーフィルムを積層した。す
なわち、ガラス基板と4層のフィルムを積層、一体化し
て、本発明の光学フィルタを得た。この光学フィルタに
ついて分光特性を測定した結果、第4図に示す分光特性
が得られた。この光学フィルタに可視領域の特定波長4
90nm±1OnInの光とssonm±1Onllの
光とを同時にほぼ完全にカットすることができ(それぞ
れの波長における反射率にそれぞれ98%および96チ
)、それらの特定波長以外の光をほぼ(93悌)透過さ
せることができる マルチノツチフィルタとして使用す
ることができる外に、透明なガラス基板と一体となって
いるので、例えば液晶表示セルの基板としても使用する
ことができる。この実施例3のマルチノツチフィルタげ
実施例2のマルチノツチフィルタに比べて、特定波長に
おける反射ピークが鋭くなっている。すなわち反射ピー
クの半値巾G1小さく、ピークの高さに大きくなってい
る。この理由にポリマーフィルム中に固定されている個
々のコレステリック液晶のら施紬の配向度(フィルム面
に対し垂直方向)がよくなり、ら旋ピッチの分布が狭く
なったことによるものでめる0 発明の効果 以上述べたように本発明の光学フィルタによれば、ら旋
ピッチと光屈折率の積が一定である右巻きら旋および左
巻きら旋のコレステリック液晶を配向させて含有する各
ポリマーフィルムを1対として積層することによって、
力・ソトすべき光の波長領域を自由に選択でき、その波
長領域の巾を制御することができ、その波長領域内の透
過光をほぼ完全にカットすることができるなどの優れた
性能をもつ低コスト、軽量の光ノ・ソチフィルタを得る
ことができる。これらの光ノツチフィルタを例えばフル
カラー画像表示に用いることによってその色純度が向上
し、色再現範囲が広くなるなどの優れたカラー表示が可
能となる。
Example 3 A horizontal alignment film of polyimide was formed on the surface of a transparent glass substrate, and the same mixed solution as used in Example 1 was applied onto the alignment film to a uniform thickness using a spinner, and heated at 30″C. The monomer was polymerized by irradiating ultraviolet rays for 1 hour while maintaining the temperature at The same mixed solution B was applied to a uniform thickness using a spinner, and the monomer was polymerized by irradiating it with ultraviolet rays for 1 hour while maintaining the temperature at 30°C.A left-handed cholesteric liquid crystal polymer film with a thickness of 20 μm was laminated. On top, the same mixed solution was applied to a uniform thickness, and the monomer was polymerized by irradiating it with ultraviolet rays for 1 hour while maintaining the temperature at 43°C, resulting in a 2-μm thick layer.
A right-handed cholesteric liquid crystal polymer film of
The monomers were polymerized by irradiation for a period of time, and a 20 μm thick kicholesteric liquid crystal polymer film was laminated thereon. That is, the optical filter of the present invention was obtained by laminating and integrating a glass substrate and four layers of films. As a result of measuring the spectral characteristics of this optical filter, the spectral characteristics shown in FIG. 4 were obtained. This optical filter uses 4 specific wavelengths in the visible region.
It is possible to almost completely cut out 90nm±1OnIn light and ssonm±1Onll light at the same time (98% and 96% reflectance at each wavelength, respectively), and almost completely cut out light other than those specific wavelengths (93%). ) Transmits light In addition to being used as a multi-notch filter, since it is integrated with a transparent glass substrate, it can also be used, for example, as a substrate for a liquid crystal display cell. The multi-notch filter of the third embodiment has a sharper reflection peak at a specific wavelength than the multi-notch filter of the second embodiment. That is, the half width G1 of the reflection peak is small and the height of the peak is large. The reason for this is that the degree of orientation of the individual cholesteric liquid crystals fixed in the polymer film (in the direction perpendicular to the film surface) has improved, and the distribution of the helical pitch has become narrower. Effects of the Invention As described above, according to the optical filter of the present invention, each polymer film contains orients right-handed and left-handed helical cholesteric liquid crystals in which the product of helical pitch and optical refractive index is constant. By stacking them as a pair,
It has excellent performance such as being able to freely select the wavelength range of the light to be focused and sorted, controlling the width of that wavelength range, and almost completely cutting out transmitted light within that wavelength range. A low-cost, lightweight optical filter can be obtained. By using these optical notch filters, for example, in full-color image display, the color purity is improved, and excellent color display with a wider color reproduction range becomes possible.

また、本発明の光学フィルタに光ノツチフィルタとして
の機能をもつコレステリック液晶を固定したポリマーフ
ィルムと広くディスプレイ装置に用いられている膜ある
いに板と積層化、一体化することによって、低コスト化
9作業性の向上、信頼性の向上、安定性の向上などが得
られ、経済的価値および技術的価値の高いものである。
In addition, costs can be reduced by laminating and integrating the optical filter of the present invention with a polymer film fixed with a cholesteric liquid crystal that functions as an optical notch filter, and a film or plate widely used in display devices. 9. Improved workability, improved reliability, improved stability, etc. can be obtained, and it has high economic and technical value.

【図面の簡単な説明】[Brief explanation of drawings]

第1図に一般にフルカラー画像表示に用いられる3原色
のモザイクカラーフィルタの分光特性例を示すグラフ、
第2図に本発明の光学フィルタの構成およびその光ノリ
チフィルタとしての機能を説明する断面図、第3図およ
び第4図にマルチノツチフィルタとしての機能をもつ本
発明の光学フィルタの分光特性例を示すグラフである。 11・・・・・・右巻きら旋液晶フィルム、12・・・
・・・左巻きら旋液晶フィルム、13・・・・・・特定
波長λ0の入射光、14・・・・・・特定波長λ0の右
円偏光反射光、16・・・・・・特定波長λ0の左円偏
光反射光、16・・・・・・特定波長λ0以外の光。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 第2図 vjs図 尤の 第4図
FIG. 1 is a graph showing an example of the spectral characteristics of a mosaic color filter of three primary colors, which is generally used for full-color image display.
Fig. 2 is a cross-sectional view explaining the configuration of the optical filter of the present invention and its function as an optical norchi filter, and Figs. 3 and 4 show examples of spectral characteristics of the optical filter of the present invention having a function as a multi-notch filter. This is a graph showing. 11... Right-handed spiral liquid crystal film, 12...
...Left-handed helical liquid crystal film, 13...Incoming light with a specific wavelength λ0, 14...Right-handed circularly polarized reflected light with a specific wavelength λ0, 16...Specific wavelength λ0 Left circularly polarized reflected light, 16... Light other than the specific wavelength λ0. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 2 Figure 4 of vjs diagram

Claims (7)

【特許請求の範囲】[Claims] (1)ポリペプチド化合物と放射線重合性モノマーとの
混合溶液から成るコレステリック液晶をプレーナ配向さ
せ、放射線重合させて得る、可視領域の特定波長の光を
選択散乱させるら旋ピッチをもつ右巻きあるいは左巻き
のいずれか一方のら旋構造のコレステリック液晶構造を
もつ固体ポリマーフィルムと、前記混合溶液とは化学成
分あるいは成分比を異にする、ポリペプチド化合物と放
射線重合性モノマーとの混合溶液から成るコレステリッ
ク液晶をプレーナ配向させ、放射線重合させて得る、前
記特定波長と同じ波長の光を選択散乱させるら旋ピッチ
をもつ前記ら旋の巻き方向とは逆の巻き方向のら旋構造
のコレステリック液晶構造をもつ固体ポリマーフィルム
とを、両者のフィルムの光軸をほぼ平行にし、かつ両者
のフィルムを直接接触させて積層して構成されるフィル
ム対を備えた光学フィルタ。
(1) A cholesteric liquid crystal made of a mixed solution of a polypeptide compound and a radiation-polymerizable monomer is planarly oriented and radiation-polymerized, with a right-handed or left-handed helical pitch that selectively scatters light of a specific wavelength in the visible region. A cholesteric liquid crystal consisting of a solid polymer film having one of the helical cholesteric liquid crystal structures, and a mixed solution of a polypeptide compound and a radiation-polymerizable monomer, which have different chemical components or component ratios from the mixed solution. has a cholesteric liquid crystal structure with a helical pitch that selectively scatters light of the same wavelength as the specific wavelength and a spiral structure in a winding direction opposite to the winding direction of the spiral, which is obtained by planar orientation and radiation polymerization. 1. An optical filter comprising a pair of films formed by laminating a solid polymer film with the optical axes of both films substantially parallel and in direct contact with each other.
(2)フィルム対を少なくとも2対備え、各対の選択散
乱させる特定波長が互いに異なるとともに、それらのフ
ィルムの光軸を互いにほぼ平行にし、かつそれらのフィ
ルムを互いに直接接触させて積層した特許請求の範囲第
1項記載の光学フィルタ。
(2) A patent claim comprising at least two pairs of films, each pair having a different specific wavelength for selective scattering, the optical axes of the films being substantially parallel to each other, and the films being laminated in direct contact with each other. The optical filter according to the range 1 above.
(3)フィルム対を構成する各層の光屈折率が互いにほ
ぼ等しい特許請求の範囲第1項又は第2項記載の光学フ
ィルタ。
(3) The optical filter according to claim 1 or 2, wherein the optical refractive index of each layer constituting the film pair is substantially equal to each other.
(4)ポリペプチド化合物がポリ酸性アミノ酸又はポリ
酸性アミノ酸エステル誘導体である特許請求の範囲第1
項又は第2項記載の光学フィルタ。
(4) Claim 1 in which the polypeptide compound is a polyacidic amino acid or a polyacidic amino acid ester derivative
The optical filter according to item 1 or 2.
(5)放射線重合性モノマーが少なくとも1個の不飽和
基をもつアクリル系化合物、メタアクリル系化合物又は
アリル系化合物である特許請求の範囲第1項又に第2項
記載の光学フィルタ。
(5) The optical filter according to claim 1 or 2, wherein the radiation polymerizable monomer is an acrylic compound, a methacrylic compound, or an allyl compound having at least one unsaturated group.
(6)ポリペプチド化合物と放射線重合性モノマーとの
混合溶液から成るコレステリック液晶をプレーナ配向さ
せた後、その保持温度を所定の一定温度に保ちつつ放射
線重合させることにより、可視領域の特定波長の光を選
択散乱させるら旋ピッチをもつ、右巻きあるいは左巻き
のいずれか一方のら旋構造のコレステリック液晶を固定
した固体ポリマーフィルムを作成し、そのフィルムの面
上に、前記混合溶液とは化学成分あるいは成分比を異に
する、ポリペプチド化合物と放射線重合性モノマーとの
混合溶液から成るコレステリック液晶をプレーナ配向さ
せた後、その保持温度を所定の一定温度に保ちつつ放射
線重合させることにより、前記特定波長と同じ波長の光
を選択散乱させるら旋ピッチをもつ、前記ら旋の巻き方
向とは逆の巻き方向のら旋構造のコレステリック液晶を
固定した固体ポリマーフィルムを、両者のフィルムの光
軸をほぼ平行にし、かつ両者のフィルムを直接接触させ
て積層する光学フィルタの製造法。
(6) After planarly aligning a cholesteric liquid crystal made of a mixed solution of a polypeptide compound and a radiation-polymerizable monomer, the cholesteric liquid crystal is subjected to radiation polymerization while maintaining its holding temperature at a predetermined constant temperature, thereby producing light of a specific wavelength in the visible region. A solid polymer film fixed with a cholesteric liquid crystal having either a right-handed or left-handed helical structure with a helical pitch that selectively scatters the Cholesteric liquid crystals made of a mixed solution of a polypeptide compound and a radiation-polymerizable monomer with different component ratios are planarly aligned and then subjected to radiation polymerization while maintaining the holding temperature at a predetermined constant temperature. A solid polymer film fixed with a cholesteric liquid crystal with a helical structure having a helical pitch that selectively scatters light of the same wavelength as the above-mentioned helical winding direction is opposite to the winding direction of the spiral, and the optical axes of both films are approximately aligned. A manufacturing method for optical filters in which both films are laminated in parallel and in direct contact.
(7)透明膜、透明板、カラーフィルタ、多色カラーフ
ィルタ、偏光板、カラー偏光板、1/4波長板又は1/
2波長板のうち少なくとも1種を基板とし、その基板の
面上に、ポリペプチド化合物と放射線重合性モノマーと
の混合溶液から成るコレステリック液晶をプレーナ配向
させた後、その保持温度を所定の一定温度に保ちつつ放
射線重合させることにより、可視領域の特定波長の光を
選択散乱させるら旋ピッチをもつ、右巻きあるいは左巻
きのいずれか一方のら旋構造のコレステリック液晶を固
定した固体ポリマーフィルムを積層し、さらにそのフィ
ルムの面上に、前記混合溶液とは化学成分あるいは成分
比を異にする、ポリペプチド化合物と放射線重合性モノ
マーとの混合溶液から成るコレステリック液晶をプレー
ナ配向させた後、その保持温度を所定の一定温度に保ち
つつ放射線重合させることにより、前記特定波長と同じ
波長の光を選択散乱させるら旋ピッチをもつ、前記ら旋
の巻き方向とは逆の巻き方向のら旋構造のコレステリッ
ク液晶を固定した固体ポリマーフィルムを、前記右巻き
コレステリックフィルムと前記左巻きコレステリックフ
ィルムとの光軸をほぼ平行にし、かつ両者のフィルムを
直接接触させて積層、一体化する光学フィルタの製造法
(7) Transparent film, transparent plate, color filter, multicolor color filter, polarizing plate, color polarizing plate, 1/4 wavelength plate or 1/4 wavelength plate
At least one of the two-wavelength plates is used as a substrate, and after a cholesteric liquid crystal made of a mixed solution of a polypeptide compound and a radiation-polymerizable monomer is planarly aligned on the surface of the substrate, its holding temperature is maintained at a predetermined constant temperature. Solid polymer films fixed with cholesteric liquid crystals with either a right-handed or left-handed helical structure with a helical pitch that selectively scatters light of a specific wavelength in the visible region are laminated together by radiation polymerization while maintaining a constant temperature. Further, on the surface of the film, a cholesteric liquid crystal consisting of a mixed solution of a polypeptide compound and a radiation-polymerizable monomer, which has a different chemical composition or component ratio than the mixed solution, is planarly oriented, and then the holding temperature is Cholesteric cholesteric with a helical structure in a winding direction opposite to the winding direction of the helix, which has a helical pitch that selectively scatters light of the same wavelength as the specific wavelength by radiation polymerization while keeping it at a predetermined constant temperature. A method for manufacturing an optical filter, in which a solid polymer film on which a liquid crystal is fixed is laminated and integrated by making the optical axes of the right-handed cholesteric film and the left-handed cholesteric film substantially parallel, and by bringing the two films into direct contact.
JP59165927A 1984-03-12 1984-08-08 Optical filter and its production Pending JPS6143702A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP59165927A JPS6143702A (en) 1984-08-08 1984-08-08 Optical filter and its production
DE8585102700T DE3581546D1 (en) 1984-03-12 1985-03-09 OPTICAL FILTER AND PRODUCTION METHOD.
EP85102700A EP0154953B1 (en) 1984-03-12 1985-03-09 Optical filter and the method of preparing the same
US06/711,012 US4725460A (en) 1984-03-12 1985-03-12 Optical filter and the method of preparing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59165927A JPS6143702A (en) 1984-08-08 1984-08-08 Optical filter and its production

Publications (1)

Publication Number Publication Date
JPS6143702A true JPS6143702A (en) 1986-03-03

Family

ID=15821651

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59165927A Pending JPS6143702A (en) 1984-03-12 1984-08-08 Optical filter and its production

Country Status (1)

Country Link
JP (1) JPS6143702A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0478299A2 (en) * 1990-09-26 1992-04-01 Sharp Kabushiki Kaisha Liquid crystal display element of optical writing type
JP2001056484A (en) * 1999-07-02 2001-02-27 Merck Patent Gmbh Multilayer cholesteric thin film and its manufacture
JP2001100045A (en) * 1999-07-02 2001-04-13 Merck Patent Gmbh Method for manufacturing multilayer cholesteric film
KR100728427B1 (en) * 2001-11-05 2007-06-13 닛토덴코 가부시키가이샤 Process for producing optical element, optical element, optical films using optical element, and illuminator and liquid crystal display each using optical element or optical films
JP2015026561A (en) * 2013-07-29 2015-02-05 セイコーエプソン株式会社 Light-emitting device and electronic apparatus
JPWO2017056909A1 (en) * 2015-09-30 2018-06-28 富士フイルム株式会社 Laminate, optical sensor, and kit
WO2020144479A1 (en) * 2019-01-11 2020-07-16 Damian Gardiner Optical filter materials and devices

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3679290A (en) * 1971-01-06 1972-07-25 Xerox Corp Liquid crystal optical filter system
JPS4840448A (en) * 1971-01-06 1973-06-14
JPS50147753A (en) * 1974-04-29 1975-11-27
JPS56139506A (en) * 1980-04-01 1981-10-31 Tetsuo Tsutsui Visible light-scattering polymer composite and production thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3679290A (en) * 1971-01-06 1972-07-25 Xerox Corp Liquid crystal optical filter system
JPS4840448A (en) * 1971-01-06 1973-06-14
JPS50147753A (en) * 1974-04-29 1975-11-27
JPS56139506A (en) * 1980-04-01 1981-10-31 Tetsuo Tsutsui Visible light-scattering polymer composite and production thereof

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0478299A2 (en) * 1990-09-26 1992-04-01 Sharp Kabushiki Kaisha Liquid crystal display element of optical writing type
US5305129A (en) * 1990-09-26 1994-04-19 Sharp Kabushiki Kaisha Liquid crystal display device of optical writing type having a carbon dispersed light absorbing layer and a cholesteric reflector
JP2001056484A (en) * 1999-07-02 2001-02-27 Merck Patent Gmbh Multilayer cholesteric thin film and its manufacture
JP2001100045A (en) * 1999-07-02 2001-04-13 Merck Patent Gmbh Method for manufacturing multilayer cholesteric film
JP4562869B2 (en) * 1999-07-02 2010-10-13 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング Method I for producing a multilayer cholesteric film I
KR100728427B1 (en) * 2001-11-05 2007-06-13 닛토덴코 가부시키가이샤 Process for producing optical element, optical element, optical films using optical element, and illuminator and liquid crystal display each using optical element or optical films
JP2015026561A (en) * 2013-07-29 2015-02-05 セイコーエプソン株式会社 Light-emitting device and electronic apparatus
JPWO2017056909A1 (en) * 2015-09-30 2018-06-28 富士フイルム株式会社 Laminate, optical sensor, and kit
WO2020144479A1 (en) * 2019-01-11 2020-07-16 Damian Gardiner Optical filter materials and devices
US11703736B2 (en) 2019-01-11 2023-07-18 Optomel Limited Optical filter materials and devices

Similar Documents

Publication Publication Date Title
US4725460A (en) Optical filter and the method of preparing the same
KR100817818B1 (en) Collimator and back light system
JP3592383B2 (en) Polymer optical low-pass filter, composite thereof, method for producing the same, and composite optical filter
US6893585B2 (en) Liquid crystal composition, selectively reflective film and method for producing the same
US8368857B2 (en) Optical film
JP5025121B2 (en) Circularly polarized light separating sheet, method for producing the same, and liquid crystal display device using the same
JP2007065314A (en) Circularly polarized light separating sheet
KR100563607B1 (en) Circularly polarized light extraction optical element and method of manufacturing the optical element
JP4363749B2 (en) Optical film
JPH02245725A (en) Liquid crystal display device and phase plate for this display device
JP2002189124A (en) Optical element extracting circularly polarized light, method for manufacturing the same, polarized light source device and liquid crystal display device
JPH09304770A (en) Separation layer for circular polarized light, optical element, polarization light source device and liquid crystal display device
JP2008532095A (en) Broadband reflection type high brightness polarizing plate and liquid crystal display device having the same
JP6998944B2 (en) Liquid crystal display device
JP2003294948A (en) Band filter and surface light source device using the same
JPS6143702A (en) Optical filter and its production
JP2004258623A (en) Optical element consisting of liquid crystal layer and liquid crystal display device using the same
JP3811465B2 (en) Polarizing element, polarized light source, and image display apparatus using them
JP3315434B2 (en) Volume hologram optical film, method of manufacturing the same, and liquid crystal optical element using the same
JPH1031210A (en) Reflection type color display device
CN101146892A (en) Broadband reflection type brightness enhancement polarizer and liquid crystal display having the same
JP2011145705A (en) Circularly polarized light isolating sheet, method of manufacturing the same, and liquid crystal display device using them
JP2003294940A (en) Optical filter and surface light source device using the same
KR100824115B1 (en) A reflection typed brightness enhancement polarizer and a liquid crystal display having the same
TWI443390B (en) Broadband cholesteric liquid crystal film, method for fabricating the same, polarization device employing the same, and high light efficiency liquid crystal display employing the same