JPS6143673B2 - - Google Patents

Info

Publication number
JPS6143673B2
JPS6143673B2 JP49006947A JP694774A JPS6143673B2 JP S6143673 B2 JPS6143673 B2 JP S6143673B2 JP 49006947 A JP49006947 A JP 49006947A JP 694774 A JP694774 A JP 694774A JP S6143673 B2 JPS6143673 B2 JP S6143673B2
Authority
JP
Japan
Prior art keywords
pellets
pore
forming agent
sintered
density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP49006947A
Other languages
Japanese (ja)
Other versions
JPS49101796A (en
Inventor
Henrii Watoson Ronarudo
Guren Batoraa Guretsugu
Jon Hiiru Toomasu
Edogaa Ritoruchairudo Jeimusu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BURITEITSUSHU NYUUKURIA FUYUERUSU Ltd
Original Assignee
BURITEITSUSHU NYUUKURIA FUYUERUSU Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from GB166573A external-priority patent/GB1461263A/en
Application filed by BURITEITSUSHU NYUUKURIA FUYUERUSU Ltd filed Critical BURITEITSUSHU NYUUKURIA FUYUERUSU Ltd
Publication of JPS49101796A publication Critical patent/JPS49101796A/ja
Publication of JPS6143673B2 publication Critical patent/JPS6143673B2/ja
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Porous Artificial Stone Or Porous Ceramic Products (AREA)

Description

【発明の詳細な説明】 本発明はセラミツク核燃料ペレツトに関する。[Detailed description of the invention] The present invention relates to ceramic nuclear fuel pellets.

原子炉の燃料素子の有用寿命は、燃料素子シー
スとその中にある核燃料との相互作用によつて異
なる。これらの相互作用は、たとえば燃料中の湿
気によるジルコニウム合金シースの腐食のように
化学的なものであることもあろうし、また、たと
えば燃料の膨張とかち密化のように機械的なもの
であることもあろう。
The useful life of a nuclear reactor fuel element depends on the interaction of the fuel element sheath with the nuclear fuel contained therein. These interactions may be chemical, such as corrosion of a zirconium alloy sheath due to moisture in the fuel, or mechanical, such as expansion and compaction of the fuel. Probably too.

核燃料として使用する焼結した二酸化ウラニウ
ムの燃料ペレツトは、膨張およびち密化の両方の
結果、寸法上の変化を受ける。これらの寸法の変
化は、燃料素子シースの保全と、それゆえに燃料
素子の性能に望ましくない影響を及ぼすことが分
つている。それで (1) 残存している微細な焼結多孔性が照射や熱処
理によつて除去されることにもとづくペレツト
のち密化、及び (2) 固体および気体の核分裂生成物が介在物や気
泡として蓄積されることにもとづくペレツトの
膨張、 の2つの機構の結果である寸法の不安定性を減少
させるための努力がなされて来た。
Sintered uranium dioxide fuel pellets used as nuclear fuel undergo dimensional changes as a result of both expansion and densification. These dimensional changes have been found to have an undesirable impact on the integrity of the fuel element sheath and therefore the performance of the fuel element. This leads to (1) densification of the pellet as residual fine sinter porosity is removed by irradiation or heat treatment, and (2) solid and gaseous fission products accumulate as inclusions and bubbles. Efforts have been made to reduce the dimensional instability that is the result of two mechanisms: pellet expansion due to

寸法の安定な二酸化ウラニウムペレツトを製造
するためのこのような努力は、以前は、ペレツト
中の気孔中に含まれるガスの圧力を表面張力に対
して均衡させることによつて(さもないと気孔の
減少に至る)ペレツト中の気孔を安定化させる
(その結果焼結時間が長くなつても気孔が除かれ
ることがない)方向に向けられて来た。
Such efforts to produce dimensionally stable uranium dioxide pellets have previously been attempted by balancing the pressure of the gas contained in the pores in the pellet against the surface tension, which would otherwise The aim has been to stabilize the pores in the pellets (resulting in a reduction in sintering time) (so that they are not eliminated even with longer sintering times).

二酸化ウラニウム粉末を圧縮してペレツトを作
り、これを次いで焼結すると、焼結の進行につれ
てペレツトの密度が増大し、即ち燃料ペレツトが
ち密化し、収縮する。このち密化の原動力は、空
隙の収縮を伴う表面エネルギーの減少によつて与
えられる。それ故にち密化はペレツト内の気孔の
大きさの減小によつて、またある場合にはいくら
かの気孔の完全な消滅によつてもたらされる。焼
結処理を続行しても最終的にはいくらかの気孔が
ペレツト中に独立気孔として残存し、これらの独
立気孔中に含有されたガスによつて示される圧力
は、その独立気孔の大きさを減小させようとする
表面張力と均衡し、それでもはや変化しなくな
る。即ち平衡に達し、各独立気孔は安定化する。
この状態ではペレツトの密度が上限に達する。こ
の上限密度が加熱平衡値である。このような方法
で製造されるペレツトの加熱平衡値は一般に高
く、典型的には理論密度の95%以上(10.40g/
cm3以上)である。
When uranium dioxide powder is compressed to form pellets, which are then sintered, the density of the pellets increases as sintering progresses, ie, the fuel pellets become denser and shrink. The driving force for this densification is provided by the reduction in surface energy that accompanies the contraction of voids. Densification is therefore brought about by a reduction in the size of the pores within the pellet, and in some cases by the complete disappearance of some pores. Even if the sintering process continues, some pores will eventually remain as closed pores in the pellet, and the pressure exerted by the gas contained in these closed pores will increase the size of the closed pores. It will balance the surface tension that you are trying to reduce, and it will no longer change. That is, equilibrium is reached and each independent pore is stabilized.
In this state, the pellet density reaches its upper limit. This upper limit density is the heating equilibrium value. The heating equilibrium values of pellets produced in this manner are generally high, typically greater than 95% of the theoretical density (10.40 g/min).
cm3 or more).

一方、核燃料の仕様は、核分裂生成物の蓄積に
もとづく膨張を最少にするためにしばしば10%に
及ぶ空隙率を要求している。この空隙率を与える
ために、ち密化限界に達する前に焼結を中止して
二酸化ウラニウムペレツトの密度を加熱平衡値よ
りも小さくし、ち密化限界におけるよりも多量の
(または大きな)気孔を残す。この製法により得
られた核燃料は、さらに熱処理をした場合にち密
になり加熱平衡値に近づき、そのため収縮する。
さらに照射によつて、収縮は加熱平衡値をこえ
る。なぜなら、焼結した平衡状態の二酸化ウラニ
ウムペレツトにおいては、大部分の気孔は直径数
ミクロン以下であり、気孔は(安定化するため
に)10気圧以上の圧力のガスを含んでいなければ
ならず、またこれらの小気孔は、照射中にたやす
く除去されるからである。このように、原子炉条
件下でち密化するペレツトは、概して、加熱平衡
値に達するだけでなく、他の機構たとえば核分裂
生成物により誘発される膨張によつて妨げられな
い限り、理論密度値に近づき続ける。このような
わけで、従来の二酸化ウラニウム燃料ペレツト中
の気孔は不安定であり、それで原子炉の運転中に
寸法の変化が生じることになる。本発明は寸法の
不安定性が減少した二酸化ウラニウムの燃料ペレ
ツトの供給を探究するものである。
On the other hand, nuclear fuel specifications often require porosity as high as 10% to minimize expansion due to fission product accumulation. To provide this porosity, sintering is stopped before the densification limit is reached, reducing the density of the uranium dioxide pellets below the heating equilibrium value, resulting in more (or larger) pores than at the densification limit. leave. When the nuclear fuel obtained by this method is further heat-treated, it becomes denser, approaches the heating equilibrium value, and therefore shrinks.
Furthermore, upon irradiation, the shrinkage exceeds the heating equilibrium value. This is because in a sintered equilibrium uranium dioxide pellet, most of the pores are less than a few microns in diameter, and the pores must contain gas at a pressure of more than 10 atmospheres (to stabilize). Moreover, these small pores are easily removed during irradiation. Thus, pellets that densify under reactor conditions will generally not only reach the heating equilibrium value, but also reach the theoretical density value unless prevented by other mechanisms, such as fission product-induced expansion. Keep getting closer. As such, the pores in conventional uranium dioxide fuel pellets are unstable, resulting in dimensional changes during reactor operation. The present invention seeks to provide uranium dioxide fuel pellets with reduced dimensional instability.

本発明は、その一つの局面によれば、二酸化ウ
ラニウムもしくは二酸化プルトニウムまたは二酸
化ウラニウムと二酸化プルトニウムの両者の焼結
した核燃料ペレツトであつて、気孔形成添加剤な
しで焼結した場合に通常観察される平均気孔サイ
ズよりも実質的に大きく平均気孔サイズを増大さ
せる除去可能な気孔形成添加剤によつて作られた
不規則に分布した独立気孔の形態の空隙を有し、
それらのすべての独立気孔は所定の燃料密度にお
いてそれらの独立気孔内のガス圧と表面張力とが
均衡する平衡状態に近い状態にあり、燃料ペレツ
ト中のいかなる点も独立気孔から高々結晶粒数個
分しか離れていないペレツトである。
According to one of its aspects, the present invention provides sintered nuclear fuel pellets of uranium dioxide or plutonium dioxide or both uranium dioxide and plutonium dioxide, which are typically observed when sintered without pore-forming additives. having voids in the form of irregularly distributed closed pores created by a removable pore-forming additive that increases the average pore size substantially greater than the average pore size;
All of those closed pores are in a state close to equilibrium where the gas pressure and surface tension within those closed pores are balanced at a given fuel density, and any point in the fuel pellet is at most a few grains away from the closed pores. The pellets are only minutes apart.

本発明によれば、その後の熱処理による寸法の
変化を最少にすることができる。また気孔サイズ
が増大しているので、照射による気孔の除去は行
われ難くなり、また長い照射時間の後にも空隙が
ペレツトの至る所でなおみられるので、核分裂生
成物の膨張は収容できる。気孔は熱処理には安定
であるが、核分裂生成物の膨張により生じる圧縮
応力の存在下では不安定であつて、再び収縮して
平衡に達する。このことにより、膨張は燃料ペレ
ツトの大きな寸法の変化なしに収容される。この
機構の有効性は、気孔の存在ばかりでなく、各気
孔間の間隔が十分小さくて膨張を容易に収容する
ということにも依存する。従つて、二酸化物各々
の結晶粒は少なくとも気孔に隣接した一面をもつ
ことが理想的である。
According to the present invention, dimensional changes due to subsequent heat treatment can be minimized. Also, the increased pore size makes it difficult for irradiation to remove the pores, and even after long irradiation times, voids are still visible throughout the pellet so that the expansion of the fission products can be accommodated. Although the pores are stable to heat treatment, they are unstable in the presence of compressive stress caused by the expansion of the fission products and contract again to reach equilibrium. This allows expansion to be accommodated without significant dimensional changes in the fuel pellets. The effectiveness of this mechanism depends not only on the presence of pores, but also on the fact that the spacing between each pore is small enough to easily accommodate expansion. Therefore, it is ideal that each crystal grain of the dioxide has at least one side adjacent to the pores.

本発明の第二の局面によれば、二酸化ウラニウ
ムもしくは二酸化プルトニウムまたは二酸化ウラ
ニウムと二酸化プルトニウムの両者の焼結した核
燃料ペレツトは、平均気孔サイズが6〜100μm
の範囲であつて、実質的には連続気孔のない空隙
を有する。
According to a second aspect of the invention, the sintered nuclear fuel pellets of uranium dioxide or plutonium dioxide or both uranium dioxide and plutonium dioxide have an average pore size of 6 to 100 μm.
, and has voids with substantially no continuous pores.

連続気孔の存在は、ペレツトの浸漬密度及び幾
何学的密度を測定することによつて試験できる。
もしこれら二つの値が一致しないならば、連続気
孔が存在する。
The presence of open pores can be tested by measuring the soaked density and geometric density of the pellet.
If these two values do not match, continuous porosity is present.

通常の仕様の燃料密度での、ち密化に対する良
好な抵抗性および膨張に対する良好な適応性とい
う両方の基準を満足する気孔サイズは、照射中に
通常観察される結晶粒サイズ及び気孔の不規則な
分布の場合に、6〜100μmの範囲にある。連続
気孔が存在しないということは、最終的な寸法に
仕上げた後は、表面の物理的寸法のみによつてき
まる表面積をもつペレツトをもたらす。従来のよ
うに製造した理論密度の93%以下の密度のペレツ
トは、通常多数の連続気孔を含み、密度の減少に
伴つて連続気孔は急速に増加する。仕上げたペレ
ツトは、より大きな表面積を雰囲気に対してさら
し、そして密度の減少に伴つて湿度の吸収が著し
く増加する。そのためしばしば厳重な乾燥手続を
必要とする。ところが本発明の第二の局面に従つ
て製造したペレツトでは、水分の吸収は小さく、
密度にもほとんど関係ない。たとえば相対湿度40
%の空気中では、1000℃で真空中のガス抽出によ
り測定するとして、理論密度の70%の低さの密度
においてさえ湿度レベルは容易に5μg/gUO2
以下に保つことができ、理論密度の90%において
は湿度レベルは2μg/gUO2の低さに達した。
このように、湿式仕上げ後に表面の水を除くこと
だけを狙いとする単なる乾燥工程が、燃料ペレツ
トの密度範囲の全体にわたつて適切である。本発
明に従えばペレツトに連続気孔が存在しないこと
は、本質的に丸い気孔は相応する量の連続気孔よ
りも低い応力集中を生じるので、機械的強度や強
靭さをも増す。このことは取り扱い中および仕上
げ中のペレツトのひどい割れを減少させ、割れの
ひどさおよび頻度の両方の減少が著しい。
A pore size that satisfies both the criteria of good resistance to densification and good adaptability to expansion at a typical specification fuel density is consistent with the grain size and pore irregularities typically observed during irradiation. In case of distribution, it is in the range of 6-100 μm. The absence of open pores results in pellets whose surface area, after working to their final size, is determined solely by the physical dimensions of the surface. Conventionally produced pellets having a density of 93% or less of the theoretical density usually contain a large number of open pores, and the number of open pores increases rapidly as the density decreases. Finished pellets expose a greater surface area to the atmosphere and moisture absorption increases significantly with decreasing density. Therefore, strict drying procedures are often required. However, in the pellets produced according to the second aspect of the present invention, moisture absorption is small;
It has little to do with density. For example relative humidity 40
% air, humidity levels can easily reach 5 μg/g UO 2 even at densities as low as 70% of the theoretical density, as measured by gas extraction in vacuum at 1000°C.
At 90% of theoretical density, humidity levels reached as low as 2 μg/g UO 2 .
Thus, a simple drying step aimed only at removing surface water after wet finishing is appropriate over the entire fuel pellet density range. The absence of open pores in the pellets according to the invention also increases mechanical strength and toughness since essentially round pores result in lower stress concentrations than a corresponding amount of open pores. This reduces severe cracking of the pellets during handling and finishing, and the reduction in both cracking severity and frequency is significant.

本発明に従つた核燃料ペレツトの寸法の不安定
さは、約5μm以下のサイズの気孔の数をペレツ
トの体積の2 1/2%またはそれ以下に減少させるこ とによつて、また約20μmまたはそれ以上大きな
サイズの気孔を多量につくることによつて、さら
に減少させることができる。
Dimensional instability of nuclear fuel pellets in accordance with the present invention is reduced by reducing the number of pores with a size of about 5 μm or less to 2 1/2% or less of the pellet volume and by reducing the number of pores of about 5 μm or less in size to about 20 μm or less. It can be further reduced by creating a large number of pores of larger size.

一例として、燃料素子を理論密度の92.5%の調
節された多孔度の二酸化ウラニウムのペレツトか
ら、その中のペレツトの動きに従うタイプのシー
ス中で製作した。ペレツトに6〜25μmの範囲で
最も近い気孔/気孔間の距離が全体の99%は15μ
mより小さい気孔を作つた。186efpd(effective
full power days)(=5200MWD/teU)で28ワ
ツト/gの最高率で照射後、これらの燃料素子は
明瞭な計りうる直径の縮少を示さなかつた。この
照射は、最高収縮が起り、本発明に従う多孔度の
調節を行わなければ最大2.5%までの等方性の線
状収縮が予期されると計算された量に近い。燃料
ペレツトの中央の高温部では、二酸化ウラニウム
はより柔軟で、等軸的な結晶粒成長が起り、核分
裂生成物の膨張に適応するために、大きなサイズ
の気孔にその隣接した結晶粒を押し出すという明
瞭な証拠がみられた。燃料の端面の部分の密度を
水銀比重計法で計り、平均密度0.03g/cm3を得
た。このことは等方的線状収縮が0.1%以下であ
ることと相応する。
As an example, a fuel element was fabricated from pellets of uranium dioxide of controlled porosity at 92.5% of theoretical density in a type of sheath that followed the movement of the pellets therein. The closest pore/distance between pores in the range of 6 to 25 μm to the pellet is 15 μm for 99% of the total.
Created pores smaller than m. 186efpd (effective
After irradiation at a maximum rate of 28 watts/g for full power days (=5200 MWD/teU), these fuel elements showed no appreciable diameter reduction. This irradiation is close to the calculated amount at which maximum shrinkage occurs and isotropic linear shrinkage of up to 2.5% would be expected without porosity adjustment according to the invention. In the hot center of the fuel pellet, the uranium dioxide is more flexible and equiaxed grain growth occurs, pushing its adjacent grains into larger sized pores to accommodate the expansion of the fission products. There was clear evidence. The density of the end surface of the fuel was measured using a mercury hydrometer method, and an average density of 0.03 g/cm 3 was obtained. This corresponds to an isotropic linear shrinkage of 0.1% or less.

添加物の粒子サイズよりも小さいサイズの二酸
化ウラニウム粉末と混合して均質な混合物を製造
するような除去可能な気孔形成剤として、シユウ
酸アンモニウム、砂糖又はでん粉を使用すること
により、本発明により要求される構造を与える方
法が開発された。
By using ammonium oxalate, sugar or starch as a removable pore-forming agent when mixed with uranium dioxide powder of a size smaller than the particle size of the additive to produce a homogeneous mixture, A method has been developed to give the structure

以下は、その方法においてそのような添加物を
使用した例である。
Below are examples of the use of such additives in the method.

実施例 1 1625℃で4時間焼結した場合に、10.81g/cm3
密度を与える二酸化ウラニウムのペレツトは、同
じ条件下で、ただし8〜30μmの範囲の粒子サイ
ズのシユウ酸アンモニウムを重量で2%含ませて
処理した際には、9.97g/cm3の密度を与えた。湿
式研摩し、125℃で空気炉を通して乾燥した後、
これらのペレツトは20℃で相対湿度40%の空気中
で平衡に達した後測定したところ、1.5μg/
gUO2の湿度レベルを有していた。1625℃でさら
に90時間焼結した後は、サンプルの密度は
10.85g/cm3と10.01g/cm3で、各々約0.12%の等方
的線状収縮に相応した。その他の気孔調節しない
二酸化ウラニウムのペレツトは、同条件下で焼結
して9.97g/cm3となり、同様の方法で測定した湿
度レベルは50μg/gUO2であつた。さらに空気
中で13時間上記温度においただけでこれらのペレ
ツトは密度が10.61g/cm3に高くなり、これは約
2.0%の等方的線状収縮に相応した。
Example 1 Pellets of uranium dioxide giving a density of 10.81 g/cm 3 when sintered at 1625°C for 4 hours were prepared under the same conditions but with ammonium oxalate by weight with particle sizes ranging from 8 to 30 μm. When processed at 2%, it gave a density of 9.97 g/cm 3 . After wet polishing and drying through an air oven at 125℃,
These pellets were measured after reaching equilibrium in air at 20°C and 40% relative humidity, with a concentration of 1.5 μg/
Had a humidity level of gUO 2 . After sintering for another 90 hours at 1625℃, the density of the sample is
10.85 g/cm 3 and 10.01 g/cm 3 , each corresponding to an isotropic linear shrinkage of about 0.12%. Other non-pore-controlled uranium dioxide pellets sintered under the same conditions to 9.97 g/cm 3 and had a humidity level of 50 μg/g UO 2 measured in a similar manner. After 13 hours in air at the above temperature, these pellets had a density of 10.61 g/ cm3 , which is approximately
Corresponding to an isotropic linear contraction of 2.0%.

実施例 2 重量で1.9%のほぼ30μmの平均粒子サイズの
シヨ糖を、通常の方法ならば理論密度の98%に焼
結する二酸化ウラニウムに加えて、理論密度の93
%の密度のペレツトを製造した。そのペレツトを
4時間焼結した後の平均気孔サイズは25μmであ
つた。
Example 2 1.9% by weight of sucrose with an average particle size of approximately 30 μm is added to uranium dioxide which would normally sinter to 98% of its theoretical density.
% density pellets were produced. The average pore size after sintering the pellets for 4 hours was 25 μm.

実施例 3 重量で1.0%の平均粒子サイズが40μmのでん
粉を、通常の方法ならば理論密度の98%に焼結す
る二酸化ウラニウムに加えて、理論密度の94%の
密度のペレツトを製造した。焼結したペレツトの
平均気孔サイズは32μmであつた。
Example 3 1.0% by weight of starch with an average particle size of 40 .mu.m was added to uranium dioxide which would sinter to 98% of theoretical density by conventional methods to produce pellets having a density of 94% of theoretical density. The average pore size of the sintered pellets was 32 μm.

実施例 4 二酸化ウラニウム粉末と二酸化プルトニウム粉
末を、重量で0.4%の粒子サイズ20〜40μmので
ん粉と共にボールミル中で乾式混合し、ついでバ
インダーで粒状にし、圧縮してペレツトにした。
ペレツトを800℃で二酸化炭素中で結合剤を除
き、ついで1650℃で4%の水素/アルゴン混合気
体中で焼結した。焼結したペレツトの密度は理論
密度の94%であり、平均気孔サイズは30μmであ
つた。
Example 4 Uranium dioxide powder and plutonium dioxide powder were dry mixed in a ball mill with 0.4% by weight of starch with a particle size of 20-40 μm, then granulated with a binder and compressed into pellets.
The pellets were debindered in carbon dioxide at 800°C and then sintered at 1650°C in a 4% hydrogen/argon mixture. The density of the sintered pellets was 94% of the theoretical density and the average pore size was 30 μm.

実施例 5 二酸化ウラニウム粉末と二酸化プルトニウム粉
末をボールミル中で乾式混合した。その結果生じ
た混合物を、重量で1.7%の粒子サイズ範囲が20
〜55μmのシユウ酸アンモニウムと手で混合し、
ついでバインダーで粒状にし、圧縮してペレツト
にした。ペレツトは800℃で二酸化炭素中で結合
剤を除き、ついで1650℃で4%の水素/アルゴン
混合気体中で焼結した。
Example 5 Uranium dioxide powder and plutonium dioxide powder were dry mixed in a ball mill. The resulting mixture has a particle size range of 20 to 1.7% by weight.
Mix by hand with ~55 μm ammonium oxalate;
It was then granulated with a binder and compressed into pellets. The pellets were debindered in carbon dioxide at 800°C and then sintered at 1650°C in a 4% hydrogen/argon mixture.

焼結したペレツトの密度は理論密度の91.5%で
あり、平均気孔サイズは約30μmであつた。
The density of the sintered pellets was 91.5% of the theoretical density and the average pore size was about 30 μm.

すべての例に従つて準備した調節された気孔を
もつペレツトを、連続気孔の実質的な有無につい
て検査した。その結果、連続気孔は認められなか
つた。さらに気孔は不規則に分布しており、ペレ
ツトの各点はある気孔から高々結晶粒数個(5を
越えない)分はなれていないことが観察された。
これらの結果は、二酸化物の粒子サイズを添加物
の粒子サイズより小さく、好ましくは1/5より小
さく選択すること、および二酸化物と添加物の混
合した混合物を十分に均質にすることによつて得
られたと考えられる。
Controlled porosity pellets prepared according to all examples were examined for the substantial presence of open porosity. As a result, no continuous pores were observed. Furthermore, it was observed that the pores were irregularly distributed, with each point of the pellet no more than a few grains (not more than 5) away from a given pore.
These results can be achieved by selecting the particle size of the dioxide to be smaller than the particle size of the additive, preferably less than 1/5, and by making the combined mixture of the dioxide and the additive sufficiently homogeneous. It is considered that it was obtained.

Claims (1)

【特許請求の範囲】[Claims] 1 二酸化ウラニウム及び/又は二酸化プルトニ
ウムを含む核燃料粉末を、高温で完全に揮発して
焼結ペレツト中に非連続気孔を形成しかつ核燃料
粉体粒子よりも大きな粒径を有する固体の気孔形
成剤と混合してから行なう焼結核燃料ペレツトの
製造方法であつて、核燃料粉体と気孔形成剤との
混合物を圧縮して原料ペレツトをつくり、その後
ペレツトを焼結して揮発した気孔形成剤が焼結ペ
レツト中に非連続気孔を残すようにする焼結核燃
料ペレツトの製造方法において、気孔形成剤とし
てシユウ酸アンニモウム、砂糖及びでん粉の群か
ら選ばれる気孔形成剤を用い、気孔形成剤が存在
しない場合に原料の核燃料粉末が焼結によつて理
論密度の少なくとも97.5%の密度を有するもので
あり、焼結の結果6〜100ミクロンの範囲の平均
気孔径を有するような粒子径を気孔形成剤が有し
ており、かつ焼結ペレツトの密度が理論密度の90
%よりも大きくなるような量で気孔形成剤が存在
していることを特徴とする焼結核燃料ペレツトの
製造方法。
1 Nuclear fuel powder containing uranium dioxide and/or plutonium dioxide is completely volatilized at high temperatures to form discontinuous pores in the sintered pellets, and a solid pore-forming agent having a particle size larger than that of the nuclear fuel powder particles is used. A method for producing sintered tube fuel pellets after mixing, in which a mixture of nuclear fuel powder and a pore-forming agent is compressed to create raw material pellets, and then the pellets are sintered, and the volatilized pore-forming agent is sintered. In a method for producing sintered tube fuel pellets in which discontinuous pores are left in the pellets, a pore-forming agent selected from the group of ammonium oxalate, sugar and starch is used as a pore-forming agent, and when no pore-forming agent is present, The raw material nuclear fuel powder has a density of at least 97.5% of the theoretical density by sintering, and the pore-forming agent has a particle size such that the sintering results in an average pore size in the range of 6 to 100 microns. and the density of the sintered pellets is 90% of the theoretical density.
A method for producing sintered tubercle fuel pellets, characterized in that a pore-forming agent is present in an amount greater than %.
JP49006947A 1973-01-12 1974-01-11 Expired JPS6143673B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GB166573A GB1461263A (en) 1973-01-12 1973-01-12 Ceramic nuclear fuel pellets
GB2379673 1973-05-18
GB2379473 1973-05-18

Publications (2)

Publication Number Publication Date
JPS49101796A JPS49101796A (en) 1974-09-26
JPS6143673B2 true JPS6143673B2 (en) 1986-09-29

Family

ID=27253927

Family Applications (1)

Application Number Title Priority Date Filing Date
JP49006947A Expired JPS6143673B2 (en) 1973-01-12 1974-01-11

Country Status (1)

Country Link
JP (1) JPS6143673B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4094738A (en) * 1976-05-19 1978-06-13 Westinghouse Electric Corp. Nuclear fuel pellet design to minimize dimensional changes

Also Published As

Publication number Publication date
JPS49101796A (en) 1974-09-26

Similar Documents

Publication Publication Date Title
US3953286A (en) Ceramic nuclear fuel pellets
KR910009192B1 (en) Burnable neutron absorbers
JP2645463B2 (en) Nuclear fuel body
US5762831A (en) Composite nuclear fuel material and method of manufacture of the material
US4474728A (en) Neutron absorber pellets with modified microstructure
JPS6119952B2 (en)
JPH1123764A (en) Recycle method for pellet scrap of oxide nuclear fuel
JPH0631759B2 (en) Nuclear fuel
US3995000A (en) Ceramic nuclear fuel pellets
EP0502395B1 (en) Nuclear fuel pellets and method of manufacturing the same
US2814857A (en) Ceramic fuel element material for a neutronic reactor and method of fabricating same
WO2018124915A1 (en) Nuclear fuel pellet and method for the production thereof
US4264540A (en) Production of nuclear fuel pellets
JPH0774833B2 (en) Method for producing uranium dioxide sintered body and nuclear fuel body
JPH01286961A (en) Water and corrosion-resistant oxide ceramic body
JPS6143673B2 (en)
US3442762A (en) Ceramic fuel materials
KR20140057778A (en) Fabrication method of burnable absorber nuclear fuel pellet using rapid sintering, and the burnable absorber nuclear fuel pellet thereby
JP4614540B2 (en) Method for producing an oxide-based nuclear fuel element and material adapted to be sintered to an oxide-based nuclear fuel element
KR100812952B1 (en) Zirconia added neutron absorbing pellets and their fabrication methods
Watson et al. Ceramic nuclear fuel pellets
RU2193242C2 (en) Pelletized nuclear fuel
JP3025422B2 (en) Method for measuring the amount of burning of fuel pellets
JP4330391B2 (en) Method for producing nuclear fuel pellets and nuclear fuel pellets produced by the method
US3518065A (en) Process for preparing stoichiometric uranium dioxide