JPS6143667B2 - - Google Patents

Info

Publication number
JPS6143667B2
JPS6143667B2 JP16092681A JP16092681A JPS6143667B2 JP S6143667 B2 JPS6143667 B2 JP S6143667B2 JP 16092681 A JP16092681 A JP 16092681A JP 16092681 A JP16092681 A JP 16092681A JP S6143667 B2 JPS6143667 B2 JP S6143667B2
Authority
JP
Japan
Prior art keywords
high frequency
wave tube
traveling wave
measured
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16092681A
Other languages
Japanese (ja)
Other versions
JPS5862573A (en
Inventor
Osahisa Mita
Koichi Ishihori
Fujio Kawashima
Mitsuo Sakayori
Tsutomu Sugawara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP16092681A priority Critical patent/JPS5862573A/en
Publication of JPS5862573A publication Critical patent/JPS5862573A/en
Publication of JPS6143667B2 publication Critical patent/JPS6143667B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/24Testing of discharge tubes
    • G01R31/25Testing of vacuum tubes
    • G01R31/255Testing of transit-time tubes, e.g. klystrons, magnetrons

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Microwave Tubes (AREA)

Description

【発明の詳細な説明】 本発明は短期間で進行波管の良否を判定できる
寿命試験装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a life test device that can determine the quality of a traveling wave tube in a short period of time.

従来のこの種装置は、供試(被測定)進行波管
への高周波入力が常に標準値になるように構成さ
れていたので、測定される進行波管の高周波出力
は飽和出力であり、進行波管の劣化に対して出力
変化があまり敏感でないため、良否(寿命)を判
定するために長期間の試験時間を必要とするとい
う欠点があつた。
Conventional devices of this type were configured so that the high-frequency input to the traveling-wave tube under test (under test) was always the standard value, so the high-frequency output of the traveling-wave tube to be measured was a saturated output; Since the output changes are not very sensitive to the deterioration of the wave tube, there was a drawback that a long test time was required to determine pass/fail (lifespan).

本発明はこの欠点を除去するため、被測定進行
波管への高周波入力電力を所望の時期に20dB程
度低下して進行波管の小信号ゲインを測定できる
ようにし、被測定進行波管の劣化傾向を比較的短
期間で知ることにより寿命を推定できるようにし
たものである。
In order to eliminate this drawback, the present invention makes it possible to measure the small signal gain of the traveling wave tube by reducing the high frequency input power to the traveling wave tube to be measured by about 20 dB at a desired time, thereby preventing the deterioration of the traveling wave tube to be measured. This makes it possible to estimate lifespan by knowing trends over a relatively short period of time.

以下、本発明を実施例によつて詳細に説明す
る。
Hereinafter, the present invention will be explained in detail with reference to Examples.

第1図は本発明第1の実施例の装置構成を示す
ブロツク図である。図において、1は被測定進行
波管(TWT)、2は進行波管電源、3は高周波用
線路(同軸線路あるいは導波管)であり、4は高
周波信号発生器、5はロータリスイツチ、6は高
周波電力計、7はコントローラ、8は半固定の減
衰器である。コントローラ7は、ロータリスイツ
チ5の回転の制御、高周波電力計6の指示値の読
取り、進行波管電源2の各部電圧・電流の読取り
と制御を行なう。
FIG. 1 is a block diagram showing the configuration of a device according to a first embodiment of the present invention. In the figure, 1 is a traveling wave tube to be measured (TWT), 2 is a traveling wave tube power source, 3 is a high frequency line (coaxial line or waveguide), 4 is a high frequency signal generator, 5 is a rotary switch, 6 is a high frequency line (coaxial line or waveguide), is a high frequency power meter, 7 is a controller, and 8 is a semi-fixed attenuator. The controller 7 controls the rotation of the rotary switch 5, reads the indicated value of the high frequency wattmeter 6, and reads and controls the voltage and current of each part of the traveling wave tube power source 2.

これを動作するには、まず進行波管1に進行波
管電源2から標準動作電圧を供給する。高周波用
線路3により接続された高周波測定回路は、信号
発生器4で発生した高周波信号をロータリスイツ
チ5を通して進行波管1に導く。進行波管1によ
り増幅された高周波信号は高周波電力計6で測定
され、測定値はコントローラ7で読取られる。ロ
ータリスイツチ5が第1図の実線で示した状態に
あるとき、進行波管は飽和出力が得られるような
高周波入力で駆動されており(標準動作状態に相
当する)、コントローラ7からの信号でロータリ
スイツチ5が90゜回転し、破線で示す状態になつ
たとき高周波信号発生器4からの信号は半固定の
減衰器8により減衰されて進行波管を駆動する。
半固定減衰器8の減衰量を20dB以上にすれば進
行波管は小信号状態となり、このときの出力を高
周波電力計6により測定すれば、入力電力はあら
かじめわかつているので小信号ゲインが測定でき
る。もちろんロータリスイツチ5と進行波管1の
入力部との間に方向性結合器を挿入して高周波電
力計により入力電力を測定してもよい。半固定減
衰器8の減衰量を20dBよりも大きくしてゆけ
ば、さらに純粋な小信号ゲインを測定できるが、
高周波電力計6のダイナミツクレンジを大きくと
らねばならず、高価なものになつてしまう。また
20dBよりも小さくすれば進行波管は飽和し始め
るので、半固定減衰器8の減衰量は20dB程度が
適当である。
To operate this, first a standard operating voltage is supplied to the traveling wave tube 1 from the traveling wave tube power supply 2. A high frequency measuring circuit connected by a high frequency line 3 guides a high frequency signal generated by a signal generator 4 to a traveling wave tube 1 through a rotary switch 5. The high frequency signal amplified by the traveling wave tube 1 is measured by a high frequency power meter 6, and the measured value is read by a controller 7. When the rotary switch 5 is in the state shown by the solid line in FIG. When the rotary switch 5 is rotated 90 degrees to the state shown by the broken line, the signal from the high frequency signal generator 4 is attenuated by the semi-fixed attenuator 8 to drive the traveling wave tube.
If the attenuation amount of the semi-fixed attenuator 8 is set to 20 dB or more, the traveling wave tube becomes a small signal state, and if the output at this time is measured with the high frequency wattmeter 6, the input power is known in advance, so the small signal gain can be measured. can. Of course, a directional coupler may be inserted between the rotary switch 5 and the input section of the traveling wave tube 1, and the input power may be measured with a high frequency wattmeter. If the attenuation of the semi-fixed attenuator 8 is increased beyond 20 dB, even purer small signal gain can be measured.
The dynamic range of the high frequency power meter 6 must be increased, making it expensive. Also
If the amount of attenuation is less than 20 dB, the traveling wave tube begins to saturate, so the appropriate attenuation amount of the semi-fixed attenuator 8 is about 20 dB.

第2図にこのようにして測定した飽和出力と小
信号ゲインの径時変化の一例をグラフで示す。9
が飽和出力の径時変化であり、従来の進行波管寿
命試験装置ではこれのみが測定されるわけであ
り、27000時間経過しているにもかかわらずほと
んど変化していない。しかし10で示した小信号
ゲインは大きく低下しており、1000時間程度で低
下の傾向が明らかになつている。小信号ゲインを
測定できるようにしたことにより進行波管の劣化
傾向を短時間で知ることができ、これにより供試
(被測定)進行波管の寿命が推定できる。
FIG. 2 graphically shows an example of the time-dependent changes in the saturation output and small signal gain measured in this manner. 9
is the radial change in saturation output, and this is the only thing that is measured by conventional traveling wave tube life test equipment, and there is almost no change even after 27,000 hours have passed. However, the small signal gain indicated by 10 has decreased significantly, and a decreasing tendency becomes clear after about 1000 hours. By being able to measure the small signal gain, it is possible to know the deterioration tendency of the traveling wave tube in a short time, and thereby the life of the traveling wave tube under test (under test) can be estimated.

第3図は本発明第2の実施例の装置構成を示す
ブロツク図である。図において、前出のものと同
一符号のものは同一または均等部分を示すものと
する。11はラツチングサーキユレータ、12が
半固定の反射器である。標準動作時はラツチング
サーキユレータは実線の向きに信号が回り、信号
発生器4の高周波信号は減衰せずに進行波管1の
入力に入る。小信号ゲイン測定時はコントローラ
7によりラツチングサーキユレータ11の印加磁
界が反転され、高周波信号は破線の方向に回転さ
れ、半固定反射器12により一部が反射されて進
行波管1の入力に入る。半固定反射器12の反射
率を1/100に設定しておけば、入力信号は標準動
作状態に較べて20dB減衰されることになるの
で、実施例1と同様に小信号ゲインが測定でき
る。
FIG. 3 is a block diagram showing the configuration of a device according to a second embodiment of the present invention. In the figures, the same reference numerals as those mentioned above indicate the same or equivalent parts. 11 is a latching circulator, and 12 is a semi-fixed reflector. During standard operation, the latching circulator rotates the signal in the direction of the solid line, and the high frequency signal from the signal generator 4 enters the input of the traveling wave tube 1 without being attenuated. When measuring small signal gain, the magnetic field applied to the latching circulator 11 is reversed by the controller 7, the high frequency signal is rotated in the direction of the broken line, and a portion is reflected by the semi-fixed reflector 12 and input to the traveling wave tube 1. to go into. If the reflectance of the semi-fixed reflector 12 is set to 1/100, the input signal will be attenuated by 20 dB compared to the standard operating state, so the small signal gain can be measured as in the first embodiment.

以上説明したように本発明によれば、短い試験
時間で供試進行波管の劣化傾向を知ることがで
き、その寿命を推定できるので、高信頼進行波管
の試験工数を大幅に低減できるので、寿命試験の
効率向上と経済化が計れる。
As explained above, according to the present invention, it is possible to know the deterioration tendency of the traveling wave tube under test in a short test time, and to estimate its lifespan, thereby significantly reducing the number of man-hours required for testing highly reliable traveling wave tubes. , the efficiency and economy of life tests can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第3図はいずれも本発明の実施例の
装置構成を示すブロツク図、第2図は進行波管の
飽和出力と小信号ゲインの経時変化を示すグラフ
である。 1……被測定進行波管、2……進行波管電源、
3……高周波用線路、4……高周波信号発生器、
5……ロータリスイツチ、6……高周波電力計、
7……コントローラ、8……減衰器、9……飽和
出力の経時変化、10……小信号ゲインの経時変
化、11……ラツチングサーキユレータ、12…
…反射器。
1 and 3 are block diagrams showing the configuration of an apparatus according to an embodiment of the present invention, and FIG. 2 is a graph showing changes over time in the saturated output and small signal gain of a traveling wave tube. 1... Traveling wave tube to be measured, 2... Traveling wave tube power supply,
3... High frequency line, 4... High frequency signal generator,
5... Rotary switch, 6... High frequency power meter,
7... Controller, 8... Attenuator, 9... Change in saturation output over time, 10... Change in small signal gain over time, 11... Latching circulator, 12...
...reflector.

Claims (1)

【特許請求の範囲】[Claims] 1 被測定進行波管に駆動用の電力を供給する進
行波管電源と、高周波信号発生器と、該高周波信
号発生器の出力を被測定進行波管に入力するため
の入力側高周波線路と、被測定進行波管からの出
力を取り出す出力側高周波線路と、該出力を計測
する高周波電力計と、該計測データを読み取ると
ともに各部へ制御信号を送るコントローラを備え
てなり、被測定進行波管に標準電圧、標準高周波
入力を供給して連続運転し、その特性の経時変化
を測定するよう構成した進行波管寿命試験装置に
おいて、上記高周波信号発生器と入力側高周波線
路の間にロータリスイツチと減衰器又はラツチン
グサーキユレータと反射器を設け、所望時に高周
波信号入力を一定量の割合で低下させ、小信号ゲ
インを測定可能にしたことを特徴とする進行波管
寿命試験装置。
1. A traveling wave tube power source that supplies driving power to the traveling wave tube to be measured, a high frequency signal generator, and an input side high frequency line for inputting the output of the high frequency signal generator to the traveling wave tube to be measured, It is equipped with an output-side high-frequency line that takes out the output from the traveling-wave tube to be measured, a high-frequency wattmeter that measures the output, and a controller that reads the measurement data and sends control signals to each part. In a traveling wave tube life test device configured to supply a standard voltage and standard high frequency input for continuous operation and measure changes in its characteristics over time, a rotary switch and an attenuator are installed between the high frequency signal generator and the input side high frequency line. What is claimed is: 1. A traveling wave tube life test device, characterized in that it is equipped with a latching circulator or a reflector, and is capable of measuring small signal gain by lowering a high frequency signal input at a fixed rate when desired.
JP16092681A 1981-10-12 1981-10-12 Tester for life of travelling-wave tube Granted JPS5862573A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16092681A JPS5862573A (en) 1981-10-12 1981-10-12 Tester for life of travelling-wave tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16092681A JPS5862573A (en) 1981-10-12 1981-10-12 Tester for life of travelling-wave tube

Publications (2)

Publication Number Publication Date
JPS5862573A JPS5862573A (en) 1983-04-14
JPS6143667B2 true JPS6143667B2 (en) 1986-09-29

Family

ID=15725252

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16092681A Granted JPS5862573A (en) 1981-10-12 1981-10-12 Tester for life of travelling-wave tube

Country Status (1)

Country Link
JP (1) JPS5862573A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102967812A (en) * 2011-09-01 2013-03-13 北京圣涛平试验工程技术研究院有限责任公司 Method and device for estimating service life of wave tube
CN104360330B (en) * 2014-12-08 2016-11-16 安徽华东光电技术研究所 Device and method for detecting working performance of traveling wave tube on complete machine
CN112964971B (en) * 2021-03-23 2022-01-25 电子科技大学 Method for measuring electron energy distribution curve of collector inlet of traveling wave tube

Also Published As

Publication number Publication date
JPS5862573A (en) 1983-04-14

Similar Documents

Publication Publication Date Title
US6204959B1 (en) Signal light monitor and optical amplifier using the same
SU1669407A3 (en) Method of determining electrically active dopants in semiconductor junction structures
US4493811A (en) Preamplifier for a wide range neutron flux monitoring system
JPS6143667B2 (en)
US4808913A (en) Asymmetrical coupling circuit
US3244978A (en) Apparatus for the determination of attenuation in waveguides including means for comparing the amplitudes of pulse reflections
JPH04232478A (en) Apparatus for measuring multipactor phenomenon
US3961526A (en) Rotary torquemeter
US3423675A (en) Measuring system for two and four terminal networks
RU2109272C1 (en) Automated device measuring parameters of materials
SU1307372A1 (en) Meter of phase noise spectra of microwave amplifiers
SU1091248A1 (en) Method of measuring dispersive characteristic of slow-wave structure
SU1045178A1 (en) Integrated circuit contacting checking device
SU1083136A1 (en) Uhf transistor parameter measuring method
SU1163284A1 (en) Device for measuring directional pattern
SU926601A1 (en) Device for touch-free measurement of current
JP3313197B2 (en) Noise measurement device for low piezoelectric path
SU1355944A1 (en) Method of determining reflection factor of microwave oscillator
SU911370A1 (en) Device for measuring four-terminal network gain
SU1215021A1 (en) Interferometer for plasma diagnostics
SU1601593A1 (en) Method of checking and predicting technical condition of power amplifiers of transistor communication transmitters having amplitude modulation by frequency band width of signal of carrying frequency
SU1027590A1 (en) Device for non-destructive checking of lengthy electroconductive articles
SU1721503A2 (en) Ultrasonic device for quality control of materials
Twisleton An X-band magnetron Q-measuring apparatus
SU859974A1 (en) Device for checking and diagnostics of electronic units by thermal radiation