JPS6143473A - Thermionic emission type electrostatic induction thyristor - Google Patents

Thermionic emission type electrostatic induction thyristor

Info

Publication number
JPS6143473A
JPS6143473A JP16482384A JP16482384A JPS6143473A JP S6143473 A JPS6143473 A JP S6143473A JP 16482384 A JP16482384 A JP 16482384A JP 16482384 A JP16482384 A JP 16482384A JP S6143473 A JPS6143473 A JP S6143473A
Authority
JP
Japan
Prior art keywords
region
gate
channel
cathode
electrostatic induction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16482384A
Other languages
Japanese (ja)
Other versions
JP2589062B2 (en
Inventor
Junichi Nishizawa
潤一 西澤
Kaoru Mototani
本谷 薫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Research Development Corp of Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Development Corp of Japan filed Critical Research Development Corp of Japan
Priority to JP59164823A priority Critical patent/JP2589062B2/en
Publication of JPS6143473A publication Critical patent/JPS6143473A/en
Application granted granted Critical
Publication of JP2589062B2 publication Critical patent/JP2589062B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7391Gated diode structures

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Thyristors (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To obtain the good-efficiency switching function of high velocity and reduced loss by composing a gate out of a semiconductor whose forbidden band is wider than a channel and making a size between a cathode and the gate under the mean free path of carriers. CONSTITUTION:In the compound semiconductor in which a good insulating film such as of GaAs can not be obtained, a resemblance of insulating gate can be made by forming the gate out of mixed crystal whose forbidden band is wider than that of GaAs. At this time, in the channel 2 which is formed between a cathode 3 and an anode 1 with extending among gate regions 4, a distance from the cathode 3 to the real gate 4 is made shorter than the free path of electrons. Consequently, the thermionic emission type electrostatic induction thyristor structure can be obtained. Then, the variation in intervals and thickness of the gate regions and impurity concentration of the channel region enables the normally-on type and normally-off type operations.

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は、半導体デバイスの微細化、高速化の極限にあ
る熱電子放射を利用した静電誘導サイリスタに関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to an electrostatic induction thyristor that utilizes thermionic emission, which is at the limit of miniaturization and speeding up of semiconductor devices.

[先行技術とその問題点] 静電誘導サイリスタは従来のpnpn四層稙造サイリス
タ、その改良型であるゲートタンオフ(GTO)サイリ
スタにくらべると、ゲート低抗が小さく、電位の制御が
空乏層の静電容量を通して行なわれることで高速になり
、導通時にはpinダイオードの様に、順方向電圧降下
が極めて小さいという優れた特徴を有していた。しかし
、従来の静電誘導サイリスクはアノード・カソード間、
特にカソード・ゲート間の寸法が比較的大きなJMT 
造となっていたため、キャリアが結晶格子の散乱を受け
、上限周波数が制限され、高速な素子が得ら九ない問題
点があった。
[Prior art and its problems] Compared to the conventional pnpn four-layer thyristor and its improved gate turn-off (GTO) thyristor, the electrostatic induction thyristor has a smaller gate resistance and the potential can be controlled using a depletion layer. It has the excellent feature that the forward voltage drop is extremely small when conducting, similar to a pin diode, when it is conductive. However, the conventional electrostatic induction
Especially JMT with relatively large dimensions between cathode and gate.
Because of the structure, carriers were subject to scattering by the crystal lattice, which limited the upper frequency limit, making it difficult to obtain high-speed devices.

[発明の目的コ 本発明は上記従来の問題点をM消し、キャリアが結晶格
子の散乱を受けずに、熱電子速度で動くことのできるS
電子放射型静電誘導サイリスタを提供することを目的と
する。
[Purpose of the Invention] The present invention eliminates the above-mentioned conventional problems, and provides S which allows carriers to move at thermionic speed without being scattered by the crystal lattice.
An object of the present invention is to provide an electron-emitting electrostatic induction thyristor.

CB明の概要コ このため、本発明はゲートをチャンネルよりも禁rcq
 i巾の大きい半導体で構成すると共に、カソード・ゲ
ート間の寸法をキャリアの平均自由行程以下にして、熱
電子放射が行なわれる様にしたことを特徴としている。
Overview of CB Light Therefore, the present invention makes the gate more difficult than the channel.
It is characterized in that it is made of a semiconductor with a large i-width, and the dimension between the cathode and the gate is set to be equal to or less than the mean free path of carriers, so that thermionic emission occurs.

即ち、静電誘導サイリスタの高速化を図るため。That is, to increase the speed of electrostatic induction thyristors.

寸法を小さくしてゆくと1、カソード全面の電位の山を
越えたものは全てアノード側に、走ると考えた時に、キ
ャリアの平匈自山行程に近くなり、キャリアは殆んど、
格子散乱を受けずに、非常に高速で走行するようになる
As we reduce the dimensions, 1. When we consider that everything that exceeds the peak of potential on the entire surface of the cathode runs to the anode side, it becomes close to the carrier's flat journey, and most of the carriers are
It will run at very high speeds without being affected by lattice scattering.

従って、 GaAsを用いた場合で、電位障壁の幅Wg
を0.1μmとしたときに、遮断周波数はほぼ、780
Giz(fc= kT/2πm” /8.8Wg)とな
る。
Therefore, when using GaAs, the potential barrier width Wg
When 0.1μm, the cutoff frequency is approximately 780
Giz (fc=kT/2πm"/8.8Wg).

アノードからの注入も起るために、熱電子放射型の静f
fi誘導サイリスタの導通時の電圧降下は非常に小さい
ものとなる。以上のことから、カソード、ゲート間寸法
をキャリアの平均自由行程以下にして、静電誘導サイリ
スタを熱電子放射構造とすれば、その動作速度は非常に
早くすることができる。
Since injection from the anode also occurs, the static f of the thermionic emission type
The voltage drop when the fi-induced thyristor conducts is very small. From the above, if the dimension between the cathode and the gate is made equal to or less than the mean free path of carriers and the electrostatic induction thyristor is formed into a thermionic emission structure, its operating speed can be made extremely high.

[発明の実施例コ 以下、その実施例を化合物半導体として、GaAsを使
用した場合を例にとり図面を参照して説明する。
[Embodiments of the Invention] Examples will now be described with reference to the drawings, taking as an example a case where GaAs is used as a compound semiconductor.

第1図(a)は本発明の一実施例に係わる熱電子放射型
静電誘導サイリスタの断面図を示したものである。
FIG. 1(a) shows a sectional view of a thermionic emission type electrostatic induction thyristor according to an embodiment of the present invention.

図において、1はρ+のGaAs基板でアノードとなる
領域、2はチャンネルn一層、3はチャンネル2に接し
て設けられたn+で、カソードとなる領域、4はGa 
+−xAlxAsで、形成されるゲートとなる領域で、
断面図のみを示しているが、相互に網目状あるいは線状
になっていて、端部が一譜になって。
In the figure, 1 is a region of a ρ+ GaAs substrate that will become an anode, 2 is a layer of channel n, 3 is an n+ layer provided in contact with channel 2 and is a region that will be a cathode, and 4 is a GaAs substrate.
+-xAlxAs in the region that will become the gate,
Although only a cross-sectional view is shown, they are mutually mesh-like or linear, with the ends forming a single stave.

電極となるべき領域は表面に露出しているもの、5はア
ノード電極、6はカソード電極、7は前記ゲート4のう
ち1表面に形成された部分の電極である。
The regions to be electrodes are exposed on the surface; 5 is an anode electrode, 6 is a cathode electrode, and 7 is an electrode formed on the surface of one of the gates 4.

この構成から判るように、GaAsのように良好な絶縁
膜が得ら、1tない化合物半導体においては、ゲートを
GaAsよりも、禁制帯幅の大きい、例えば。
As can be seen from this structure, in a compound semiconductor such as GaAs, which can provide a good insulating film and which does not have 1t, the gate band gap is larger than that of GaAs, for example.

Ga 1− XAlXA3のような混晶で形成すること
によってゲートを絶縁ゲー]−類以とすることができる
By forming the gate with a mixed crystal such as Ga1-XAlXA3, the gate can be made into an insulating gate.

図の植成で、ゲート領域4の間を通り、カソード3とア
ノードlの間にできるチャンネル2中、カソード3より
真のゲート4までの距離が電子の自由行程よりも小さく
することにより、熱電子放射型静電誘導サイリスタ構造
が得られる。
In the implantation shown in the figure, in the channel 2 that passes between the gate region 4 and is formed between the cathode 3 and the anode l, heat is generated by making the distance from the cathode 3 to the true gate 4 smaller than the free path of electrons. An electron-emitting electrostatic induction thyristor structure is obtained.

このとき、ゲート領域の間隔と厚み、チャンネル領域の
不純物密度の大きさを変化させることによって、ノーマ
リオンとノマリオフ型の動作とすることができる。ゲー
ト領域となるGa (−XAIXのXの値は例えば0.
3とする。不純物密度はアンドープとすることができる
At this time, normally-on and normally-off operation can be achieved by changing the spacing and thickness of the gate region and the impurity density of the channel region. The value of X in Ga (-XAIX is, for example, 0.
Set it to 3. The impurity density can be undoped.

第1図(b)は、カソードからアノードまでのゲート領
域の間のチャンネルの電位分布を示したものである。
FIG. 1(b) shows the potential distribution of the channel between the gate regions from the cathode to the anode.

ところで、上記実施例では、ゲー1−・カンード間容量
(Cgk)及びゲート・アノード間容量(Cga)が大
きくなりやすいという問題があるに れを解決したのが、第2図に示す実施例で。
By the way, the embodiment shown in FIG. 2 solves the problem that the capacitance between the gate 1 and the cande (Cgk) and the capacitance between the gate and the anode (Cga) tend to increase in the above embodiment. .

この実施例によれば、 Cgkを極めて、小さくできる
According to this embodiment, Cgk can be made extremely small.

第1図(a)と同一符号は同−又は相当部分を示す。The same reference numerals as in FIG. 1(a) indicate the same or corresponding parts.

この実施例においては、ゲート4とカソード3が同−主
表面上にあるので、ゲート電極7の取り出しが容易とな
り、また、 Cgkとゲート抵抗rgが減少し、より高
速な動作が得られる。
In this embodiment, since the gate 4 and the cathode 3 are on the same main surface, it is easy to take out the gate electrode 7, Cgk and gate resistance rg are reduced, and faster operation can be achieved.

第3図は本発明の別の実施例であり、 Cgaを減少さ
せるべく、絶縁物8を設けたものである。絶縁物として
は5i02.Si3N4膜、又はポリイミド樹脂等がよ
い、 GaAsの誘電率11に対して、Si3N4は5
.5、SiO2は3.8、ポリイミドは3.2程度であ
るので、 Cgdは絶縁物でな(、GaAsが存在する
場合に比べ、半分以下になる。
FIG. 3 shows another embodiment of the present invention, in which an insulator 8 is provided to reduce Cga. As an insulator, 5i02. Si3N4 film or polyimide resin is preferable. GaAs has a dielectric constant of 11, while Si3N4 has a dielectric constant of 5.
.. 5. Since SiO2 has a value of 3.8 and polyimide has a value of about 3.2, Cgd is not an insulator (it is less than half that of the case where GaAs is present).

第4図はチャンネルを9層9とした実施例で、ゲート領
域4とチャンネルのp層が反転状態となり。
FIG. 4 shows an embodiment in which the channel has nine layers 9, and the gate region 4 and the p layer of the channel are in an inverted state.

p層のゲート領域4と接触している領域が1層になると
、カソードより電子がチャンネルへ注入され動作するよ
うになる。
When only one layer of the p-layer contacts the gate region 4, electrons are injected from the cathode into the channel and the device operates.

ソースよりアノードまで長さは例えば、0.1μm(1
000A )と言うような値に制御することは可能だが
、ゲート間隔は凡そ、デバイ長を目安として決定する必
要がある。デバイ長λDは下式(1)で、与えられる。
For example, the length from the source to the anode is 0.1 μm (1
Although it is possible to control the gate spacing to a value such as 000A), the gate spacing must be determined using the Debye length as a guide. The Debye length λD is given by the following equation (1).

ここで、nはチャンネルの不純物密度、qは単位電荷、
Eは誘電率である。nが10cm1” crm −’の
ときに3.95μi+、 10” cm−”のときに0
.4 μm、10101sa’のときには0.04μm
位となる。おおまかに言って、ゲート領域は2λD以下
にする必要がある。縦方向(カソード・アノード間)の
寸法制御にくらべ、横方向の寸法制御はフォトリソグラ
フィの精度で決定され、ゲート間隔が小さいと。
Here, n is the impurity density of the channel, q is the unit charge,
E is the dielectric constant. 3.95μi+ when n is 10cm1"crm-', 0 when n is 10"cm-"
.. 4 μm, 0.04 μm when 10101sa'
It becomes the rank. Roughly speaking, the gate region needs to be 2λD or less. Compared to dimensional control in the vertical direction (between cathode and anode), dimensional control in the lateral direction is determined by the precision of photolithography, and the gate spacing is small.

製造が困難になる。Manufacturing becomes difficult.

第5図は、カソード6からの電子を効率よくゲー1へ領
域に制限するために、第4図実施例のpチヤンネル中に
p型の高不純物密度領域10を形成した実施した例であ
る。埋込領域10はカソード側の電子に対し、1層位障
壁が高いの71世子はチャンネルの埋込領域の両側を通
るようになる。実際に動作する部分がグー1〜領域の形
成しているpチャンネルの側面部分となるため、カソー
ド領域3とカソード電極6は1例えば、0.5μI11
位としても良いことになり、製作は容易になる6 第6図は本発明の別の実施例であって、p領域をカソー
ド領域3に接し、残りの部分はn領域とした構造である
。第7図はp領域をチャンネルのカソード近くに挿入し
た構造であり、Cgkを小さくシ。
FIG. 5 shows an example in which a p-type high impurity density region 10 is formed in the p channel of the embodiment of FIG. 4 in order to efficiently limit electrons from the cathode 6 to the gate 1 region. The buried region 10 has a high layer 1 barrier for electrons on the cathode side, so that the electrons pass through both sides of the buried region of the channel. Since the part that actually operates is the side part of the p channel formed by the regions 1 to 1, the cathode region 3 and the cathode electrode 6 are 1, for example, 0.5μI11
FIG. 6 shows another embodiment of the present invention, in which the p region is in contact with the cathode region 3, and the remaining portion is an n region. Figure 7 shows a structure in which the p region is inserted near the cathode of the channel, and Cgk is made small.

グー1−領域を小さく形成できる実施例である。This is an example in which the goo 1 region can be formed small.

以上、説明してきた実施例において明らかなように、カ
ソードより真のゲー1−までの距離は熱電子放射が効率
よく起るように、平均自由行程以下にすればよい。ゲー
ト領域のGa s −xAlxAsは。
As is clear from the embodiments described above, the distance from the cathode to the true Ga 1- may be set to less than the mean free path so that thermionic emission occurs efficiently. Ga s -xAlxAs in the gate region.

GaAsの間の表面準位をできるだけ減少させる必要が
あり、 GaAsとの間で格子定数が合うように。
It is necessary to reduce the surface levels between GaAs as much as possible so that the lattice constant matches that of GaAs.

Ga s −xAlxAs + −yPyのようにして
小量のP(リン)を添加した混晶が望ましい。この場合
、x=0.3の時に、y=o、ot程度とすればよい。
A mixed crystal to which a small amount of P (phosphorus) is added, such as Ga s -xAlxAs + -yPy, is desirable. In this case, when x=0.3, y=o, about ot may be used.

平均自由行程以内であれば、次式でおよその目安が与え
られる。
If it is within the mean free path, the following formula can give an approximate guide.

Wdg’二v / 2πf ここでVは電子の速度、fは動作周波数である。Wdg’2v / 2πf Here, V is the electron velocity and f is the operating frequency.

電子の速度が1XIO’ cm/secの時、100G
)Iz、 300GIlz、500Gl(z、 700
GIlz、 1000GIIz(ITllz)でのWd
g’はそれぞれ、1600人、 1100人、950λ
、227人。
When the electron speed is 1XIO' cm/sec, 100G
)Iz, 300GIlz, 500Gl(z, 700
GIlz, Wd at 1000GIIz (ITllz)
g' are 1600 people, 1100 people, and 950λ, respectively.
, 227 people.

160人程度となる。GaAsの場合には、熱電子放射
動作では、電子速度はL X 107cm/seeより
大きいことが予想され、 Wdg’は前記の計算値より
更に大さくなることは、在来の飽和速度で走行するサイ
リスタよりも、素子製作上、より作り易いという利点が
得られる。
There will be approximately 160 people. In the case of GaAs, in thermionic emission operation, the electron velocity is expected to be greater than L x 107 cm/see, and Wdg' is even larger than the above calculated value, which means that it runs at the conventional saturation velocity. It has the advantage of being easier to manufacture than a thyristor.

チャンネルの不純物密度はiNJから1017can 
−’程度とし、カソード、アノード領域はキャリア注入
の為、IXLO”〜lXl0” ’ cm−’ とすれ
ばよい。
Channel impurity density is 1017can from iNJ
-', and the cathode and anode regions may be IXLO'' to lXl0'''cm-' for carrier injection.

カソードの電極材料としては、Au −Ge、^u−G
e−Ni、^u−5e、Δu−Ta等のn ” GaA
sに対して、接触抵抗がI X 10− ’ Ωcm”
以下となるものがよく、又、アノード電極としては、A
u −Zn、Δg −Zn。
As the electrode material of the cathode, Au-Ge, ^u-G
n” GaA such as e-Ni, ^u-5e, Δu-Ta, etc.
s, the contact resistance is I x 10-'Ωcm"
The following is preferable, and as an anode electrode, A
u −Zn, Δg −Zn.

Cr −Au等の合金がよい。ゲート領域のGa + 
−xAlxAs電極材料としては、前記カソード・アノ
ード用の電極材料の外に、 Ti、 PL、、W、 M
o、 Cr、llf、 NiのGa + −xAlxA
sに対し、抵抗性接触を形成しない高融点重金属材料を
使用すのがよいといえる。
An alloy such as Cr-Au is preferable. Ga + in the gate region
-xAlxAs electrode materials include Ti, PL, W, M in addition to the electrode materials for the cathode and anode.
o, Cr, llf, Ni Ga + -xAlxA
It can be said that it is better to use a high melting point heavy metal material that does not form a resistive contact for s.

素子の製作についての、チャンネル領域、カソード及び
アノード領域は本発明時の発明による分子層エピタキシ
ャル成長法、光分:P層エピタキシャル成長法、及び、
気相成長、 MOCVD法、 MIIIE法、イオン注
入法が使用可能である。カソード・アノード及びゲート
の電極の形成には真空蒸着(抵抗加熱、電子ビー11加
熱、スパッタ法)、プラズマエツチング、フォ1−エツ
チング、フォトリソグラフィ等の組合せにより形成され
る。
Regarding the fabrication of the device, the channel region, cathode and anode regions are formed using the molecular layer epitaxial growth method according to the invention at the time of the present invention, the optical:P layer epitaxial growth method, and
Vapor phase growth, MOCVD method, MIIIE method, and ion implantation method can be used. The cathode/anode and gate electrodes are formed by a combination of vacuum deposition (resistance heating, electron beam 11 heating, sputtering method), plasma etching, photoetching, photolithography, and the like.

また、半導体材料は、 GaAsに限らずInp、 I
nAS。
In addition, semiconductor materials include not only GaAs but also Inp, I
nAS.

II−VI族半導体、その他の混晶の半導体でもよい。A II-VI group semiconductor or other mixed crystal semiconductor may be used.

ゲート領域にはIn + −xGaxP、 In + 
−xGaxAsでもよいのはいうまでもない。
In the gate region, In + -xGaxP, In +
It goes without saying that −xGaxAs may also be used.

[発明の効果コ 以上の様に、本発明によれば、従来のサイリスタでは得
られない高い周波数領域で、効率のよいスイッチイング
機能を有する高速、低損失の熱電子放射型外w1誘導サ
イリスタが得られる。
[Effects of the Invention] As described above, the present invention provides a high-speed, low-loss thermionic-emitting external W1 induction thyristor that has an efficient switching function in a high frequency range that cannot be obtained with conventional thyristors. can get.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第7図はそれぞれ本発明の各実施例に係わる熱
電子放射型静電誘導サイリスタの断面図である。 1・・・アノードとなるべきP子基板、2,9・・・チ
ャンネル、3・・・カソード領域、4・・・GaAsよ
りも禁制帯幅の広い半導体で形成されるゲート領域、5
・・・アノード領域、6・・・カソード電極、7・・・
ゲートil!極、8・・・絶縁物。 代理人 弁理士  紋 1) 誠  ′・第1図 (b) 虫、の丁−卜 $2図 第3図
1 to 7 are cross-sectional views of thermionic emission type electrostatic induction thyristors according to embodiments of the present invention, respectively. DESCRIPTION OF SYMBOLS 1... P-substrate to become an anode, 2, 9... Channel, 3... Cathode region, 4... Gate region formed of a semiconductor with a wider forbidden band width than GaAs, 5
... Anode region, 6... Cathode electrode, 7...
Gate il! Pole, 8...Insulator. Agent Patent Attorney Crest 1) Makoto'・Figure 1 (b) Insect, Nocho - Figure 2 Figure 3

Claims (8)

【特許請求の範囲】[Claims] (1)チャンネルとなる半導体領域とこのチャンネルの
両側に接触して形成されるカソード及びアノード領域、
前記チャンネルの一部もしくは全面に接触して、前記チ
ャンネルよりも禁制帯巾の大きい半導体よりなるゲート
領域とを具備し、前記カソード領域から真のゲート領域
までの寸法がキャリアの平均自由行程以下に形成されて
いることを特徴とする熱電子放射型静電誘導サイリスタ
(1) A semiconductor region serving as a channel, and cathode and anode regions formed in contact with both sides of this channel;
a gate region that is in contact with a part or the entire surface of the channel and is made of a semiconductor having a forbidden band width larger than that of the channel, and the dimension from the cathode region to the true gate region is equal to or less than the mean free path of carriers. A thermionic emission type electrostatic induction thyristor characterized in that:
(2)特許請求の範囲第1項記載において、チャンネル
となる半導体がGaAs、ゲート領域がGa_1−xA
lxAsである熱電子放射型静電誘導サイリスタ。
(2) In claim 1, the semiconductor serving as the channel is GaAs, and the gate region is Ga_1-xA.
A thermionic-emitting electrostatic induction thyristor made of lxAs.
(3)特許請求の範囲第1項記載において、ゲート領域
がチャンネル領域の半導体と格子定数補正されてなる熱
電子放射型静電誘導サイリスタ。
(3) A thermionic-emitting electrostatic induction thyristor according to claim 1, in which the gate region has a lattice constant corrected with that of the semiconductor in the channel region.
(4)特許請求の範囲第1項又は第3項記載において、
ゲート領域がGa_1−xAlxAs_1−yPyであ
る熱電子放射型請電誘導サイリスタ。
(4) In claim 1 or 3,
A thermionic emission type induction thyristor whose gate region is Ga_1-xAlxAs_1-yPy.
(5)特許請求の範囲第1項から第4項までのいずれか
の記載において、チャンネル領域がキャリアの走行する
領域に対して直角方向の寸法が、チャンネル領域の不純
物密度より決まるデバイ長λ_Dに対して、2λ_D以
内である熱電子放射型静電誘導サイリスタ。
(5) In any one of claims 1 to 4, the dimension of the channel region in the direction perpendicular to the region in which carriers travel is determined by the Debye length λ_D determined by the impurity density of the channel region. On the other hand, the thermionic emission type electrostatic induction thyristor is within 2λ_D.
(6)特許請求の範囲第1項から第5項までのいずれか
の記載において、ゲート領域に接して設けられるゲート
電極がゲート領域に対して抵抗性接触となる金属材料で
形成された熱電子放射型静電誘導サイリスタ。
(6) In any one of claims 1 to 5, the gate electrode provided in contact with the gate region is formed of a metal material that is in resistive contact with the gate region. Radiation type electrostatic induction thyristor.
(7)特許請求の範囲第1項から第5項までのいずれか
の記載において、ゲート領域に接して設けられるゲート
電極がゲート領域に対して抵抗性接触とならない金属材
料で形成された熱電子放射型静電誘導サイリスタ。
(7) In any one of claims 1 to 5, the gate electrode provided in contact with the gate region is formed of a metal material that does not come into resistive contact with the gate region. Radiation type electrostatic induction thyristor.
(8)特許請求の範囲第1項から第7項までのいずれか
の記載において、チャンネル領域中にカソード領域から
のキャリアに対して他のチャンネル領域よりも電位障壁
の高い半導体領域を含む熱電子放射型静電誘導サイリス
タ。
(8) In any one of claims 1 to 7, the channel region includes a semiconductor region having a higher potential barrier to carriers from the cathode region than other channel regions. Radiation type electrostatic induction thyristor.
JP59164823A 1984-08-08 1984-08-08 Thermionic emission type electrostatic induction thyristor Expired - Lifetime JP2589062B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59164823A JP2589062B2 (en) 1984-08-08 1984-08-08 Thermionic emission type electrostatic induction thyristor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59164823A JP2589062B2 (en) 1984-08-08 1984-08-08 Thermionic emission type electrostatic induction thyristor

Publications (2)

Publication Number Publication Date
JPS6143473A true JPS6143473A (en) 1986-03-03
JP2589062B2 JP2589062B2 (en) 1997-03-12

Family

ID=15800592

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59164823A Expired - Lifetime JP2589062B2 (en) 1984-08-08 1984-08-08 Thermionic emission type electrostatic induction thyristor

Country Status (1)

Country Link
JP (1) JP2589062B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5719678B2 (en) 2011-04-28 2015-05-20 日本電産コパル株式会社 Focal plane shutter for camera

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5676574A (en) * 1979-11-26 1981-06-24 Semiconductor Res Found Schottky injection electrode type semiconductor device
JPS5713774A (en) * 1980-06-20 1982-01-23 Ibm Elastically driven transporting device
JPS5751981A (en) * 1980-09-12 1982-03-27 Toshiba Corp Pump operation control device
JPS5775464A (en) * 1980-10-28 1982-05-12 Semiconductor Res Found Semiconductor device controlled by tunnel injection

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5676574A (en) * 1979-11-26 1981-06-24 Semiconductor Res Found Schottky injection electrode type semiconductor device
JPS5713774A (en) * 1980-06-20 1982-01-23 Ibm Elastically driven transporting device
JPS5751981A (en) * 1980-09-12 1982-03-27 Toshiba Corp Pump operation control device
JPS5775464A (en) * 1980-10-28 1982-05-12 Semiconductor Res Found Semiconductor device controlled by tunnel injection

Also Published As

Publication number Publication date
JP2589062B2 (en) 1997-03-12

Similar Documents

Publication Publication Date Title
US3609477A (en) Schottky-barrier field-effect transistor
US5640022A (en) Quantum effect device
US4364072A (en) Static induction type semiconductor device with multiple doped layers for potential modification
US4799090A (en) Tunnel injection controlling type semiconductor device controlled by static induction effect
US4933732A (en) Heterojunction bipolar transistor
US4829348A (en) Disconnectable power semiconductor component
US4758868A (en) Ballistic hetero-junction transistor with transverse two dimensional electron gas layer
US4624004A (en) Buried channel MESFET with backside source contact
US4601096A (en) Method for fabricating buried channel field effect transistor for microwave and millimeter frequencies utilizing molecular beam epitaxy
US4935789A (en) Buried channel FET with lateral growth over amorphous region
US4400710A (en) Semiconductor device
GB2252872A (en) Laser diode and method of manufacture
JPS589371A (en) Transistor
US3804681A (en) Method for making a schottky-barrier field effect transistor
US3255055A (en) Semiconductor device
US11489067B2 (en) Electron gas transistor, one-piece device comprising at least two transistors in cascode and associated manufacturing methods
US4724220A (en) Method for fabricating buried channel field-effect transistor for microwave and millimeter frequencies
JPS6143473A (en) Thermionic emission type electrostatic induction thyristor
EP0321074A2 (en) Transistor comprising a 2-dimensional charge carrier gas collector
US4829349A (en) Transistor having voltage-controlled thermionic emission
EP0107039B1 (en) Resonant transmission semiconductor device and circuit including such a device
US3310685A (en) Narrow band emitter devices
JPH0614551B2 (en) Thermionic emission type static induction transistor
US4672423A (en) Voltage controlled resonant transmission semiconductor device
US3518749A (en) Method of making gunn-effect devices