JPS6143260A - Variable venturi type carburetor - Google Patents

Variable venturi type carburetor

Info

Publication number
JPS6143260A
JPS6143260A JP16481684A JP16481684A JPS6143260A JP S6143260 A JPS6143260 A JP S6143260A JP 16481684 A JP16481684 A JP 16481684A JP 16481684 A JP16481684 A JP 16481684A JP S6143260 A JPS6143260 A JP S6143260A
Authority
JP
Japan
Prior art keywords
passage
valve
air
control valve
throttle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16481684A
Other languages
Japanese (ja)
Other versions
JPH0639944B2 (en
Inventor
Seiji Ikegaya
池ケ谷 精二
Hidenori Hirozawa
廣澤 秀徳
Satomi Wada
里美 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisan Industry Co Ltd
Toyota Motor Corp
Original Assignee
Aisan Industry Co Ltd
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisan Industry Co Ltd, Toyota Motor Corp filed Critical Aisan Industry Co Ltd
Priority to JP59164816A priority Critical patent/JPH0639944B2/en
Publication of JPS6143260A publication Critical patent/JPS6143260A/en
Publication of JPH0639944B2 publication Critical patent/JPH0639944B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M7/00Carburettors with means for influencing, e.g. enriching or keeping constant, fuel/air ratio of charge under varying conditions
    • F02M7/23Fuel aerating devices
    • F02M7/24Controlling flow of aerating air
    • F02M7/28Controlling flow of aerating air dependent on temperature or pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M7/00Carburettors with means for influencing, e.g. enriching or keeping constant, fuel/air ratio of charge under varying conditions
    • F02M7/12Other installations, with moving parts, for influencing fuel/air ratio, e.g. having valves
    • F02M7/14Other installations, with moving parts, for influencing fuel/air ratio, e.g. having valves with means for controlling cross-sectional area of fuel spray nozzle
    • F02M7/16Other installations, with moving parts, for influencing fuel/air ratio, e.g. having valves with means for controlling cross-sectional area of fuel spray nozzle operated automatically, e.g. dependent on exhaust-gas analysis
    • F02M7/17Other installations, with moving parts, for influencing fuel/air ratio, e.g. having valves with means for controlling cross-sectional area of fuel spray nozzle operated automatically, e.g. dependent on exhaust-gas analysis by a pneumatically adjustable piston-like element, e.g. constant depression carburettors

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of The Air-Fuel Ratio Of Carburetors (AREA)

Abstract

PURPOSE:To supply the mixed gas having the optimum air fuel ratio by forming a plurality of throttles in parallel into an air bleed passage for controlling the flow rate according to the temperature of a variable venturi carburetor and selecting the throttle according to the engine operation state. CONSTITUTION:A needle valve 4 is fixed at the edge surface of a slidable piston 3 installed onto the upstream side of a throttle valve 6. The amount of fuel supply is controlled by controlling the opening area of a jet 21. The bleed air is supplied into the jet part 21 from a hole 24. Said bleed air is supplied from a passage 32 having a throttle 42 installed in parallel to a passage 31 having a throttle 44, through a valve 30 whose opening area is varied by a wax 33 which expands and contracts according to the cooling-water temperature. A negative- pressure reacting valve 41 is installed into the passage 32, and since the intake negative-pressure reduces during acceleration, the valve 41 is closed to reduce the amount of bleed air, and dense mixed gas is supplied, while during deceleration, the valve 41 is opened by a high negative pressure, and the mixed gas is made thin.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は内燃機関の可変ベンチュリ型気化器に関し、さ
らに詳しくはエアブリードによシ空燃比を制御するよう
にした可変ベンチュリ型気化器に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a variable venturi carburetor for an internal combustion engine, and more particularly to a variable venturi carburetor that controls the air-fuel ratio by air bleed.

従来の技術 可変ベンチュリ型気化器では、サクク肩ンピストンに取
付けたニードルと、ニードルの進入する燃料通路に設け
た計iジェットとの協働によシ機関負荷に応じた燃料量
が計量されるようになっている。内燃機関ではさらに始
動時や低温時、或いは高出力時に燃料を増量して空燃比
を濃くするのが一般に行われているが、これをエアブリ
ードによシ制御するようにした可変ベンチュリ型気化器
が例えば特開昭58−106158号公報に記載されて
いる。さらに、市街地走行等においてはエアブリード量
を増して空燃比を薄くすることができる。
In the conventional technology variable venturi type carburetor, the amount of fuel according to the engine load is measured by the cooperation of the needle attached to the shoulder piston and the meter i-jet installed in the fuel passage into which the needle enters. It has become. In internal combustion engines, it is common practice to increase the amount of fuel to enrich the air-fuel ratio when starting, at low temperatures, or at high output, but this is controlled by a variable venturi carburetor using air bleed. is described, for example, in JP-A-58-106158. Furthermore, when driving in urban areas, the air bleed amount can be increased to reduce the air-fuel ratio.

発明が解決しようとする問題点 内燃機関では温度に応じて空燃比を変えることが重要で
あシ、このためにワックスを使った流量制御弁が使用さ
れておシ、温度に応じて連続的に(アナログ的に)エア
ブリード量を変化させるようになっている。その他のエ
アブリード機構、例えばM4図に示される出力増量用制
御弁101にはそのような流量制御弁は使用されていな
い。温度感応型の弁が使用されるとしても、それは一定
の温度でオン−オンする開閉弁である。実際には、その
他のエアブリード機構にも温度に感応して連続的に流量
を変化させる流量制御弁を使用したい要求があるが、そ
のような流量制御弁は高価であるために何個も使う訳に
はいかない。本発明では一個の流量制御弁で複数のエア
ブリード機構を制御できるようにすることを目的とする
Problems to be Solved by the Invention In internal combustion engines, it is important to change the air-fuel ratio according to the temperature, and for this purpose, a flow control valve using wax is used. It is designed to change the amount of air bleed (in an analog way). Other air bleed mechanisms, such as the output increase control valve 101 shown in Figure M4, do not use such a flow rate control valve. Even if a temperature-sensitive valve is used, it is an on-off valve that turns on and off at a constant temperature. In reality, there is a demand for the use of flow control valves that continuously change the flow rate in response to temperature in other air bleed mechanisms, but such flow control valves are expensive, so it is necessary to use multiple flow control valves. It doesn't make any sense. An object of the present invention is to enable a single flow control valve to control a plurality of air bleed mechanisms.

問題点を解決するための手段 上記目的を達成するために、本発明においては、エアブ
リード通路に温度に応じて連続的に流量を制御すること
のできる流量制御弁が配置されるとともに該流量制御弁
の上流又は下流において複数個のエアブリード制御用通
路が並列に接続されていることを1#徴とする。
Means for Solving the Problems In order to achieve the above object, in the present invention, a flow rate control valve that can continuously control the flow rate according to the temperature is disposed in the air bleed passage, and the flow rate control valve is disposed in the air bleed passage. A #1 characteristic is that a plurality of air bleed control passages are connected in parallel upstream or downstream of the valve.

実施例 第1図を参照すると、lは気化器本体、2は垂直下方向
Vこ延びる吸気通路、3は吸気通路2内を横方向に進退
移動するサクションピストン、4はサクションピストン
3の先端面に取付けられたニードル、5はサクシコンピ
ストン3の先端面に対向して形成された吸気通路2の内
壁面、6はサクシ襄ンピストン3下流の吸気通路2内に
設けられたスロットル弁、7は気化器フロー1を夫々示
し、サクシコンピストン3の先端面と、内壁面5の間に
はベンチ−り部(第4図)が形成される。
Embodiment Referring to FIG. 1, 1 is a carburetor main body, 2 is an intake passage extending vertically downward V, 3 is a suction piston that moves back and forth in the horizontal direction within the intake passage 2, and 4 is a tip end surface of the suction piston 3. 5 is the inner wall surface of the intake passage 2 formed opposite to the tip surface of the piston 3, 6 is a throttle valve provided in the intake passage 2 downstream of the piston 3, and 7 is a needle attached to the piston 3. The carburetor flow 1 is shown, and a bench portion (FIG. 4) is formed between the tip end surface of the succinic piston 3 and the inner wall surface 5.

気化器本体1にはサクシコンピストン3の後端側を包む
中空円筒状のケーシング10が固定され、このケーシン
グ10にはケーシング10の内部でケーシングlOの軸
線方向に延びる案内スリーブ11が取付けられる。案内
スリーブ10内には軸受12が挿入さnlまた案内スリ
ーブ10の外端部は盲蓋13によって閉鎖される。一方
、サクシコンピストン3には案内口、ド14が固定され
、この案内ロッド14は軸受12内に案内ロッド14の
軸線方向に移動可能に挿入される。このようにサクショ
ンピストン3は軸受12を介してケーシング9によシ支
持されるのでサクションピストン3はその軸線方向に滑
らかに移動することができる。ケーシング9の内部はサ
クシコンピストン3によって負圧室15と大気圧室16
とに分割され、負圧室15内にはサクションピストン3
に一常時ベンチュリ部8に向けて押圧する圧縮ばね17
が挿入される。負圧室15dサクシ!1/ピスト/3に
形成されたサクシ田ン孔18を介してベンチュリ部8に
連結され、大気圧室16は気化器本体1に形成された空
気孔19t−介してサクションピストン3上流の吸気通
路2内に連結される。
A hollow cylindrical casing 10 that encloses the rear end side of the succinic piston 3 is fixed to the carburetor main body 1, and a guide sleeve 11 that extends in the axial direction of the casing IO inside the casing 10 is attached. A bearing 12 is inserted into the guide sleeve 10, and the outer end of the guide sleeve 10 is closed by a blind cover 13. On the other hand, a guide port 14 is fixed to the succinct piston 3, and the guide rod 14 is inserted into the bearing 12 so as to be movable in the axial direction of the guide rod 14. Since the suction piston 3 is thus supported by the casing 9 via the bearing 12, the suction piston 3 can move smoothly in its axial direction. The interior of the casing 9 is divided into a negative pressure chamber 15 and an atmospheric pressure chamber 16 by the Saxicon piston 3.
The negative pressure chamber 15 includes a suction piston 3.
A compression spring 17 that constantly presses toward the venturi portion 8
is inserted. Negative pressure chamber 15d Sakushi! The atmospheric pressure chamber 16 is connected to the venturi section 8 through the suction hole 18 formed in the carburetor body 1, and the atmospheric pressure chamber 16 is connected to the intake passage upstream of the suction piston 3 through the air hole 19t formed in the carburetor body 1. 2.

一方、気化器本体1内にはニードル4が侵入可能なよう
にニードル4の軸線方向に延びる燃料通路20が形成さ
れ、この燃料通路20内には計量ジェット21が設けら
れる。計量ジェット21上流の燃料通路20は下方に延
びる燃料ノ4イブ22を介してフロート室7に連結され
、フロート室7内の燃料はこの燃料パイプ22を介して
燃料通路20内に送シ込まれる。更に、内壁面5には燃
料通路20と共軸的に配置された中空円筒状のノズル2
3が固定される。このノズル23は内壁面5からベンチ
ュリ部8内に突出し、しかもノズル23の先端部の上半
分から更にサクシ、ンピストン3に向けて突出している
。ニードル4はノズル23並びに計量ジェッ)21内を
貫通して延び、燃料はニードル4と計量ジェ、ト21間
に形成される環状間隙により計量された後にノズル23
から吸気通路2内に供給される。ニードル4には始動増
量用切欠が設けられ、第1図に示すベンチュリ全閉時に
切欠と計量ジェット21とが対応する位置に来てこれら
間の環状面積が大きくなるようになっている。計量ジェ
ット21には複数の貫通孔が設けられていて計量ジェッ
ト21の外周の環状通路及びエアブリード通路24から
計量ジェット21部の燃料通路20にエアブリードされ
る0このエアブリード通路24には、低温時燃料増量機
構及び出力時増量機構を介して供給された空気が合流し
て導入される。尚、従来の増量機構では第4図に示され
るようにそれぞれの機構が相互に独立して形成され、制
御された空気のみ合流して導入されるようになっていた
。本発明では、第1図に示されるように、ワックスタイ
プの流量制御弁30で空気を取入れた後、通路31.3
2が並列に接続されて、然る後にエアブリード通路24
に再び合流して接続される。従りて、空気取入れ口から
、通路31.32及び気化器本体1に形成したエアブリ
ード通路24t−含めて一個のエアブリード通路を形成
する。第1図に示す実施例では、流量制御弁30が上流
側にあって、その下流側で通路31.32が並列に接続
されている。
On the other hand, a fuel passage 20 extending in the axial direction of the needle 4 is formed in the carburetor body 1 so that the needle 4 can enter therein, and a metering jet 21 is provided within this fuel passage 20. The fuel passage 20 upstream of the metering jet 21 is connected to the float chamber 7 via a fuel nozzle 22 extending downward, and the fuel in the float chamber 7 is pumped into the fuel passage 20 via this fuel pipe 22. . Furthermore, a hollow cylindrical nozzle 2 is disposed coaxially with the fuel passage 20 on the inner wall surface 5.
3 is fixed. This nozzle 23 protrudes from the inner wall surface 5 into the venturi portion 8, and further protrudes from the upper half of the tip of the nozzle 23 toward the piston 3. The needle 4 extends through the nozzle 23 as well as the metering jet 21, and the fuel is metered by the annular gap formed between the needle 4 and the metering jet 21 before being transferred to the nozzle 23.
The air is supplied into the intake passage 2 from the air. The needle 4 is provided with a notch for starting and increasing the amount, and when the venturi is fully closed as shown in FIG. 1, the notch and the metering jet 21 come to corresponding positions and the annular area between them increases. The metering jet 21 is provided with a plurality of through holes, and air is bleed from the annular passage around the outer periphery of the metering jet 21 and the air bleed passage 24 to the fuel passage 20 of the metering jet 21. In this air bleed passage 24, Air supplied via the low temperature fuel increase mechanism and the output increase mechanism are combined and introduced. In the conventional volume increasing mechanism, each mechanism is formed independently from each other, as shown in FIG. 4, and only controlled air is combined and introduced. In the present invention, as shown in FIG.
2 are connected in parallel, and then the air bleed passage 24
will be rejoined and connected. Therefore, one air bleed passage is formed from the air intake, including the passages 31 and 32 and the air bleed passage 24t formed in the carburetor body 1. In the embodiment shown in FIG. 1, the flow control valve 30 is located upstream, and the passages 31, 32 are connected in parallel downstream thereof.

しかしながら、本発明によれば、通路31.32を上流
側に配置し、流量制御弁30をそれらの下流側に通路3
1.32が並列になるように接続するように接続するこ
とも可能でおる。
However, according to the invention, the passages 31, 32 are placed upstream and the flow control valve 30 is placed downstream of them.
It is also possible to connect so that 1.32 are connected in parallel.

流量制御弁30はワックス33によって駆動されるプ、
シェロッド34を有し、プ、シェロッド34には円錐面
の弁体35が一体に形成されている。弁体35の円錐面
に関連してポート36が形成され、空気取入れde−)
37は弁体35の位置に関9なく常時開にしている。ワ
ックス33の近くに機関冷却水を通すためのポー)38
.39がある。ワックス33は低温時に収縮して弁体3
5によ、9yje−)36の開口面積を狭め、温度が上
昇するにつれて膨張して弁体35を右方に押し、ポート
36の開口面積を次第に開いていく。これは公知のこと
であシ、流量制御弁30は温度に応じて流量を連続的に
制御するものである。このようにして流量制御された空
気は並列の通路31゜32に流入する。一方の通路31
には絞シ40が配置されていて、ここを通る空気流量は
流量制御弁30の最大流量よシ小さくなるようにされて
いる。他方の通路32には負圧制御弁41が配置される
とともにその出口に絞シ42が設けられる・負圧制御弁
41は通路32の一部を形成するポー)43.44を有
し、ピストン状弁体45がポート44を閉鎖可能になっ
ている。弁体45はその背後から圧縮ばね46によp付
勢されるとともに、ポート47から吸気負圧が作用され
ている。吸気負圧はスロットル弁6が全開に近い高負荷
時には非常に小さくなる。従って、弁体41は低負荷時
にはポート44を開いて通路32を通じさせているが、
高負荷時にはポート44を閉じて通路32を遮断する。
The flow control valve 30 is a valve driven by wax 33;
It has a sherrod 34, and a conical valve body 35 is integrally formed on the sherrod 34. A port 36 is formed in connection with the conical surface of the valve body 35, and the air intake de-)
37 is always open regardless of the position of the valve body 35. Port for passing engine cooling water near wax 33) 38
.. There are 39. The wax 33 contracts when the temperature is low and the valve body 3
5, the opening area of the port 36 is narrowed, and as the temperature rises, it expands and pushes the valve body 35 to the right, gradually opening the opening area of the port 36. This is well known, and the flow rate control valve 30 continuously controls the flow rate depending on the temperature. The air whose flow rate is controlled in this manner flows into parallel passages 31 and 32. One aisle 31
A restrictor 40 is disposed at , and the flow rate of air passing therethrough is made smaller than the maximum flow rate of the flow rate control valve 30 . A negative pressure control valve 41 is disposed in the other passage 32, and a restrictor 42 is provided at its outlet.The negative pressure control valve 41 has ports 43 and 44 forming part of the passage 32, A shaped valve body 45 is capable of closing the port 44. The valve body 45 is biased by a compression spring 46 from behind, and negative intake pressure is applied from a port 47 . The intake negative pressure becomes extremely small when the throttle valve 6 is under high load and close to fully open. Therefore, when the load is low, the valve body 41 opens the port 44 and allows the passage 32 to pass through.
When the load is high, the port 44 is closed to block the passage 32.

通路32を遮断すると、エアゾリードされる空気量は絞
シ40と流量制御弁30のいずれかで制御されたものと
なる。従って、比較的低温の場合には出力時のエアブリ
ード量も流量制御弁30により制御されることになる。
When the passage 32 is shut off, the amount of air to be aerosoled is controlled by either the restrictor 40 or the flow rate control valve 30. Therefore, when the temperature is relatively low, the amount of air bleed at the time of output is also controlled by the flow rate control valve 30.

これは第4図に示されるように出力制御用負圧制御弁1
01が流量制御弁100と独立的に構成されていた従来
の場合にはなかりたことである。
This is the negative pressure control valve 1 for output control as shown in Fig. 4.
This was not the case in the conventional case where the valve 01 was configured independently from the flow control valve 100.

第2図は第1図のエアブリード制御機構を一般化して示
したものでアシ、流量制御弁30は温度に応じて連続的
に流量を制御できるものであればワックスタイプに限定
されるものではない。又、並列に接続されるエアブリー
ド制御用通TNraX。
FIG. 2 shows a generalized version of the air bleed control mechanism shown in FIG. do not have. Also, the air bleed control line TNraX is connected in parallel.

32にはそれぞれ何らかの流量制御手段が配置され、実
施例においては、一方の通路31に絞シ40が設けられ
、他方の通路32には出力増量用負圧制御弁41と絞シ
42が設けられる。流量制御弁30の全開時の流量は絞
シ40と42の合計したものによシ与えられる流量よシ
大きい。
32 are each provided with some kind of flow control means, and in the embodiment, one passage 31 is provided with a restrictor 40, and the other passage 32 is provided with a negative pressure control valve 41 for increasing output and a restrictor 42. . The flow rate when the flow control valve 30 is fully open is greater than the flow rate given by the sum of the restrictors 40 and 42.

第3図を参照すると、破線Xは第4図の流量制御弁10
0と制御弁101がともに開かれている場合の空燃比特
性を示し、破線Yは高負荷時に制御弁101が閉じられ
て燃料増量したときの特性を示す。これらは温度に係シ
なく常に平行関係にちゃ、空燃比は制御弁ioiの開閉
に従ってこれら両特性の間で変化する。低温時には濃か
ら薄に急激に切換えられるのは好ましくないために、一
定の温度まで制御弁101をロックしておくこともでき
、その場合には通常の空燃比が低温側からy、z、xの
ように変化することになる。
Referring to FIG. 3, the broken line X indicates the flow rate control valve 10 in FIG.
0 and the control valve 101 are both open, and the broken line Y shows the characteristic when the control valve 101 is closed and the amount of fuel is increased during high load. These characteristics are always in a parallel relationship regardless of temperature, and the air-fuel ratio changes between these two characteristics as the control valve ioi opens and closes. Since it is undesirable to switch suddenly from rich to lean at low temperatures, the control valve 101 can be locked until a certain temperature, in which case the normal air-fuel ratio changes from the low temperature side to y, z, x. It will change like this.

これに対して、実線で示す特性は本発明による特性の一
例を示すものである。実線Aで示されるように、比較的
低温時には流量制御弁30によシェア!リード量即ち空
燃比が規制され、(絞シ40が流量制御弁30より大口
径のため)制御弁41の開閉には係シない、温度が上昇
するにりれて、流量制御弁300口径と絞シ40の口径
が等しくなシ、これ以後は特性Bと特性Cに分かれる。
On the other hand, the characteristics shown by the solid line are examples of the characteristics according to the present invention. As shown by the solid line A, when the temperature is relatively low, the flow rate control valve 30 shares! The lead amount, that is, the air-fuel ratio is regulated, and it does not affect the opening and closing of the control valve 41 (because the throttle valve 40 has a larger diameter than the flow control valve 30).As the temperature rises, the flow control valve 300 diameter and If the aperture of the diaphragm 40 is equal, the characteristics are divided into characteristic B and characteristic C thereafter.

特性Bは制御弁41が開かれているときのものでア夛、
特性Cは制御弁41が閉じられているときのものである
。第3図から明らかなように、高温時には特性BとCの
幅を小さくすることができる。
Characteristic B is when the control valve 41 is open.
Characteristic C is when the control valve 41 is closed. As is clear from FIG. 3, the widths of characteristics B and C can be made smaller at high temperatures.

従来の特性XとYの幅を小さくすると低温時の出力増量
が不足することになる。
If the width of the conventional characteristics X and Y is made smaller, the output increase at low temperatures will be insufficient.

発明の詳細 な説明したように、本発明によれば一個の流量制御弁を
用いて複数のエアブリード通路の特性を制御できること
になる。
DETAILED DESCRIPTION OF THE INVENTION As described in detail, the present invention allows a single flow control valve to control the characteristics of multiple air bleed passages.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による可変ぺ/チーリ屋気化器の断面図
、第2図は第1図のエアブリード機構を一般化した図、
第3図は流量特性を説明する図、第4図は従来のエアブ
リード機構を説明する図である。 l・・・気化器本体、3・・・サクシWンピストン、4
・・・ニードル、20・・・燃料通路、21・・・計量
ジエ?)、24・・・エアブリード通路、30・・・流
量制御弁、31.32・・・通路、40.42・・・絞
シ、41・・・負圧制御弁。
FIG. 1 is a sectional view of a variable pressure/chillifier vaporizer according to the present invention, FIG. 2 is a generalized view of the air bleed mechanism shown in FIG. 1,
FIG. 3 is a diagram illustrating flow characteristics, and FIG. 4 is a diagram illustrating a conventional air bleed mechanism. l...Carburetor body, 3...Sakushi W piston, 4
...Needle, 20...Fuel passage, 21...Measuring die? ), 24... Air bleed passage, 30... Flow rate control valve, 31.32... Passage, 40.42... Throttle, 41... Negative pressure control valve.

Claims (1)

【特許請求の範囲】[Claims] 吸入空気量に応働してベンチュリ面積を変化させるサク
ションピストンと、該サクションピストンに連結された
ニードルと、該ニードルが進入可能なように該ニードル
の軸線方向に延びる燃料通路と該燃料通路内に設けられ
て該ニードルと協働する計量ジェットとを具備し、更に
該燃料通路内に空気を供給するエアブリード通路を具備
した可変ベンチュリ型気化器において、前記エアブリー
ド通路に温度に応じて連続的に流量を制御することので
きる流量制御弁が配置されるとともに該流量制御弁の上
流又は下流において複数個のエアブリード制御用通路が
並列に接続されていることを特徴とする可変ベンチュリ
型気化器。
A suction piston that changes the venturi area in response to the amount of intake air, a needle connected to the suction piston, a fuel passage extending in the axial direction of the needle so that the needle can enter, and a fuel passage inside the fuel passage. a variable venturi type carburetor comprising a metering jet provided and cooperating with the needle, and further comprising an air bleed passage for supplying air into the fuel passage, the air bleed passage having a continuous, temperature-dependent metering jet; A variable venturi type carburetor, characterized in that a flow control valve capable of controlling the flow rate is disposed at the flow rate control valve, and a plurality of air bleed control passages are connected in parallel upstream or downstream of the flow control valve. .
JP59164816A 1984-08-08 1984-08-08 Variable bench lily type vaporizer Expired - Lifetime JPH0639944B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59164816A JPH0639944B2 (en) 1984-08-08 1984-08-08 Variable bench lily type vaporizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59164816A JPH0639944B2 (en) 1984-08-08 1984-08-08 Variable bench lily type vaporizer

Publications (2)

Publication Number Publication Date
JPS6143260A true JPS6143260A (en) 1986-03-01
JPH0639944B2 JPH0639944B2 (en) 1994-05-25

Family

ID=15800462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59164816A Expired - Lifetime JPH0639944B2 (en) 1984-08-08 1984-08-08 Variable bench lily type vaporizer

Country Status (1)

Country Link
JP (1) JPH0639944B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111503624A (en) * 2020-04-08 2020-08-07 哈尔滨工业大学 W-flame boiler with staggered secondary air on arch and gap type exhaust air and air distribution method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5654255U (en) * 1979-10-04 1981-05-12
JPS56103650U (en) * 1980-01-08 1981-08-13
JPS58107843A (en) * 1981-12-22 1983-06-27 Toyota Motor Corp Opening controller of carburetor throttle valve
JPS58128450A (en) * 1982-01-26 1983-08-01 Toyota Motor Corp Variable venturi type carburetter
JPS58178858A (en) * 1982-04-13 1983-10-19 Toyota Motor Corp Air-fuel ratio controlling apparatus for internal- combustion engine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5654255U (en) * 1979-10-04 1981-05-12
JPS56103650U (en) * 1980-01-08 1981-08-13
JPS58107843A (en) * 1981-12-22 1983-06-27 Toyota Motor Corp Opening controller of carburetor throttle valve
JPS58128450A (en) * 1982-01-26 1983-08-01 Toyota Motor Corp Variable venturi type carburetter
JPS58178858A (en) * 1982-04-13 1983-10-19 Toyota Motor Corp Air-fuel ratio controlling apparatus for internal- combustion engine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111503624A (en) * 2020-04-08 2020-08-07 哈尔滨工业大学 W-flame boiler with staggered secondary air on arch and gap type exhaust air and air distribution method
CN111503624B (en) * 2020-04-08 2021-05-04 哈尔滨工业大学 W-flame boiler with staggered secondary air on arch and gap type exhaust air and air distribution method

Also Published As

Publication number Publication date
JPH0639944B2 (en) 1994-05-25

Similar Documents

Publication Publication Date Title
EP0363448B1 (en) Fluid servo system for fuel injection and other applications
US4073202A (en) System to feed exhaust gas into the intake manifold
US3444847A (en) Temperature control arrangement
US3310045A (en) Internal combustion engine fuel feeding system
US3820514A (en) Exhaust gas recirculation control
US3951121A (en) Fuel injection system
US4341723A (en) Variable venturi carburetor
US3753555A (en) Carburetors
US4401063A (en) Fuel distribution system for an internal combustion engine
JPS6143260A (en) Variable venturi type carburetor
US4234522A (en) Variable diffuser for carburetors
US4110417A (en) Variable venturi type carburetor
US4364361A (en) Fuel injection system
US1974286A (en) Carburetor
US3387830A (en) Carburetor air bleed
JPH0228708B2 (en)
US2873958A (en) Thermostatically controlled air bleed
US4284588A (en) Fuel system
JPH0341671B2 (en)
US2847983A (en) Fuel injection system
JPS5843583B2 (en) The staghorn snail
EP0728935A1 (en) Carburetor having metering valve with improved air-fuel ratio adjusting performance
JP3459992B2 (en) Vaporizer speed reducer
US4505864A (en) Device for carburetting air and fuel
JPS6345563Y2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term