JPS6142788B2 - - Google Patents

Info

Publication number
JPS6142788B2
JPS6142788B2 JP10605581A JP10605581A JPS6142788B2 JP S6142788 B2 JPS6142788 B2 JP S6142788B2 JP 10605581 A JP10605581 A JP 10605581A JP 10605581 A JP10605581 A JP 10605581A JP S6142788 B2 JPS6142788 B2 JP S6142788B2
Authority
JP
Japan
Prior art keywords
cutting
coated
free carbon
cemented carbide
tic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10605581A
Other languages
Japanese (ja)
Other versions
JPS586971A (en
Inventor
Minoru Nakano
Naoharu Fujimori
Akira Shikyo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP10605581A priority Critical patent/JPS586971A/en
Publication of JPS586971A publication Critical patent/JPS586971A/en
Publication of JPS6142788B2 publication Critical patent/JPS6142788B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • C23C30/005Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process on hard metal substrates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Chemical Vapour Deposition (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

IVa,Va,VIa族元素の炭化物、窒化物、炭窒
化物の1種以上を鉄族金属の1種以上で結合した
超硬合金、特にWC―Co,WC―TiC―Co合金の
表面にIVa,Va,VIa族元素の炭化物、窒化物、
炭窒化物やAl2O3,ZrO2を被覆した所謂被覆超硬
合金工具は、被覆しない超硬合金工具に較べて高
い耐摩耗性を示すことが知られている。 発明者等は、これら被覆超硬合金工具の性質を
注意深く検討した結果、切削の最も初期において
急激な摩耗の進行やチツピイングによる寿命とな
る場合が多くあることに着目した。そこで、この
初期の段階で寿命に到る原因を種々検討したとこ
ろ、被覆膜表面にキレツが発生し、キレツが合体
して局所的に被覆層が脱落して、周辺部のコーテ
イング層に破壊が進行するためと考えられた。 発明者らはこれを回避することによつて被覆膜
本来の性能を発揮する方法について種々検討した
結果、この被覆超硬合金の外表面が遊離炭素を含
有する被覆層があれば有効であることを見い出し
た。即ち、遊離炭素を共存させた被覆層は、粒成
長が抑制され、微粒な組織となつて、最初に刃先
が被削材に当つて生じるキレツが伝搬しにくく、
又、遊離炭素がキレツ伝搬を止める緩衝剤の役割
を果たしているものと考えられた。遊離炭素は、
被覆層の種類によつても異なるが0.01〜40%、特
に0.01〜10容量%含有されているのが好ましい。
この範囲以下では本発明の効果は弱く、この値を
超えると被覆層の強度が低下して好ましくない。
遊離炭素を含有する層としては、Tiの炭化物、
Alの酸化物のほか、IVa,Va,VIa族の炭化物、
酸化物でも本発明の効果はあるが、強度、遊離炭
素の共存性からこの2層が最も好ましい。又、被
覆層の厚みは0.5〜10μが良い。0.5μ以下では、
キレツ伝搬防止に効果なく、10μ以上ではコーテ
イングの強度の低下を招く。 遊離炭素を含有する層の被覆方法としては、
CVD、プラズマCVD等の方法如何なる方法でも
よい。 次に実施例によつて説明する。 実施例 1 ISO,MIO超硬合金にTiCを6μ被覆した被覆
超硬合金工具(形状SNMG432)の表面に蒸着法
によつて0.1μ,5μ,15μの遊離炭素0.5%を含
むTiC層を被覆した。(A,B,C)これらと比
較のため通常のTiCコーテイングチツプ(A)を用い
て下記の条件で切削テストした。 被削材 :S55C鍛造材 被削速度:130〜160m/min 切り込み:0.5〜3.0mm 送 り:0.35mm/rev 切削時間:3分 50切刃の破損状態をみると、Dは45切刃にチツ
ピング生じており、そのうち、30切刃は1分以内
で寿命であつた。 一方、Aは35切刃にチツピング、1分以内で寿
命となつたのは、20切刃、Cは30切刃にチツピン
グ1分以内の寿命となつたのは15切刃であつた。 Bは、5切刃のチツピングが生じており、1分
以内の寿命切刃は1切刃のみであつた。 実施例 2 ISO,MIO超硬合金に内層として5μのTiC、
外層として1μのAl2O3をCVD法で被覆し、その
上に実施例1と同じように1μの遊離炭素を含む
Al2O3層を被覆した。遊離炭素の量は0,0.05,
5,10,30,50%であり、これらのチツプを使用
して下記の条件でテストを行つた。 被削材 :FC―30 切削速度:180〜220m/min 切り込み:0.8〜7mm 送 り:0.32mm/rev テスト結果を表1に示す。
IVa on the surface of cemented carbide, especially WC-Co, WC-TiC-Co alloys, in which one or more carbides, nitrides, carbonitrides of IVa, Va, VIa group elements are combined with one or more iron group metals. , Va, carbides and nitrides of group VIa elements,
It is known that so-called coated cemented carbide tools coated with carbonitride, Al 2 O 3 or ZrO 2 exhibit higher wear resistance than uncoated cemented carbide tools. As a result of careful consideration of the properties of these coated cemented carbide tools, the inventors have noticed that the tool life is often shortened due to rapid wear and chipping at the very beginning of cutting. Therefore, we investigated various causes of end of life at this early stage, and found that cracks occur on the surface of the coating film, the cracks coalesce, and the coating layer locally falls off, causing damage to the surrounding coating layer. This was thought to be due to the progression of The inventors have studied various ways to avoid this and achieve the original performance of the coating film, and have found that it is effective if the outer surface of the coated cemented carbide contains a coating layer containing free carbon. I discovered that. In other words, the coating layer in which free carbon coexists suppresses grain growth and forms a fine-grained structure, making it difficult for the cracks that occur when the cutting edge first hits the workpiece to propagate.
It was also thought that free carbon played the role of a buffer to stop the propagation of cracks. Free carbon is
The content is preferably 0.01 to 40%, particularly 0.01 to 10% by volume, although it varies depending on the type of the coating layer.
Below this range, the effect of the present invention is weak, and above this range, the strength of the coating layer decreases, which is not preferable.
As the layer containing free carbon, Ti carbide,
In addition to Al oxides, carbides of IVa, Va, and VIa groups,
Although oxides have the effect of the present invention, these two layers are most preferred from the viewpoint of strength and coexistence of free carbon. Moreover, the thickness of the coating layer is preferably 0.5 to 10 μm. Below 0.5μ,
It is not effective in preventing propagation of cracks, and if it exceeds 10μ, the strength of the coating will decrease. As a method of coating a layer containing free carbon,
Any method such as CVD or plasma CVD may be used. Next, an example will be explained. Example 1 ISO, MIO cemented carbide coated with 6μ of TiC The surface of a coated cemented carbide tool (shape SNMG432) was coated with 0.1μ, 5μ, and 15μ TiC layers containing 0.5% free carbon by vapor deposition. . (A, B, C) For comparison, cutting tests were conducted using a regular TiC coated chip (A) under the following conditions. Work material: S55C forged material Cutting speed: 130 to 160 m/min Depth of cut: 0.5 to 3.0 mm Feed: 0.35 mm/rev Cutting time: 3 minutes Looking at the damage state of the 50 cutting edge, D is 45 cutting edge Chipping occurred, and 30 of the cutting edges expired within 1 minute. On the other hand, for A, 35 cutting edges were chipped, and 20 cutting edges reached the end of their life within 1 minute, and for C, 30 cutting edges chipped, and 15 cutting edges reached the end of their life within 1 minute. In case B, chipping occurred on 5 cutting edges, and only 1 cutting edge had a life span of 1 minute or less. Example 2 ISO, MIO cemented carbide with 5μ TiC as inner layer,
As an outer layer, 1μ of Al 2 O 3 was coated by CVD method, and 1μ of free carbon was added on top as in Example 1.
Covered with 3 layers of Al 2 O. The amount of free carbon is 0,0.05,
5, 10, 30, and 50%, and tests were conducted using these chips under the following conditions. Work material: FC-30 Cutting speed: 180~220m/min Depth of cut: 0.8~7mm Feed: 0.32mm/rev Table 1 shows the test results.

【表】【table】

【表】 実施例 3 ISO―M10超硬合金(型番SNMN432)に
13.56MHZのRF波プラズマCVD装置を用いて
H2、TiCl4、CH4の混合ガスにより内層として
TiCを0.5μの厚さに被覆した。次にH2、CH4の
混合ガスを用いて、高硬度を有する炭素を島状に
点在させて被覆し、この上に、H2、TiCl4、CH4
の混合ガスによりTiCを被覆した。この高硬度炭
素を析出させ、それをTiCで覆うという操作を後
2回繰り返し、総膜厚を6μに調整した。この際
高硬度炭素の被覆処理時間とTiCの被覆処理時間
を増減させ、TiC被覆膜中に占める高硬度の遊離
炭素の割合を0、0.05、5、15、30、40、50%と
した。これらのチツプを使用して、下記の条件で
切削テストを行つた。 被覆材 :FC―25 切削速度:200m/min 切り込み:3.0mm 送り :0.36mm/rev 切削時間:3分 テスト結果を表2に示す。表中の値は50切刃中
でチツピングが生じた切刃の数を示し小さい方が
性能が良い。
[Table] Example 3 ISO-M10 cemented carbide (model number SNMN432)
Using 13.56MHZ RF wave plasma CVD equipment
As an inner layer with a mixed gas of H2, TiCl4, and CH4
TiC was coated to a thickness of 0.5μ. Next, using a mixed gas of H2 and CH4, carbon with high hardness is coated in scattered islands, and on top of this, H2, TiCl4, CH4
TiC was coated with a mixed gas of The operation of precipitating this high-hardness carbon and covering it with TiC was repeated two more times to adjust the total film thickness to 6 μm. At this time, the high-hardness carbon coating treatment time and the TiC coating treatment time were increased or decreased, and the proportion of high-hardness free carbon in the TiC coating film was set to 0, 0.05, 5, 15, 30, 40, and 50%. . Using these chips, cutting tests were conducted under the following conditions. Covering material: FC-25 Cutting speed: 200m/min Depth of cut: 3.0mm Feed: 0.36mm/rev Cutting time: 3 minutes The test results are shown in Table 2. The values in the table indicate the number of cutting edges where chipping occurred among 50 cutting edges, and the smaller the number, the better the performance.

【表】 実施例 4 ISO―M10超硬合金に、抵抗加熱炉を用い、
1000℃にて、5容量%TiCI4、5容量%CH4、残
H2ガスを用いて圧力60torrで、4μmのTiCを生
成後、さらに、その上に、5容量%AlCl3、5容
量%CO2、残H2ガス圧力30torrでAl203を3μm
コーテイングした。引き続き、TiCl4を0.1容量
%、80容量%CH4、残H2ガス中で圧力30torrで
1時間保持した。かかるチツプを表面からX線分
析や走査型電子顕微鏡で観察したところ、TiCと
8%の遊離炭素が共存した層が1μm生成してい
た。 本発明によらないチツプ(3μm Al2 03外
層、5μmTiC内層)と本発明品を実施例2の切
削条件でテストしたところ、本発明によらないチ
ツプは、10ケ切削時にチツピングが生じたが、本
発明品は、20ケ切削時でもチツピングは発生しな
かつた。 実施例 5 ISO―M10超硬合金にてTiCを5μmコーテイ
ングしたチツプをもちいて1000℃に加熱後、5容
量%AlCl3、5容量%CO2.10容量%のCH4、残
H2ガスの混合雰囲気中、30torrにて3μmAl2 03
をコーテイングした。かかるAl2 03膜をESCAに
より分析したところ、1%のCが検出された。本
発明品によるアルミナ膜の粒度は、0.5μm以下
であつたが、本発明によらないものは3μmと粗
大な粒子となつていた。 実施例 6 実施例5において、反応ガスCO2とCH4をそれ
ぞれ交互に0%、5%(ないし10%)を間けつ的
に5分間導入し、3Hr同操作を繰り返した。かか
るコーテイング膜を調べたところ、2μmのAl2
03の中に遊離Cが点在し、その量は0.02%であつ
た。本発明品と市販品(2μmAl203外層、5μ
mTiC内層)とを実施例2で切削テストを行つ
た。その結果、本発明品は、市販品の約2倍の寿
命を示した。なお、市販品は刃先のチツピングに
よつて寿命となつていた。
[Table] Example 4 Using a resistance heating furnace for ISO-M10 cemented carbide,
At 1000℃, 5% by volume TiCI4, 5% by volume CH4, the balance
After generating TiC of 4 μm using H2 gas at a pressure of 60 torr, further layer Al203 of 3 μm on top of it using 5 volume% AlCl3, 5 volume% CO2, and a residual H2 gas pressure of 30 torr.
Coated. Subsequently, TiCl4 was held at a pressure of 30 torr for 1 hour in 0.1% by volume, 80% by volume CH4, and residual H2 gas. When such a chip was observed from the surface using X-ray analysis or a scanning electron microscope, it was found that a 1 μm thick layer in which TiC and 8% free carbon coexisted was formed. When a chip not according to the present invention (3 μm Al2 03 outer layer, 5 μm TiC inner layer) and a product according to the present invention were tested under the cutting conditions of Example 2, chipping occurred in the chip not according to the present invention when cutting 10 pieces, but this With the invented product, no chipping occurred even when cutting 20 pieces. Example 5 A chip made of ISO-M10 cemented carbide coated with 5 μm of TiC was heated to 1000°C, and then mixed with 5 volume% AlCl3, 5 volume% CO2, 10 volume% CH4, and the rest.
3μm Al2 03 at 30torr in a mixed atmosphere of H2 gas
coated. When this Al2 03 film was analyzed by ESCA, 1% C was detected. The particle size of the alumina film produced by the product of the present invention was 0.5 μm or less, whereas the particle size of the alumina film not produced by the present invention was as large as 3 μm. Example 6 In Example 5, the reaction gases CO2 and CH4 were alternately introduced at 0% and 5% (or 10%) for 5 minutes, and the same operation was repeated for 3 hours. When such a coating film was examined, it was found that 2 μm of Al2
Free C was scattered in 03, and its amount was 0.02%. Inventive product and commercially available product (2 μm Al203 outer layer, 5 μm
In Example 2, a cutting test was conducted on the mTiC inner layer). As a result, the product of the present invention showed approximately twice the lifespan of the commercially available product. In addition, commercially available products have reached the end of their service life due to chipping of the cutting edge.

Claims (1)

【特許請求の範囲】 1 超硬合金に、外層が0.01〜40容量%の遊離炭
素を含有するTiの炭化物又はAlの酸化物からな
る被覆層で、内層がTi、Zr、Hf、V、Nb、Ta、
Cr、Mo、Wの炭化物、窒化物、炭窒化物の1種
または2種以上又は、これらの化合物及び
Al203、Zr02より選ばれた1種又は2種以上で構
成され、厚みが0.5〜10μであることを特徴とす
る被覆超硬合金工具。 2 特許請求の範囲第1項において、遊離炭素を
含有するTiの炭化物、Alの酸化物層中に遊離炭
素が0.01%含まれていることを特徴とする被覆超
硬合金工具。
[Claims] 1. A coating layer on a cemented carbide, with an outer layer made of Ti carbide or Al oxide containing 0.01 to 40% by volume of free carbon, and an inner layer made of Ti, Zr, Hf, V, Nb. ,Ta,
One or more of carbides, nitrides, carbonitrides of Cr, Mo, and W, or their compounds and
A coated cemented carbide tool comprising one or more selected from Al203 and Zr02, and having a thickness of 0.5 to 10μ. 2. The coated cemented carbide tool according to claim 1, characterized in that the free carbon-containing Ti carbide and Al oxide layer contains 0.01% free carbon.
JP10605581A 1981-07-06 1981-07-06 Coated sintered hard alloy tool Granted JPS586971A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10605581A JPS586971A (en) 1981-07-06 1981-07-06 Coated sintered hard alloy tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10605581A JPS586971A (en) 1981-07-06 1981-07-06 Coated sintered hard alloy tool

Publications (2)

Publication Number Publication Date
JPS586971A JPS586971A (en) 1983-01-14
JPS6142788B2 true JPS6142788B2 (en) 1986-09-24

Family

ID=14423927

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10605581A Granted JPS586971A (en) 1981-07-06 1981-07-06 Coated sintered hard alloy tool

Country Status (1)

Country Link
JP (1) JPS586971A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995005497A1 (en) * 1993-08-16 1995-02-23 Sumitomo Electric Industries, Ltd. Cemented carbide alloy for cutting tool and coated cemented carbide alloy

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58126974A (en) * 1981-12-16 1983-07-28 カーボロイ インコーポレーテッド Coated product and manufacture
DE3633986A1 (en) * 1985-12-07 1987-06-25 Schmalkalden Werkzeug Alumina-based surface layer for hard sintered objects and a process for producing it
DD255446A3 (en) * 1985-12-23 1988-04-06 Hochvakuum Dresden Veb HARD COAT WITH HIGH WEAR RESISTANCE AND DECORATIVE BLACK OWN COLOR
JPH059831U (en) * 1991-07-18 1993-02-09 三菱重工業株式会社 Cutting tools
DE4421144C2 (en) * 1993-07-21 2003-02-13 Unaxis Balzers Ag Coated tool with increased service life
JP2008126334A (en) * 2006-11-17 2008-06-05 Mitsubishi Heavy Ind Ltd Wear resistant film and tool having the same
WO2008078675A1 (en) * 2006-12-25 2008-07-03 Hitachi Metals, Ltd. Hard coating film excellent in lubrication characteristics, process for formation thereof, and tool for the plastic working of metal
JP5207116B2 (en) * 2007-09-18 2013-06-12 日立金属株式会社 Hard coating with excellent lubrication characteristics and metal plastic working tools
JP5935562B2 (en) * 2012-07-13 2016-06-15 三菱マテリアル株式会社 Surface-coated cutting tool with excellent initial coating and chipping resistance with excellent hard coating layer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995005497A1 (en) * 1993-08-16 1995-02-23 Sumitomo Electric Industries, Ltd. Cemented carbide alloy for cutting tool and coated cemented carbide alloy

Also Published As

Publication number Publication date
JPS586971A (en) 1983-01-14

Similar Documents

Publication Publication Date Title
US5786069A (en) Coated turning insert
EP1616976B1 (en) Coated insert
EP3067133B1 (en) Coated cutting tool
CN100556691C (en) The cermet cutting tool and the application thereof that apply
JP2007160504A (en) Coated cutting tool insert
EP0953065A1 (en) Coated cutting insert
EP1103635A2 (en) Coated cutting insert for milling and turning applications
EP2379778A1 (en) Improved coated cutting insert for rough turning
CN101318231A (en) Coated cutting tool insert
JP5023654B2 (en) Surface-coated cermet cutting tool with excellent crystal grain interface strength, modified α-type Al2O3 layer of hard coating layer
EP3437772A1 (en) Surface coated cutting tool
KR101529726B1 (en) Coated cutting insert for milling applications
JP2000514370A (en) Coated cutting inserts
US8142848B2 (en) Coated cutting insert for milling
JPS6142788B2 (en)
JP3236899B2 (en) Manufacturing method of surface coated tungsten carbide based cemented carbide cutting tool with excellent wear and fracture resistance
JP3087504B2 (en) Manufacturing method of surface-coated tungsten carbide based cemented carbide cutting tools with excellent wear and fracture resistance
JP3850085B2 (en) Coated cermet for cutting tools
JP3950229B2 (en) Cemented carbide, method for producing the same and cemented carbide tool
JPH10244405A (en) Cutting tool made of surface-covering cemented carbide with its hard covering layer having excellent abrasion resistance
JP3230372B2 (en) Surface-coated tungsten carbide-based cemented carbide cutting tool with excellent interlayer adhesion and fracture resistance with a hard coating layer
JP4029529B2 (en) Surface coated tungsten carbide based cemented carbide cutting tool with excellent chipping resistance with hard coating layer in intermittent heavy cutting
JP3119414B2 (en) Surface coated tungsten carbide based cemented carbide cutting tool with excellent interlayer adhesion with hard coating layer
JPS61166974A (en) Coated sintered hard alloy
JP3236908B2 (en) Surface coated WC based cemented carbide cutting tool