JPS6142745A - Optical information reader - Google Patents

Optical information reader

Info

Publication number
JPS6142745A
JPS6142745A JP16515384A JP16515384A JPS6142745A JP S6142745 A JPS6142745 A JP S6142745A JP 16515384 A JP16515384 A JP 16515384A JP 16515384 A JP16515384 A JP 16515384A JP S6142745 A JPS6142745 A JP S6142745A
Authority
JP
Japan
Prior art keywords
optical axis
signal
disk
light receiving
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16515384A
Other languages
Japanese (ja)
Inventor
Toshiji Takei
利治 武居
Yasuaki Morimoto
寧章 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP16515384A priority Critical patent/JPS6142745A/en
Publication of JPS6142745A publication Critical patent/JPS6142745A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/08Disposition or mounting of heads or light sources relatively to record carriers
    • G11B7/09Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
    • G11B7/0908Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following for focusing only

Landscapes

  • Mechanical Optical Scanning Systems (AREA)
  • Optical Recording Or Reproduction (AREA)

Abstract

PURPOSE:To perform defocusing detection with high precision over a wide range and to obtain a tracking deviation signal precisely by processing output signals of two-division photodetecting elements provided across a specific optical system in directions orthogonal to an optical axis and a four-division photodetecting element provided on an optical axis. CONSTITUTION:Light emitted by a semiconductor laser 1 is converged on a disk 6 through a polarization beam splitter (PBS)2, lambda/4 plate 3, collimator lens 4, and objective lens 5. Its reflected light is passed through the PBS2 and split in three directions by a beam splitter 7 to enter the four-division photodetecting element 10 through the two-division photodetecting elements 8 and 8' at image non-formation points B and B' at equal short or long distance from the conjugate points A and A' of the laser 1 and a cylindrical lens 9 on the optical axis. A defocusing signal is obtained from the sum signal of difference components obtained by subtracting outputs of the photodetecting elements 8 and 8' from the output of the photodetecting element 10 and the sum signal of difference signal of the diagonal sums of two couples of photodetecting elements 10 and the tracking deviation signal is obtained from the difference signal of the outputs of photodetecting elements 8 and 8'.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、VD、CD等に記録された情報を、光ビー
ムに依り読み出す光学的情報読取装置、或いは、光ビー
ムに依り情報をディスク等に書き込む光学的情報書き込
み装置に関するものである〔従来技術〕 従来、焦点ずれ検出法に非点収差法、トラッキングずれ
検出法にプツシニブル法を用いた光学的情報読取装置が
知られていた。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an optical information reading device that reads information recorded on a VD, CD, etc. using a light beam, or an optical information reading device that reads information recorded on a VD, CD, etc. using a light beam. [Prior Art] Conventionally, optical information reading devices have been known that use an astigmatism method as a defocus detection method and a pushinable method as a tracking shift detection method.

上述した方法を用いた光学的↑U報読取装置の線図を第
2図に示す。
A diagram of an optical ↑U information reading device using the method described above is shown in FIG.

牛導体レーザ1から放射された光は、偏光ビームスプリ
ッタ2によって、ディスク6方向に100%反射され、
′/4波長板3を介し′ζ、、x IJメータレンズ4
によらて平行光とされ、対物レンズ5を介して、ディス
ク6上に収光される。この光束は、凹凸のビット形状を
持つ情報トラ°ツクにより反射すれ、対物レンズ5.コ
リメータレンズ4゜1/4波長板3.偏光ビームスプリ
ッタ2を介して、入射光束とは直交する向きに透過し、
光軸に垂直な面内で45°回伝させたシリンドリカルレ
ンズ9に入射する。合焦時に各受光素子に等光量入射す
る様に4分割受光素子を配置する。ディスクが近づくと
、第5図(α)に示す様に、ビームは楕円となり、ディ
スクが遠去かると、第3図(bンに示す様に、(α)と
は巣なった方向に楕円となる。この為、(10A+I 
0C)−(10B+10D)より焦点ずれ信号を得、又
、ディスクに刻まれた凹凸ピットによる一次回折光の方
向変化より、トラッキングずれ信号を得ていた。上述し
たトラッキングずれ信号は、シリンドリカルレンズ9の
作用によりディテクタ上では、90°程度回転するので
、(10A+10B)−(10C+10D)より得てい
た。
The light emitted from the conductor laser 1 is 100% reflected in the direction of the disk 6 by the polarizing beam splitter 2.
'ζ,, x IJ meter lens 4 via '/4 wavelength plate 3
The light is converted into parallel light, and the light is focused onto a disk 6 via an objective lens 5. This light beam is reflected by the information track having a concave and convex bit shape, and is reflected by the objective lens 5. Collimator lens 4° 1/4 wavelength plate 3. It passes through the polarizing beam splitter 2 in a direction perpendicular to the incident light beam,
The light enters the cylindrical lens 9 which is rotated by 45° in a plane perpendicular to the optical axis. The four-part light-receiving elements are arranged so that the same amount of light enters each light-receiving element during focusing. As the disk approaches, the beam becomes an ellipse, as shown in Figure 5 (α), and as the disk moves away, the beam (α) becomes an ellipse in the direction of the nest, as shown in Figure 3 (b). Therefore, (10A+I
A defocus signal was obtained from 0C)-(10B+10D), and a tracking deviation signal was obtained from the change in direction of the first-order diffracted light due to the uneven pits carved on the disk. The above-mentioned tracking deviation signal was obtained from (10A+10B)-(10C+10D) because the detector is rotated by about 90 degrees due to the action of the cylindrical lens 9.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし従来の非点収差法とプッシュプル法による方法で
は1、合焦時の4分割受光素子上のビーム形状は、コリ
メータレンズ4とシリンドリカルレンズ9の収差等によ
り真円とはならず、紡錘形となる上、両焦線の間に受光
素子が配置されるので、ディスク像が、正確に90°回
転していない。
However, in the conventional astigmatism method and push-pull method, the beam shape on the four-split light receiving element during focusing is not a perfect circle due to the aberrations of the collimator lens 4 and the cylindrical lens 9, and is spindle-shaped. Moreover, since the light-receiving element is placed between both focal lines, the disk image is not rotated by exactly 90 degrees.

この為、合焦時に、−次回折光の方向変化が、正確に4
分割受光素子のト2ツキングサラボ方向の暗線を境界に
生じないで、微かに傾きを持りていた。従って、トラッ
キングエラー信号に擬信号が混入し、正確にトラックを
トレースできなかった。さらに、焦点ずれ信号とトラッ
キングずれ信号を同一の4分割受光素子より得ているの
で、お互いの信号に影響を与えあい、安定で正確なエラ
ー信号を取り出す事が困難であった。又、非点収差法は
、比較的エラー検出範囲が狭いので、焦点引込回路など
が必要であった。
Therefore, when focusing, the direction change of the -order diffracted light is exactly 4
The dark line in the tracking direction of the split light receiving element did not appear at the boundary, but had a slight inclination. Therefore, a false signal is mixed into the tracking error signal, making it impossible to trace the track accurately. Furthermore, since the defocus signal and the tracking deviation signal are obtained from the same four-split light receiving element, they influence each other's signals, making it difficult to extract a stable and accurate error signal. Furthermore, since the astigmatism method has a relatively narrow error detection range, a focus pull-in circuit or the like is required.

そこでこの発明は従来のこの様な長点を解決する為、焦
点ずれ信号とトラッキングずれ信号とを完全に分離し、
お互いの干渉を生じさせる事なく高精度で安定なエラー
信号を得、さらに、焦点引込回路など特別な回路を必要
としない光学的読取装置を得る事を目的としている。
Therefore, in order to solve these disadvantages of the conventional technology, this invention completely separates the focus shift signal and the tracking shift signal,
The purpose of the present invention is to obtain an optical reading device that obtains highly accurate and stable error signals without mutual interference, and that does not require special circuits such as a focus pull-in circuit.

・  〔問題点を解決する為の手段〕 上記問題点を解決する為にこの発明は、ディスクからの
反射光を収束させるレンズと、対物レンズと上記レンズ
との光軸方向、及び、光軸方向に対して垂直な面内で、
光軸とトラックとがなす平面を境界としてお互い逆向き
、或いは、お互い直交する向きに、光量の等しい2光束
に分けるビームスプリッタと、上記元軸方向に、シリン
ドリカルレンズと、4分割受光素子を配置し、上記光軸
方向に対して垂直な面内の夫々の光軸上に、トラック方
向と平行な方向に分uJ49を有する少なくとも2分割
以上の受光素子を、結像点より等距離だけ離して、一方
はディスクに近い側に、他方はディスクから遠い側に配
置し、焦点ずれ信号を、上記2分割受光素子の一方の、
光軸を含む受光素子の出力から、光軸を含まない受光素
子の出力から、光軸を含む受光素子の出力を引いた第2
の差成分との和信号と、前記4分割受光素子の2対の対
角和の差信号との和信号より得、トラッキングずれ信号
を、前記両方の2分割受光素子のお互いの差信号より得
る事で、焦点ずれ信号とトラッキングずれ信号の相互干
渉性を無くシ、高精度で安定な両エラー信号を得る様に
した。
- [Means for solving the problem] In order to solve the above problem, the present invention provides a lens that converges the reflected light from the disk, an optical axis direction between the objective lens and the lens, and an optical axis direction. In a plane perpendicular to
A beam splitter that divides into two beams of equal light intensity in opposite directions or orthogonal directions with the plane formed by the optical axis and the track as a boundary, and a cylindrical lens and a 4-split light receiving element are arranged in the direction of the original axis. Then, on each optical axis in a plane perpendicular to the optical axis direction, at least two or more divided light receiving elements having a division uJ49 in a direction parallel to the track direction are placed equidistantly apart from the imaging point. , one is placed on the side close to the disk and the other is placed on the side far from the disk, and the defocus signal is transmitted to one of the two split light receiving elements.
The second value is calculated by subtracting the output of the light receiving element that includes the optical axis from the output of the light receiving element that does not include the optical axis from the output of the light receiving element that includes the optical axis.
A tracking deviation signal is obtained from the sum signal of the difference component of the two pairs of diagonal sums of the four-split light-receiving elements, and a tracking deviation signal is obtained from the difference signal between the two two-split light-receiving elements. As a result, the mutual interference between the defocus signal and the tracking deviation signal is eliminated, and both error signals are obtained with high accuracy and stability.

〔作用〕 上記の様に配置し、エラー信号を得ると、上記2分割壺
元素子より得た焦点ずれ信号成分で、広範囲の焦点引込
を行ない、λ分割受光素子より得た焦点ずれ信号成分で
、高精度な焦点サーボを行ない、さらに、ディスク像の
回転を伴う光学素子がディスクからの反射光路中に配置
されていないので、上記両方の2分割受光素子より得た
トラッキングずれ信号を用いると、高精度なトラッキン
グサーボを実現できる。
[Operation] When arranged as above and obtaining an error signal, the defocus signal component obtained from the two-split pot element is used to pull in a wide range of focus, and the defocus signal component obtained from the λ-split photodetector element is used to draw the focus over a wide range. , since high-precision focus servo is performed and an optical element that rotates the disk image is not placed in the reflected optical path from the disk, using the tracking deviation signals obtained from both of the above two-split light receiving elements, Highly accurate tracking servo can be realized.

〔実施例〕〔Example〕

以下にこの発明の実施例を図面に基づいて説明する。 Embodiments of the present invention will be described below based on the drawings.

第1図におC)で、半導体レーザ1より出射された光は
、偏光ビームスプリッタ21 ’/4波長板5を介して
、コリメータレンズ4によって平行光とされ、対物レン
ズ5を介して、ディスク6上に照射される。ディスク6
で反射された光は、対物レンズ5.コリメータレンズ4
を介し、/4波長板5及び偏光ビームスプリッタ2の作
用に依り)入射光束とは直交する向きに分けられ、ビー
ムスプリッタ7に入射する。この時、ビームスプリッタ
7の作用に依り、光軸とトラック方向とがなす平面を境
界とした半面を通過した反射光束と、他の半面を通過し
た反射光束とは、お互い逆向きに光軸方向に垂直な方向
、及び光軸方向の3方向に分けられる。さて、光軸方向
に垂直な方向においては、半導体レーザーの出射端の共
役点A 、 A’より等距離だけ離して、一方はビーム
スプリッタ7より遠い非結像点Bに、他方はビームスプ
リッタ7に近い非結像点B′に、トラック方向に平行な
分割線を有する2分割受光素子8.8′を配置しコ 、夫々の半光束を入射させ、合焦点時に各受光素子の出
力が、同じになる様に、2分割受光素子8.8′を調整
する。
At C) in FIG. 1, the light emitted from the semiconductor laser 1 passes through the polarizing beam splitter 21'/4 wavelength plate 5, is made into parallel light by the collimator lens 4, and is sent to the disk via the objective lens 5. 6. disk 6
The light reflected by the objective lens 5. Collimator lens 4
(via the action of the /4 wavelength plate 5 and the polarizing beam splitter 2), the incident light beam is divided into directions perpendicular to the incident light beam, and enters the beam splitter 7. At this time, due to the action of the beam splitter 7, the reflected light flux that has passed through one half of the plane bordered by the plane formed by the optical axis and the track direction, and the reflected light flux that has passed through the other half, are directed in opposite directions to the optical axis. It is divided into three directions: the direction perpendicular to the direction of the optical axis, and the direction of the optical axis. Now, in the direction perpendicular to the optical axis direction, one is equidistant from the conjugate points A and A' at the emission end of the semiconductor laser, one is at the non-imaging point B which is farther from the beam splitter 7, and the other is at the non-imaging point B from the beam splitter 7. A two-split light receiving element 8.8' having a dividing line parallel to the track direction is placed at a non-imaging point B' close to Adjust the two-split light receiving element 8.8' so that they are the same.

第5図は、反射光束のうち、ビームスプリッタ7で左右
に分れた光束を同一の光軸上に表わし、174波長板5
.偏光ビームスプリッタ2.ビームスプリッタ7を省略
した光路図と各受光素子8゜8′上のビーム状態を表わ
した図である。(α)図は、合焦時、(b)llは、デ
ィスク6が近づいた状態、(C)図は、ディスク6が遠
のいた状態を示す。実際には、レンズの上側と下側を通
過する半光束は、ビームスプリッタ7で第1図に示す様
に、左右に分かれて反射するので、お互いが、影響を与
える事はない。さて、合焦時には、(α)図に示す様に
、各受光素子α、b、c、dの出力は、全て同じになる
。ディスクが近づくと、受光素子8の状態は、ディスク
が遠のいた状態の受光素子8′の状態と同じになる。又
、ディスクが遠のくと、受光素子8の状態は、ディスク
が近づいた状態の受光素子8′の状態と同じにな′る。
FIG. 5 shows, on the same optical axis, the light beams split into left and right by the beam splitter 7 among the reflected light beams, and the 174-wavelength plate 5
.. Polarizing beam splitter 2. 2 is a diagram showing an optical path diagram with the beam splitter 7 omitted and a beam state on each light receiving element 8° 8'. FIG. The figure (α) shows the state in focus, the figure (b) shows the state in which the disc 6 is close, and the figure (C) shows the state in which the disc 6 is far away. In reality, the half-luminous flux passing through the upper and lower sides of the lens is reflected by the beam splitter 7 into left and right sides, as shown in FIG. 1, so that they do not affect each other. Now, at the time of focusing, the outputs of the light receiving elements α, b, c, and d are all the same, as shown in figure (α). When the disk approaches, the state of the light receiving element 8 becomes the same as the state of the light receiving element 8' when the disk moves away. Furthermore, when the disk moves away, the state of the light receiving element 8 becomes the same as the state of the light receiving element 8' when the disk approaches.

この様にして、(8α−8b )±(B’c−B’d 
)より焦点ずれ信号を得る事ができる。即ち、合焦時に
は0となり、ディスクが近づいた時には、負となり、デ
ィスクが遠のいた時には、正となる。
In this way, (8α-8b)±(B'c-B'd
), it is possible to obtain a defocus signal. That is, it becomes 0 when in focus, becomes negative when the disc approaches, and becomes positive when the disc moves away.

さらに、受光素子8,8′の各々の出力特性としては、
第6図に示す様に、ディスクのずれ世に対して、エラー
出力が非線形となるが、上記した様な相補的な信号の取
り方をする事で、エラー出力は、第7図に示す様に、デ
ィスクのずれ士に対し、極めて線形性の良いエラー出力
が得られる。さらに、広範囲の焦点引込が可能となり、
自動引込回路などが不安となる。
Furthermore, the output characteristics of each of the light receiving elements 8 and 8' are as follows:
As shown in Figure 6, the error output becomes non-linear with respect to disc deviation, but by taking the complementary signals as described above, the error output becomes as shown in Figure 7. , an error output with extremely good linearity can be obtained for disk misalignment. Furthermore, it becomes possible to draw the focus over a wide range,
I am worried about the automatic lead-in circuit.

一方、光軸方向においては、適当なシリンドリカルレン
ズ9を配置し、4分割受光素子10を合焦時に各受光素
子出力が同じになる様に配置する。第5図に示した様に
、ディスクのずれに対して、ビームの楕円になる方向が
異なるので、(10A+10(り−(10B+10D)
よりエラー出力が第8図の様に得られる。
On the other hand, in the optical axis direction, a suitable cylindrical lens 9 is arranged, and the four-divided light receiving element 10 is arranged so that the output of each light receiving element becomes the same when focusing. As shown in Figure 5, the direction in which the beam becomes an ellipse differs depending on the disc displacement, so (10A+10(ri-(10B+10D))
As a result, an error output as shown in FIG. 8 is obtained.

又、トラッキングずれ信号は、第1図に示す様に、精確
に(8α+s b ) −(aC+ad)より得る事が
できる。なぜならば、トラックで発生した一次回折光は
、受光素子8.8′に到達する間に像回転を伴う光学素
子を通過していないので、トラックずれに伴い、トラッ
ク方向に垂直な方向に偏向して受光素子8.8′に異な
る強度で入射する為である。従来、トラッキングずれ信
号は、(10A+10B)−(100+10D)から得
ていたが、前述した様に、焦点ずれ信号との相互干渉が
生じる上、擬信号が混入するので、高精度なトラッキン
グサーボには不向きである。
Further, as shown in FIG. 1, the tracking deviation signal can be accurately obtained from (8α+s b )−(aC+ad). This is because the first-order diffracted light generated on the track does not pass through an optical element that rotates the image while reaching the light-receiving element 8.8', so it is deflected in the direction perpendicular to the track direction due to track deviation. This is because the light enters the light receiving element 8.8' with different intensities. Conventionally, the tracking deviation signal was obtained from (10A+10B)-(100+10D), but as mentioned above, mutual interference with the focus deviation signal occurs and pseudo signals are mixed in, so this is not suitable for high-precision tracking servo. Not suitable.

又、RIF信号は、各受光素子の出力の和、即ち(8α
+ah)+CB’c+s’d)+ (10A+10Eン
+(100+10D)より得る事ができる。
In addition, the RIF signal is the sum of the outputs of each light receiving element, that is, (8α
It can be obtained from +ah)+CB'c+s'd)+(10A+10En+(100+10D).

そこで、2分割受光素子8.8′による焦点ずれ検出を
広範囲に設定し、4分割受光素子10による焦点ずれ検
出を極めて高感度に設定しておき、両焦点ずれ信号の和
信号を焦点ずれ信号にすると、第9図の様なエラー出力
が得られる。従って、広範囲の焦点引込と共に、高精度
な焦点ずれ検出が可能とな為。従って、焦点自動引込回
路等、特別な回路が不要となる。又、トラックずれ信号
は、トラックで発生した一次回折光を精確に把えた2分
割受光累子8,8′の出力より得ているので、極めて高
精度なトラッキングサーボが可能となる。
Therefore, the defocus detection by the two-split light receiving element 8,8' is set to a wide range, and the defocus detection by the four-divided light receiving element 10 is set to extremely high sensitivity, and the sum signal of both defocus signals is used as the defocus signal. If so, an error output as shown in FIG. 9 will be obtained. Therefore, it is possible to focus in a wide range and detect defocus with high precision. Therefore, a special circuit such as an automatic focus pull-in circuit is not required. Furthermore, since the track deviation signal is obtained from the output of the two-part light receiving lattice element 8, 8' which accurately captures the first-order diffracted light generated on the track, extremely high-precision tracking servo is possible.

尚、上記実施例で用いたビームスプリッタ7は、第10
図に示す様に、反射光束をお互いに直交する向きと、光
軸方向の5方向に分けるものでも良い。
Note that the beam splitter 7 used in the above embodiment is the 10th beam splitter 7.
As shown in the figure, the reflected light beam may be divided into five directions, one in each orthogonal direction and the other in the optical axis direction.

〔発明の効果〕〔Effect of the invention〕

以上述べた様に、本発明に依れば、焦点ずれ検出を極め
て広範囲に、しがち極めて高精度に行なう事ができると
共に、トラッキングずれ信号を精確に把える事ができる
ので、極めて高精度なトラッキング検出を行なう事がで
きる。
As described above, according to the present invention, defocus detection can be performed over an extremely wide range with extremely high accuracy, and since the tracking deviation signal can be accurately grasped, it is possible to detect defocus with extremely high precision. Tracking detection can be performed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図 本発明に係る光学系の線図 第2図 従来の非点収差法における光学系の線図 第5図 従来の非点収差法における4分割受光素子上の
ビーム状態図 (α)ディスクが近づいた時 (b)ディスクが遠のいた時 第4図 従来の非点収差法における4分割受光素子上の
合焦時のビーム状態図 第5図 本発明に係る焦点ずれ検出法における光路図と
2分割受光素子上のビーム状 態図 (α)合焦時 (b)ディスクが近づいた時 (C)ディスクが遠のいた時 嬉6図 本発明に係る片側2分割受光素子の焦点ずれ」
とエラー量との関係を示した 図 第7図 本発明に係る焦点ずれ検出法における焦点ずれ
量とエラー量との関係を示し た図 @8図 従来の非点収差法における焦点ずれ社とエラー
量との関係を示した図 第9図 本発明に係る焦点ずれ検出法における焦点ずれ
鼠とエラー量との関係を示し た図 第10図本発明に係るお互い直交する向きと、光軸方向
の5軸方向に分けるビームス プリッタを示した図 1・・・・・・半導体レーザ 2・・・・・・偏光ビームスプリッタ 5・・・・・・1/4波長板 4・・・・・・コリメータレンズ 5−・1・・対°物しンズ 6・・・・・・ディスク 7・・・・・・ビームスプリッタ 8.8′・・・・・・2分割受光素子 9・・・・・・シリンドリカルレンズ 10・・・4分割受光素子 以  上
Fig. 1 Diagram of the optical system according to the present invention Fig. 2 Diagram of the optical system in the conventional astigmatism method Fig. 5 Beam state diagram (α) disk on the 4-split light receiving element in the conventional astigmatism method (b) When the disk is far away. Figure 4. Beam state diagram when focused on the 4-split light receiving element in the conventional astigmatism method. Figure 5. Optical path diagram in the defocus detection method according to the present invention. Beam state diagram on the two-split photodetector (α) When in focus (b) When the disk approaches (C) When the disk is far away Figure 6: Defocus of the one-sided two-split photodetector according to the present invention
Figure 7 shows the relationship between the amount of defocus and the amount of error Figure 8 shows the relationship between the amount of defocus and the amount of error in the defocus detection method according to the present invention Defocus amount and error in the conventional astigmatism method Fig. 9 shows the relationship between the amount of defocus and the amount of error in the defocus detection method according to the present invention Fig. 10 shows the relationship between the directions perpendicular to each other and the optical axis direction according to the present invention Figure 1 shows a beam splitter that divides the beam into five axial directions...Semiconductor laser 2...Polarizing beam splitter 5...1/4 wavelength plate 4...Collimator Lens 5-1...Objective lens 6...Disc 7...Beam splitter 8.8'...Two-split light receiving element 9... Cylindrical lens 10...4 division light receiving element or more

Claims (1)

【特許請求の範囲】[Claims]  ディスク等に記録された情報を光学的に非接触で検出
する装置、又は、ディスク等に情報を光学的に記録する
事を目的とする装置において、少なくとも、前記ディス
クからの反射光束を集光させる対物レンズと、前記対物
レンズを介した光を収束させるレンズと、前記対物レン
ズと前記レンズとの光軸方向、及び、光軸方向に対して
垂直な面内で光軸とトラックとがなす平面を境界として
、お互い逆向き、或いは、お互い直交する向きに光量の
等しい2光束に分けるビームスプリッタと、前記光軸方
向に、シリンドリカルレンズと4分割受光素子を配置し
、前記光軸方向に対して垂直な面内の夫々の光軸上に、
トラック方向と平行な方向に分割線を有する少なくとも
2分割以上の受光素子を、結像点より等距離だけ離して
、一方はディスクに近い側に、他方はディスクから遠い
側に配置し、焦点ずれ信号を、前記2分割受光素子の一
方の、光軸を含む光学素子の出力から、光軸を含まない
受光素子の出力を引いた第1の差成分と、前記2分割受
光素子の他方の、光軸を含まない受光素子の出力から、
光軸を含む受光素子の出力を引いた第2の差成分との和
信号と、前記4分割受光素子の2対の対角和の差信号と
の和信号より得、トラッキングずれ信号を、前記両方の
2分割受光素子のお互いの差信号より得る事を特徴とす
る光学的情報読取装置。
In a device that optically detects information recorded on a disk, etc. without contact, or in a device that aims to optically record information on a disk, etc., at least a beam reflected from the disk is condensed. an objective lens, a lens that converges light passing through the objective lens, an optical axis direction between the objective lens and the lens, and a plane formed by the optical axis and the track in a plane perpendicular to the optical axis direction. A beam splitter that divides the beam into two light beams having equal amounts of light in directions opposite to each other or perpendicular to each other, and a cylindrical lens and a four-split light receiving element arranged in the optical axis direction, On each optical axis in the vertical plane,
At least two or more light-receiving elements having dividing lines parallel to the track direction are placed equidistantly apart from the imaging point, one on the side closer to the disk and the other on the side farther from the disk, and The signal is a first difference component obtained by subtracting the output of a light receiving element that does not include the optical axis from the output of one of the two-split light receiving elements that includes the optical axis, and the other of the two split light receiving elements. From the output of the photodetector that does not include the optical axis,
The tracking deviation signal is obtained from the sum signal of the second difference component obtained by subtracting the output of the light receiving element including the optical axis, and the difference signal of the two pairs of diagonal sums of the four-divided light receiving element, and An optical information reading device characterized in that information is obtained from a difference signal between both two-split light-receiving elements.
JP16515384A 1984-08-07 1984-08-07 Optical information reader Pending JPS6142745A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16515384A JPS6142745A (en) 1984-08-07 1984-08-07 Optical information reader

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16515384A JPS6142745A (en) 1984-08-07 1984-08-07 Optical information reader

Publications (1)

Publication Number Publication Date
JPS6142745A true JPS6142745A (en) 1986-03-01

Family

ID=15806878

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16515384A Pending JPS6142745A (en) 1984-08-07 1984-08-07 Optical information reader

Country Status (1)

Country Link
JP (1) JPS6142745A (en)

Similar Documents

Publication Publication Date Title
JPH0582658B2 (en)
JPS59231736A (en) Focus and tracking error detector
JP3044667B2 (en) Optical reader
JPS6142743A (en) Optical information reader
JPS6142745A (en) Optical information reader
US6801491B1 (en) Focus error detecting apparatus of optical pickup with a light separating and astigmatism generation optical element and detection method thereof
JPS6159630A (en) Focus detector
JPS61227233A (en) Optical reading device
JP2552660B2 (en) Focus error detector
JPH0240576Y2 (en)
JPH0743835B2 (en) Focus error detector
JPH0556568B2 (en)
JPS60177436A (en) Optical pickup
JPS5845629A (en) Condensing device having focal error signal detecting function
JP2686323B2 (en) Focus error detection device
JPS60175223A (en) Optical information reader
JPS61113137A (en) Optical head
JPH01241031A (en) Optical information processor
JPH03130937A (en) Focus detector
JPS61172226A (en) Optical information reader
JPS59116938A (en) Optical information detecting device
JPS6032132A (en) Optical head device
JPH06274929A (en) Optical head device
JPH03203843A (en) Automatic tracking method for magneto-optical disk
JPS61172227A (en) Optical information reader