JPS6142440B2 - - Google Patents

Info

Publication number
JPS6142440B2
JPS6142440B2 JP11622480A JP11622480A JPS6142440B2 JP S6142440 B2 JPS6142440 B2 JP S6142440B2 JP 11622480 A JP11622480 A JP 11622480A JP 11622480 A JP11622480 A JP 11622480A JP S6142440 B2 JPS6142440 B2 JP S6142440B2
Authority
JP
Japan
Prior art keywords
temperature
metal
brazing
airtight container
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11622480A
Other languages
Japanese (ja)
Other versions
JPS5740960A (en
Inventor
Taiji Noda
Shinzo Sakuma
Yoshuki Kashiwagi
Tsutae Suzuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Original Assignee
Meidensha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp filed Critical Meidensha Corp
Priority to JP11622480A priority Critical patent/JPS5740960A/en
Publication of JPS5740960A publication Critical patent/JPS5740960A/en
Publication of JPS6142440B2 publication Critical patent/JPS6142440B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K5/00Casings, cabinets or drawers for electric apparatus
    • H05K5/06Hermetically-sealed casings
    • H05K5/066Hermetically-sealed casings sealed by fusion of the joining parts without bringing material; sealed by brazing

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Casings For Electric Apparatus (AREA)

Description

【発明の詳細な説明】 本発明は電気機器の気密容器とその製造方法に
係り、特に無機絶縁物からなる絶縁ケースあるい
は絶縁板と金属からなる金属板あるいは金属ケー
スとを気密に接合してなる電気機器の気密容器と
その製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an airtight container for electrical equipment and a method for manufacturing the same, and more particularly, the present invention relates to an airtight container for electrical equipment and a method for manufacturing the same, and in particular, the invention is made by airtightly joining an insulating case or insulating plate made of an inorganic insulator to a metal plate or metal case made of metal. This article relates to an airtight container for electrical equipment and its manufacturing method.

一般に、真空しや断器,真空ヒユーズ,真空管
等の電気機器の真空容器,あるいは電力用のダイ
オード,トランジスタ,サイリスタ,GTO等の
電気機器における半導体を気密に収納する気密容
器は、アルミナセラミツク等の無機絶縁物からな
る絶縁ケースあるいは絶縁板と、金属からなる金
属板あるいは金属ケースとをろう付けにより気密
に接合して構成されている。
In general, vacuum containers for electrical equipment such as vacuum shields, disconnectors, vacuum fuses, and vacuum tubes, and airtight containers for airtightly storing semiconductors in electrical equipment such as power diodes, transistors, thyristors, and GTOs are made of alumina ceramics, etc. It is constructed by airtightly joining an insulating case or plate made of an inorganic insulator and a metal plate or case made of metal by brazing.

しかして、上記従来の気密容器の一部を構成す
る金属板あるいは金属ケースは、アルミナセラミ
ツク等の無機絶縁物と近似した熱膨張係数のもの
が望ましいとされ、一般にFe―Ni―Co合金(コ
バール)やFe―Ni合金からなるものが用いられ
ている。
Therefore, it is desirable that the metal plate or metal case constituting a part of the conventional airtight container have a coefficient of thermal expansion similar to that of an inorganic insulator such as alumina ceramic, and generally Fe-Ni-Co alloy (Kovar ) and Fe-Ni alloys are used.

しかし、Fe―Ni―Co合金、Fe―Ni合金は、ア
ルミナセラミツク等の無機絶縁物の熱膨張係数が
4〜7×10-6/℃であるのに対して、その熱膨張
係数が4.5〜6.6×10-6/℃となり、各温度(T)
における熱膨張係数(α)の関係、すなわちα―
T特性が必ずしも完全に一致しておらず、また
Fe―Ni―Co合金,Fe―Ni合金の弾性率は、1.4×
104Kg/mm2(20℃)であり、アルミナセラミツク
等の無機絶縁物とのろう付けによつて発生する熱
応力σ〔σ=ε.E(σ;Kg/mm2,ε=Δ/
,E;Kg/mm2)、Δ=Δα..ΔT(Δ
;温度変化ΔTに対する伸び,;元の長さ,
Δα;コバール等とアルミナセラミツクとの熱膨
張係数の差)〕が大きくなる。したがつて、両者
のろう付けによつて生ずる熱応力を緩和するため
に、Fe―Ni―Co合金等からなる金属板あるいは
金属ケースの肉厚を薄くしたり、あるいは金属板
等に段付またはU字状に形成した応力緩和部を設
ける必要が生じている。
However, Fe-Ni-Co alloys and Fe-Ni alloys have thermal expansion coefficients of 4.5 to 7 × 10 -6 /°C, while inorganic insulators such as alumina ceramics have thermal expansion coefficients of 4 to 7 × 10 -6 /°C. 6.6×10 -6 /℃, each temperature (T)
The relationship between the coefficient of thermal expansion (α) in
The T characteristics do not necessarily match perfectly, and
The elastic modulus of Fe-Ni-Co alloy and Fe-Ni alloy is 1.4×
10 4 Kg/mm 2 (20℃), and the thermal stress σ [σ = ε. E(σ; Kg/mm 2 , ε=Δ/
, E; Kg/mm 2 ), Δ=Δα. .. ΔT(Δ
;Elongation against temperature change ΔT, ;Original length,
Δα (difference in coefficient of thermal expansion between Kovar etc. and alumina ceramic)] increases. Therefore, in order to alleviate the thermal stress caused by brazing the two, it is necessary to reduce the thickness of the metal plate or metal case made of Fe-Ni-Co alloy, etc., or to make the metal plate etc. It has become necessary to provide a U-shaped stress relief section.

さらに、コバール等は、これを形成するCo,
Niの少資源のため価格が高いという欠点があ
る。
Furthermore, Kovar et al.
The drawback is that the price is high due to the limited amount of Ni resources.

本発明は上述した問題に鑑みてなされたもの
で、その目的とするところは、無機絶縁物からな
る絶縁ケースあるいは絶縁板と金属からなる金属
板あるいは金属ケースとを、両者の接合面間にろ
う付け温度からの冷却過程において塑性変形自在
の金属からなる薄板状の補助部材を介在せしめて
やろう付けにより接合することによつて、気密性
および接合強度に優れるとともに、金属からなる
金属板,金属ケースの形状が簡単にして、かつ安
価な電気機器の気密容器を提供するにある。以
下、図面を用いてこの発明の実施例を詳細に説明
する。
The present invention has been made in view of the above-mentioned problems, and its purpose is to connect an insulating case or insulating plate made of an inorganic insulating material and a metal plate or metal case made of metal by connecting a bonding surface between the two. By interposing thin plate-like auxiliary members made of plastically deformable metal during the cooling process from the bonding temperature and joining by brazing, it is possible to achieve excellent airtightness and bonding strength, and to bond metal plates and metals made of metal. To provide an airtight container for electrical equipment whose case has a simple shape and is inexpensive. Embodiments of the present invention will be described in detail below with reference to the drawings.

本発明に係る気密容器は、容器内を高真空に拝
気して接点,ヒユーズ等を収納したり、あるいは
容器内に乾燥窒素ガス等の不活性ガスを封入して
電力用のダイオード,トランジスタ,サイリス
タ,GTO等の半導体を収納するためのものであ
り、第1図に示すように、円筒状に形成されたア
ルミナセラミツクあるいは結晶化ガラス等の無機
絶縁物からなる絶縁ケース1の両端面に、アルミ
ナセラミツク等と近似した熱膨張係数のMo―Mn
―Ti合金,Mo―Mn合金等からなるメタライズ層
2を形成し、各メタライズ層2に絶縁ケース1の
開口端を閉塞するオーステナイト系ステンレス鋼
(以下、単に「ステンレス鋼」という),鋼あるい
は鉄等の金属からなる円板状の金属板3,3を、
両者の接合面間にリング状の補助部材4をそれぞ
れ介在せしめて気密にろう付けして構成されてい
る。そして、各補助部材4は、10-4Torr以下の
真空雰囲気中あるいは水素ガス等の非酸化性また
は還元性のガス雰囲気中においてろう付け可能に
して、かつろう付け後の冷却過程において塑性変
形自在な銅あるいは金属からなるものであり、そ
の肉厚は0.1mm以上1mm以下に形成されている。
なお、各金属板3は、気密容器内に収納される各
種電気機器への通電による渦流損失によつて生ず
る温度上昇を防止する場合には、非磁性材である
銅,ステンレス鋼が用いられ、各種電気機器への
通電容量が小さくその影響が問題とされない場合
には、銅、ステンレス鋼より安価な鉄が用いられ
るものであり、また機械的強度が要求される場合
には、鉄,ステンレス鋼が用いられ、さらに耐食
性が要求される場合には、ステンレス鋼からなる
ものが用いられるものである。
The airtight container according to the present invention can be used to store contacts, fuses, etc. by keeping the inside of the container in a high vacuum, or by filling the container with an inert gas such as dry nitrogen gas to store power diodes, transistors, etc. It is used to house semiconductors such as thyristors and GTOs, and as shown in Fig. 1, an insulating case 1 made of an inorganic insulator such as alumina ceramic or crystallized glass is formed into a cylindrical shape, and on both ends thereof, as shown in FIG. Mo-Mn with a thermal expansion coefficient similar to that of alumina ceramics, etc.
-Austenitic stainless steel (hereinafter simply referred to as "stainless steel"), steel, or iron to form a metallized layer 2 made of Ti alloy, Mo-Mn alloy, etc., and close the open end of the insulating case 1 on each metallized layer 2. Disc-shaped metal plates 3, 3 made of metal such as,
A ring-shaped auxiliary member 4 is interposed between the joint surfaces of the two and airtightly brazed. Each auxiliary member 4 can be brazed in a vacuum atmosphere of 10 -4 Torr or less or in a non-oxidizing or reducing gas atmosphere such as hydrogen gas, and can be plastically deformed during the cooling process after brazing. It is made of copper or metal, and its wall thickness is 0.1 mm or more and 1 mm or less.
In addition, each metal plate 3 is made of non-magnetic material such as copper or stainless steel when preventing temperature rise caused by eddy current loss due to energization of various electrical devices housed in an airtight container. Iron, which is cheaper than copper or stainless steel, is used when the current carrying capacity of various electrical equipment is small and its influence is not a problem, and when mechanical strength is required, iron or stainless steel is used. If corrosion resistance is required, one made of stainless steel is used.

第2図は本発明に係る気密容器の第2実施例の
半截断面図で、この実施例の気密容器は、前述し
た第1実施例の気密容器における絶縁ケース1と
金属板3との接合が、両者間に補助部材4を介在
せしめたいわゆるバツトシールによるものである
のに対して、メタライズ層2を形成した絶縁ケー
ス1の両端面と皿状に形成された金属板5,5の
周縁端面とを、両端面間に補助部材4をそれぞれ
介在せしめて気密にろう付けしたいわゆるエツジ
シールによつて接合して設けられている。
FIG. 2 is a half-cut sectional view of a second embodiment of the airtight container according to the present invention. , is a so-called butt seal in which an auxiliary member 4 is interposed between the two, whereas both end faces of the insulating case 1 on which the metallized layer 2 is formed and the peripheral end faces of the metal plates 5, 5 formed in a dish shape. are joined by a so-called edge seal, which is airtightly brazed with an auxiliary member 4 interposed between both end faces.

第3図は本発明に係る気密容器の第3実施例の
半截断面図で、この実施例の気密容器は、絶縁ケ
ース1の両端付近の外周面にメタライズ層6を形
成し、それぞれのメタライズ層6に絶縁ケース1
の外径より適宜大径のキヤツプ状に形成した金属
板7をそれぞれ嵌装するとともに、両者をその接
合面間に前述した補助部材4と同様の金属からな
り、かつ薄肉の円環状に形成された補助部材8を
それぞれ介在せしめて気密にろう付けした、いわ
ゆるコンプレツシヨンシールによつて接合して設
けられている。
FIG. 3 is a half-cut sectional view of a third embodiment of the airtight container according to the present invention. 6 and insulation case 1
A cap-shaped metal plate 7 having a diameter suitably larger than the outer diameter of the cap is fitted between the two, and a metal plate 7 made of the same metal as the auxiliary member 4 described above and formed in a thin annular shape is fitted between the joint surfaces of the two. The auxiliary members 8 are interposed therebetween and are joined by a so-called compression seal, which is airtightly brazed.

また、第4図,第5図および第6図はそれぞれ
本発明に係る第4実施例,第5実施例および第6
実施例の半截断面図を示すもので、第4〜第6実
施例の気密容器は、第1〜第3実施例のものが無
機絶縁物からなる絶縁ケース1を補助部材4,8
を介在せしめて金属からなる金属板3,5,7に
より気密に閉塞して構成したものであるのに対し
て、金属からなるケースを補助部材を介在せしめ
て無機絶縁物からなる絶縁板により気密に閉塞し
て構成されている。
Furthermore, FIGS. 4, 5, and 6 show the fourth, fifth, and sixth embodiments of the present invention, respectively.
This figure shows a half-cut sectional view of the embodiments, and the airtight containers of the fourth to sixth embodiments are different from those of the first to third embodiments, in which the insulating case 1 made of an inorganic insulator is connected to the auxiliary members 4 and 8.
In contrast, a case made of metal is sealed airtight by an insulating plate made of an inorganic insulator with an auxiliary member interposed between the metal case and the metal plates 3, 5, and 7 made of metal. It is composed of a closed system.

すなわち、第4実施例の気密容器は、ほぼ円板
状に形成されたアルミナセラミツク等の無機絶縁
物から絶縁板9における外周縁部付近の一端面
に、第1〜第3実施例の気密容器のメタライズ層
2,6と同様の金属からなるメタライズ層10を
形成し、このメタライズ層10と有底円筒状(カ
ツプ状)に形成された金属ケース11を、その開
口縁に外側方へ延設して設けたフランジ部11a
を介し、かつこのフランジ部11aとメタライズ
層10との間に前述した第1実施例の気密容器に
おける補助部材4と同様の形状にしてかつ同様の
金属からなる補助部材12を介在せしめてろう付
けにより気密に接合して設けられている。
That is, the airtight container of the fourth embodiment is made of an inorganic insulator such as alumina ceramic formed into a substantially disk shape, and the airtight container of the first to third embodiments is attached to one end surface near the outer peripheral edge of the insulating plate 9. A metallized layer 10 made of the same metal as the metallized layers 2 and 6 is formed, and the metallized layer 10 and a metal case 11 formed in a cylindrical shape with a bottom (cup shape) are extended outwardly at the edge of the opening. The flange portion 11a provided as
An auxiliary member 12 having the same shape and made of the same metal as the auxiliary member 4 in the airtight container of the first embodiment is interposed between the flange portion 11a and the metallized layer 10, and then brazed. They are airtightly connected.

また、第5実施例の気密容器は、第4実施例の
ものがいわゆるバツトシールによるものであるる
のに対し、絶縁板9のメタライズ層10と金属ケ
ース11の開口端面とを、両者間に補助部材12
を介在せしめてろう付けにより気密に接合した。
いわゆるエツジシールにより接合して設けられて
いるものであり、さらに第6実施例の気密容器
は、絶縁板9の外周面にメタライズ層13を形成
し、このメタライズ層13と金属ケース11の開
口部付近の内周面とを、両者間に円環状に形成さ
れた補助部材14を介在せしめてろう付けにより
気密に接合した、いわゆるコンプレツシヨンシー
ルにより接合して設けられている。
In addition, the airtight container of the fifth embodiment uses a so-called butt seal in the fourth embodiment, whereas the metallized layer 10 of the insulating plate 9 and the open end surface of the metal case 11 are assisted between the two. Member 12
They were joined airtightly by brazing with
Furthermore, the airtight container of the sixth embodiment has a metallized layer 13 formed on the outer peripheral surface of the insulating plate 9, and the metallized layer 13 and the vicinity of the opening of the metal case 11. The inner peripheral surface is provided by a so -called complex shyon seal, in which the auxiliary member 14 formed in a ring between the two is interposed and joined by the airtight.

なお、第1〜第3実施例の気密容器において
は、円筒状に形成した絶縁ケース1を用いた場合
について説明し、第4〜第6実施例の気密容器に
おいては、有底円筒状に形成した金属ケース11
を用いた場合について説明したが、ケースは、こ
のような形状に限定されるものではなく、例えば
直方体状の絶縁ブロツクの一面に凹部を設けたも
のをケースとしたりあるいは、直方体の箱状の金
属ケースを用いてもよいものである。
In addition, in the airtight containers of the first to third embodiments, a case will be explained in which the insulating case 1 formed in a cylindrical shape is used, and in the airtight containers of the fourth to sixth embodiments, the insulating case 1 is formed in a cylindrical shape with a bottom. metal case 11
However, the case is not limited to this shape; for example, the case may be a rectangular parallelepiped insulating block with a recess on one side, or a rectangular parallelepiped box-shaped metal case. A case may also be used.

以上の構成からなる気密容器の製造方法を第1
実施例のものを例に挙げて述べると、まず、一方
の金属板3を水平に支持し、この金属板3上に一
方の補助部材4,絶縁ケース1,他方の補助部材
4および他方の金属板3を、それぞれの接合面間
にリング状の板ろうを介装しつつ積み重ねるが如
くして第1図に示すように載置し気密容器を仮組
立する。ついで、仮組立した気密容器を、
10-4Torr以下の圧力の真空雰囲気あるいは水素
ガス等の非酸化性または還元性のガス雰囲気に保
持自在の加熱炉中に納置し、500〜600℃以上1050
℃未満の温度で加熱し、各構成部材の脱ガスと同
時に気密ろう付けを行なう。そして、加熱炉内
を、横軸に処理時間(H)、縦軸に炉内温度
(℃)をとつた第7図に示すように、炉中冷却に
よりろう付け温度T1から補助部材4の塑性変形
に最適な塑性変形温度T2まで降下せしめ、この
塑性変形温度T2を補助部材4の塑性変形に要す
る所定の保持時間h保持し、しかる後に炉内を再
び炉中冷却により塑性変形温度T2から室温T3
で降下させた後に気密容器を取出すと所望のもの
が得られる。
The first method for manufacturing an airtight container having the above configuration is as follows.
Taking the embodiment as an example, first, one metal plate 3 is supported horizontally, and one auxiliary member 4, the insulating case 1, the other auxiliary member 4, and the other metal plate are placed on this metal plate 3. The plates 3 are placed one on top of the other with a ring-shaped solder plate interposed between their joint surfaces, as shown in FIG. 1, to temporarily assemble an airtight container. Next, the temporarily assembled airtight container,
Stored in a heating furnace that can be maintained in a vacuum atmosphere at a pressure of 10 -4 Torr or less or a non-oxidizing or reducing gas atmosphere such as hydrogen gas, and heated to a temperature of 500 to 600°C or higher at 1050°C or higher.
Heating is performed at a temperature below 0.degree. C., and air-tight brazing is performed at the same time as degassing of each component. As shown in FIG. 7, in which the horizontal axis represents the processing time (H) and the vertical axis represents the furnace temperature (°C), the heating furnace is cooled from the brazing temperature T 1 to the auxiliary member 4. The plastic deformation temperature T 2 is lowered to the optimum plastic deformation temperature T 2 , this plastic deformation temperature T 2 is maintained for a predetermined holding time h required for plastic deformation of the auxiliary member 4 , and then the inside of the furnace is cooled again to lower the plastic deformation temperature. The desired product can be obtained by removing the airtight container after cooling from T 2 to room temperature T 3 .

ここで、アルミナセラミツク等の無機絶縁物か
らなる絶縁ケース1あるいは絶縁板9と、その熱
膨張係数が必ずしも一致しない金属からなる金属
板3,5,7あるいは金属ケース11との気密接
合を、銅あるいは鉄からなる薄肉状の補助部材
4,8,12,14を両部材の接合面間に介在せ
しめてろう付けすることによつて、気密性および
接合強度に優れ、かつ金属板3,5,7あるいは
金属ケース11の形状を簡単にし得る気密容器を
得ることができるのは、以下に述べる理由による
ものと考えられる。
Here, the insulating case 1 or the insulating plate 9 made of an inorganic insulating material such as alumina ceramic, and the metal plates 3, 5, 7 or the metal case 11 made of a metal whose thermal expansion coefficients do not necessarily match each other are airtightly joined to each other by using copper. Alternatively, by interposing thin-walled auxiliary members 4, 8, 12, and 14 made of iron between the joint surfaces of both members and brazing them, excellent airtightness and joint strength can be obtained, and the metal plates 3, 5, The reason why it is possible to obtain an airtight container in which the shape of the metal case 7 or the metal case 11 can be simplified is considered to be due to the following reasons.

すなわち、温度に対する銅の抗張力と伸びおよ
び鉄の抗張力と伸びは、横軸に温度℃、縦軸に抗
張力(Kg/mm2)と伸び(%)をとつた第8図にお
いて、それぞれ曲線A1,A2および曲線B1,B2
示すように、抗張力は温度の上昇にしたがつて減
少し、伸びは温度の上昇にしたがつてほぼ増大す
ることが知られている。このように、銅と鉄とは
ほぼ同様の機械的性質を備えているので、以下、
補助部材4,8,12,14を銅とした場合につ
いて述べると、銅はその見掛けの弾性率が前述し
た応力σと弾性率Eとの関係式および第8図から
200℃において約30Kg/mm2と小さく、かつ0℃に
おいても約46Kg/mm2と小さいことが知られる。し
たがつて、銅とアルミナセラミツク等の無機絶縁
物との熱膨張係数の差および温度変化に基づいて
両者のろう付けにより発生する熱応力が小さくな
るためと考えられる。
In other words, the tensile strength and elongation of copper and the tensile strength and elongation of iron with respect to temperature are shown by curve A 1 in Figure 8, where the horizontal axis is the temperature °C, and the vertical axis is the tensile strength (Kg/mm 2 ) and elongation (%). , A 2 and curves B 1 and B 2 , it is known that the tensile strength decreases as the temperature increases, and the elongation almost increases as the temperature increases. In this way, copper and iron have almost the same mechanical properties, so below,
Regarding the case where the auxiliary members 4, 8, 12, and 14 are made of copper, the apparent elastic modulus of copper is determined from the above-mentioned relational expression between stress σ and elastic modulus E and from FIG.
It is known that it is as small as about 30 Kg/mm 2 at 200°C, and as small as about 46 Kg/mm 2 even at 0°C. Therefore, it is thought that this is because the thermal stress generated by brazing the copper and the inorganic insulating material such as alumina ceramic becomes smaller based on the difference in thermal expansion coefficient between the two and the temperature change.

また補助部材4,8,12,14を銅とした場
合における製造方法において、、炉内でのろう付
け後、ろう付け温度から室温までの冷却過程にお
いて所定温度で所定時間保持する理由は以下に述
べることに基づくものである。
In addition, in the manufacturing method when the auxiliary members 4, 8, 12, and 14 are made of copper, the reason why the cooling process from the brazing temperature to room temperature after brazing in the furnace is maintained at a predetermined temperature for a predetermined time is as follows. It is based on what you say.

すなわち、銅の一定温度,一定負荷(7.3Kg/
mm2の引張荷重)条件下における負荷時間に対する
クリープ伸びは、横軸に負荷時間H,縦軸にクリ
ープ伸び%をとつた第9図において、200℃,300
℃および400℃におけるものをそれぞれ曲線A,
BおよびCで示すように、200℃以下の温度条下
においてはほとんどクリープ伸び、換言すれば熱
応力を緩和するための塑性変形が行なわれず、
300℃、400℃と高温の温度条件下においては負荷
時間を保持することによつて生ずることが判る。
In other words, copper at a constant temperature and a constant load (7.3Kg/
The creep elongation with respect to the loading time under the condition (tensile load of mm 2
Curves A and 400℃ respectively.
As shown in B and C, at temperatures below 200°C, there is almost no creep elongation, in other words, no plastic deformation to relieve thermal stress occurs.
It can be seen that under high temperature conditions of 300°C and 400°C, this is caused by maintaining the load time.

したがつて、炉内でのろう付け後、炉中冷却に
よりろう付け温度T1から塑性変形温度T2まで降
下させ、この塑性変形温度T2を所定の保持時間
h保持し、しかる後に、再び炉中冷却により塑性
変形温度T2から室温T3まで降下させることによ
つて両者の接合によつて生ずる残留熱応力をほぼ
完全に零にすることができる。
Therefore, after brazing in the furnace, the brazing temperature T 1 is lowered to the plastic deformation temperature T 2 by cooling in the furnace, this plastic deformation temperature T 2 is maintained for a predetermined holding time h, and then the temperature is lowered again. By cooling in the furnace to lower the plastic deformation temperature T 2 to room temperature T 3 , the residual thermal stress caused by joining the two can be almost completely reduced to zero.

この場合において塑性変形温度T2が高ければ
高いほどろう付け温度T1から塑性変形温度T2
での温度降下によつて生じる残留熱応力を短時間
に零とし得、保持時間hを短かくすることができ
るが、逆に塑性変形温度T2から室温T3までの温
度降下によつて生じる残留熱応力が大きくなつて
しまう。
In this case, the higher the plastic deformation temperature T 2 is, the faster the residual thermal stress caused by the temperature drop from the brazing temperature T 1 to the plastic deformation temperature T 2 can be brought to zero, and the holding time h can be shortened. However, the residual thermal stress caused by the temperature drop from the plastic deformation temperature T 2 to the room temperature T 3 increases.

また、上述した塑性変形温度T2と保持時間h
とは、補助部材4,8,12,14となる金属の
種類により異なるものであり、例えば補助部材
4,8,12,14を炭素鋼あるいはステンレス
鋼とした場合には、横軸に温度T、縦軸に熱応力
σをとつた第10図において、炭素鋼およびステ
ンレス鋼のクリープ速度をそれぞれ曲線Aおよび
Bで示すように、それぞれの熱応力の緩和に効果
的な温度は、炭素鋼が約500℃以上であり、ステ
ンレス鋼が約600℃以上であることが判る。した
がつて、クリープ速度曲線と前述した塑性変形温
度T2との関係から、炭素鋼の場合には、500℃を
塑性変形温度T2とすることによりある程度の熱
応力の緩和を図ることができるが、ステンレス鋼
の場合には、塑性変形温度T2が高くなり熱応力
の緩和を図ることが困難となるものである。
In addition, the above-mentioned plastic deformation temperature T 2 and holding time h
differs depending on the type of metal used as the auxiliary members 4, 8, 12, 14. For example, when the auxiliary members 4, 8, 12, 14 are made of carbon steel or stainless steel, the horizontal axis shows the temperature T. In Figure 10, where the vertical axis is the thermal stress σ, the creep rates of carbon steel and stainless steel are shown by curves A and B, respectively. It can be seen that the temperature is about 500℃ or more, and the temperature of stainless steel is about 600℃ or more. Therefore, from the relationship between the creep rate curve and the plastic deformation temperature T 2 mentioned above, in the case of carbon steel, thermal stress can be alleviated to a certain extent by setting the plastic deformation temperature T 2 to 500°C. However, in the case of stainless steel, the plastic deformation temperature T 2 becomes high, making it difficult to alleviate thermal stress.

さらに、銅とアルミナセラミツクとをろう付け
した場合における塑性変形温度T2と、両者のろ
う付けによつて生ずる理論的残留熱応力に対する
各塑性変形温度T2における熱処理を経て室温T3
において実際に生ずる残留熱応力の割合、すなわ
ち残留熱応力比(%)との関係は、横軸に塑性変
形温度T2(℃)縦軸に残留熱応力比(%)をと
つた第11図に示す曲線Aのようになる。したが
つて銅とアルミナセラミツクとをろう付けする場
合における塑性変形温度T2は約250℃〜350℃の
範囲が最適と考えられる。
Furthermore, the plastic deformation temperature T 2 when copper and alumina ceramic are brazed, and the theoretical residual thermal stress generated by brazing the two, are heat treated at each plastic deformation temperature T 2 and then at room temperature T 3 .
The relationship between the percentage of residual thermal stress that actually occurs in , that is, the residual thermal stress ratio (%), is shown in Figure 11, where the horizontal axis is the plastic deformation temperature T 2 (℃) and the vertical axis is the residual thermal stress ratio (%). It becomes like curve A shown in . Therefore, when brazing copper and alumina ceramic, the optimum plastic deformation temperature T 2 is considered to be in the range of about 250°C to 350°C.

また、銅とアルミセラミツクとをろう付けした
場合における塑性変形温度T2の保持時間(h)
と残留熱応力比(%)との関係は、横軸に保持時
間h、縦軸に残留熱応力比(%)をとつた第12
図において、塑性変形温度T2をそれぞれ250℃,
300℃および400℃として曲線A,BおよびCで示
すようになる。したがつて銅とアルミナセラミツ
クとをろう付けした場合における塑性変形温度
T2の保持時間hは、2時間程度とすればよいこ
とが判る。
Also, the holding time (h) at the plastic deformation temperature T 2 when copper and aluminum ceramic are brazed
The relationship between and the residual thermal stress ratio (%) is expressed as
In the figure, the plastic deformation temperature T 2 is 250℃,
Curves A, B and C are shown at 300°C and 400°C. Therefore, the plastic deformation temperature when copper and alumina ceramic are brazed
It can be seen that the holding time h of T 2 may be about 2 hours.

また、アルミナセラミツク等の無機絶縁物から
なる絶縁ケース1あるいは絶縁板9と金属からな
る金属板3,5,7あるいは金属ケース11と
を、両者の接合面間に銅からなる補助部材4,
8,12,14を介在せしめてろう付けした場合
における補助部材4,8,12,14の肉厚t
と、アルミナセラミツクとコバールとを直接ろう
付けした場合の接着強度を1とする各種金属の接
着強度比(倍)との関係は、横軸に銅からなる補
助部材4,8,12,14の板厚t(mm)をと
り、縦軸に接着強度比(倍)をとつた第13図に
おいて、コバール,鉄およびステンレス鋼からな
る金属板3,5,7あるいは金属ケース11をそ
れぞれA,BおよびCで示すようになる。したが
つて、アルミナセラミツク等と各種金属との接合
面間に介在される銅からなる補助部材4,8,1
2,14は、その肉厚を1.1mm以上1mm未満とす
ることにより両者の接合を良好に行なうことがで
きる。
In addition, the insulating case 1 or insulating plate 9 made of an inorganic insulator such as alumina ceramic and the metal plates 3, 5, 7 or metal case 11 made of metal are connected, and an auxiliary member 4 made of copper is connected between the joint surfaces of the two.
Thickness t of auxiliary members 4, 8, 12, 14 when brazed with 8, 12, 14 interposed
The relationship between the adhesion strength ratio (times) of various metals, where the adhesion strength when directly brazing alumina ceramic and Kovar is 1, is shown on the horizontal axis for the auxiliary members 4, 8, 12, and 14 made of copper. In Fig. 13, where the plate thickness t (mm) is taken and the vertical axis is the adhesive strength ratio (times), the metal plates 3, 5, 7 or the metal case 11 made of Kovar, iron, and stainless steel are A and B, respectively. and C. Therefore, auxiliary members 4, 8, 1 made of copper are interposed between the bonding surfaces of alumina ceramic etc. and various metals.
Nos. 2 and 14 can be bonded well by setting their wall thickness to 1.1 mm or more and less than 1 mm.

なお、外径60mm、厚さ5mmの円筒状アルミナセ
ラミツクの端面にメタライズ層を形成し、このメ
タライズ層とステンレス鋼からなる金属板とを、
両者の接合面間に肉厚0.25mmの銅からなる補助部
材を介在せしめ、10-4Torr以下の圧力の真空雰
囲気中で、950℃の加熱によりろう付けを行な
い、ろう付け後炉中冷却により300℃まで炉内温
度を降下させるとともに、300℃の塑性変形温度
を2時間の保持時間保持し、しかる後に炉中冷却
により室温まで降下せしめたものの接着強度は、
コバールとアルミナセラミツクとを直接ろう付け
したものの接着強度の1.5〜2.3倍となつた。
In addition, a metallized layer was formed on the end face of a cylindrical alumina ceramic with an outer diameter of 60 mm and a thickness of 5 mm, and this metallized layer and a metal plate made of stainless steel were
An auxiliary member made of copper with a wall thickness of 0.25 mm is interposed between the joint surfaces of the two, and brazing is performed by heating at 950°C in a vacuum atmosphere with a pressure of 10 -4 Torr or less. After brazing, the material is cooled in a furnace. The bond strength was determined by lowering the furnace temperature to 300℃, holding the plastic deformation temperature at 300℃ for 2 hours, and then cooling it down to room temperature in the furnace.
The adhesive strength was 1.5 to 2.3 times that of the one obtained by directly brazing Kovar and alumina ceramic.

以上の如く本発明は、接合面にメタライズ層を
形成した無機絶縁物からなる絶縁ケースあるいは
絶縁板と金属からなる金属板あるいは金属ケース
とを、それぞれの接合面間にろう付け温度からの
冷却過程において塑性変形自在な金属からなる薄
板状の補助部材を介在せしめてろう付けにより気
密に接合したものであるから、熱膨張係数の大き
く異なる無機絶縁物と金属とからなる電気機器の
気密容器における気密性および接合強度を良好な
ものとすることができる。また気密容器を簡単な
形状にして、かつ安価なものとすることができ
る。さらに、金属板あるいは金属ケースを形成す
る金属材料を電気機器の使用目的あるいは使用雰
囲気等に対応して任意に選択することができる。
As described above, the present invention provides an insulating case or an insulating plate made of an inorganic insulator or a metal case made of an inorganic insulator with a metallized layer formed on the joint surfaces, and a metal plate or metal case made of metal, in a cooling process from the brazing temperature between the respective joint surfaces. Since it is airtightly joined by brazing with a thin plate-like auxiliary member made of plastically deformable metal interposed in the airtight container of electrical equipment made of inorganic insulators and metals, which have significantly different coefficients of thermal expansion, It is possible to improve the properties and bonding strength. Moreover, the airtight container can be made into a simple shape and inexpensive. Further, the metal material for forming the metal plate or the metal case can be arbitrarily selected depending on the purpose of use of the electric device, the atmosphere in which it is used, and the like.

また、接合面にメタライズ層を形成した無機絶
縁物からなる絶縁ケースあるいは絶縁板と金属か
らなる金属板あるいは金属ケースとの接合面間に
ろう材を介装しつつろう付け温度からの冷却過程
において塑性変形自在な金属からなる薄板状の補
助部材を介在せしめて電気機器の気密容器を仮組
立し、前記仮組立した気密容器を10-4Torr以下
の真空雰囲気あるいは非酸化性または還元性のガ
ス雰囲気の炉内に納置してろう付けし、前記炉内
をろう付け温度から所定温度まで降下させるとと
もに、この所定温度を所定時間保持し、しかる後
に炉内を所定温度から室温まで降下させるように
したから、残留熱応力をほとんど零にすることが
でき、接合強度,耐衝撃性等に優れた気密容器を
得ることができる等の効果を奏する。
In addition, in the cooling process from the brazing temperature, a brazing material is interposed between the joint surfaces of an insulating case made of an inorganic insulator with a metallized layer formed on the joint surface, or a metal plate or metal case made of an insulating plate and metal. An airtight container for electrical equipment is temporarily assembled by interposing a thin plate-like auxiliary member made of plastically deformable metal, and the temporarily assembled airtight container is placed in a vacuum atmosphere of 10 -4 Torr or less or a non-oxidizing or reducing gas. The furnace is placed in a furnace with an atmosphere for brazing, the temperature inside the furnace is lowered from the brazing temperature to a predetermined temperature, this predetermined temperature is maintained for a predetermined time, and then the temperature inside the furnace is lowered from the predetermined temperature to room temperature. As a result, residual thermal stress can be reduced to almost zero, and an airtight container with excellent bonding strength, impact resistance, etc. can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図,第2図,第3図,第4図,第5図およ
び第6図はそれぞれ本発明に係る電気機器の気密
容器の第1実施例,第2実施例,第3実施例,第
4実施例,第5実施例および第6実施例の半截断
面図,第7図は本発明に係る製造方法における熱
処理の説明図、第8図は銅および鉄の各温度にお
ける抗張力と伸びを表わした説明図、第9図は銅
の負荷時間に対するクリープ伸びの関係を表わし
た説明図、第10図は炭素鋼およびステンレス鋼
の各温度における熱応力を表わした説明図、第1
1図は銅の塑性変形温度における残留熱応力比を
表わした説明図、第12図は銅の保持時間に対す
る残留熱応力比を各塑性変形温度別に表わした説
明図、第13図は補助部材の肉厚と接着強度比と
の関係を表わした説明図である。 1……絶縁ケース、2……メタライズ層、3…
…金属板、4……補助部材、5……金属板、6…
…メタライズ層、7……金属板、8……補助部
材、9……絶縁板、10……メタライズ層、11
……金属ケース、12……補助部材、13……メ
タライズ層、14……補助部材。
1, 2, 3, 4, 5 and 6 are a first embodiment, a second embodiment, a third embodiment, respectively, of airtight containers for electrical equipment according to the present invention. FIG. 7 is an explanatory diagram of heat treatment in the manufacturing method according to the present invention, and FIG. 8 is a diagram showing the tensile strength and elongation at each temperature of copper and iron. FIG. 9 is an explanatory diagram showing the relationship between creep elongation and loading time of copper. FIG. 10 is an explanatory diagram showing thermal stress at each temperature of carbon steel and stainless steel.
Figure 1 is an explanatory diagram showing the residual thermal stress ratio at the plastic deformation temperature of copper, Figure 12 is an explanatory diagram showing the residual thermal stress ratio with respect to the holding time of copper at each plastic deformation temperature, and Figure 13 is an explanatory diagram showing the residual thermal stress ratio at each plastic deformation temperature of copper. FIG. 3 is an explanatory diagram showing the relationship between wall thickness and adhesive strength ratio. 1... Insulating case, 2... Metallized layer, 3...
...Metal plate, 4...Auxiliary member, 5...Metal plate, 6...
... Metallized layer, 7... Metal plate, 8... Auxiliary member, 9... Insulating plate, 10... Metallized layer, 11
... Metal case, 12 ... Auxiliary member, 13 ... Metallized layer, 14 ... Auxiliary member.

Claims (1)

【特許請求の範囲】 1 接合面にメタライズ層を形成した無機絶縁物
からなる絶縁ケースあるいは絶縁板と金属からな
る金属板あるいは金属ケースとを、それぞれの接
合面間にろう付け温度からの冷却過程において塑
性変形自在な金属からなる薄板状の補助部材を介
在せしめてろう付けにより気密に接合したことを
特徴とする電気機器の気密容器。 2 接合面にメタライズ層を形成した無機絶縁物
からなる絶縁ケースあるいは絶縁板と金属からな
る金属板あるいは金属ケースとの接合面間にろう
材を介装しつつろう付け温度からの冷却過程にお
いて塑性変形自在な金属からなる薄板状の補助部
材を介在せしめて電気機器の気密容器を仮組立
し、前記仮組立した気密容器を10-4Torr以下の
真空雰囲気あるいは非酸化性または還元性のガス
雰囲気の炉内に納置してろう付けし、前記炉内を
ろう付け温度から所定温度まで降下させるととも
に、この所定温度を所定時間保持し、しかる後に
炉内を所定温度から室温まで降下させるようにし
たことを特徴とする電気機器の気密容器の製造方
法。
[Claims] 1. A process of cooling an insulating case made of an inorganic insulator or an insulating plate and a metal plate or metal case made of a metal with a metallized layer formed on the joint surfaces from the brazing temperature between the respective joint surfaces. An airtight container for electrical equipment, characterized in that the container is airtightly joined by brazing with a thin plate-like auxiliary member made of a plastically deformable metal interposed therebetween. 2 A brazing material is interposed between the joint surfaces of an insulating case made of an inorganic insulator with a metallized layer formed on the joint surface, or an insulating plate and a metal plate or metal case, and the plasticity is reduced during the cooling process from the brazing temperature. Temporarily assemble an airtight container for electrical equipment by interposing thin plate-like auxiliary members made of deformable metal, and place the temporarily assembled airtight container in a vacuum atmosphere of 10 -4 Torr or less or a non-oxidizing or reducing gas atmosphere. The furnace is placed in a furnace for brazing, the temperature inside the furnace is lowered from the brazing temperature to a predetermined temperature, this predetermined temperature is maintained for a predetermined time, and then the temperature inside the furnace is lowered from the predetermined temperature to room temperature. A method for manufacturing an airtight container for electrical equipment, characterized by:
JP11622480A 1980-08-22 1980-08-22 Hermetic container for electric equipment and manufacture therefor Granted JPS5740960A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11622480A JPS5740960A (en) 1980-08-22 1980-08-22 Hermetic container for electric equipment and manufacture therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11622480A JPS5740960A (en) 1980-08-22 1980-08-22 Hermetic container for electric equipment and manufacture therefor

Publications (2)

Publication Number Publication Date
JPS5740960A JPS5740960A (en) 1982-03-06
JPS6142440B2 true JPS6142440B2 (en) 1986-09-20

Family

ID=14681896

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11622480A Granted JPS5740960A (en) 1980-08-22 1980-08-22 Hermetic container for electric equipment and manufacture therefor

Country Status (1)

Country Link
JP (1) JPS5740960A (en)

Also Published As

Publication number Publication date
JPS5740960A (en) 1982-03-06

Similar Documents

Publication Publication Date Title
US3618203A (en) Method of making a glass or ceramic-to-composite metal seal
US3988825A (en) Method of hermetically sealing an electrical component in a metallic housing
US3035372A (en) Method for making a glass to metal seal
US2874453A (en) Applying metal coatings to molybdenum
JP2544031B2 (en) How to eliminate cracks in alumina substrates
JPS6142440B2 (en)
US5633531A (en) Compression glass lead-in arrangement
JPH0113620B2 (en)
US2147417A (en) E bahls
US3218524A (en) Semiconductor devices
JPH11135084A (en) Battery sealing aluminum lid
JPH0211704Y2 (en)
US3211827A (en) Container closure device
JPH0226335B2 (en)
JP2001326002A (en) Airtight terminal
JPS64795B2 (en)
JPS6327405Y2 (en)
US3138228A (en) Composite bodies and method of making
JPH11126586A (en) Aluminum sealing lid for battery
JP2945466B2 (en) Airtight joint structure between ceramic tube and metal
US2960402A (en) Alloys
JPH0431187B2 (en)
EP0431725A2 (en) Direct bonded metal-substrate structures
JP3269420B2 (en) Hermetic terminal and method of manufacturing the same
JPS631692B2 (en)