JPS6141932B2 - - Google Patents

Info

Publication number
JPS6141932B2
JPS6141932B2 JP22878182A JP22878182A JPS6141932B2 JP S6141932 B2 JPS6141932 B2 JP S6141932B2 JP 22878182 A JP22878182 A JP 22878182A JP 22878182 A JP22878182 A JP 22878182A JP S6141932 B2 JPS6141932 B2 JP S6141932B2
Authority
JP
Japan
Prior art keywords
sheet
powder
uhpe
graphite
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP22878182A
Other languages
Japanese (ja)
Other versions
JPS59120423A (en
Inventor
Hideo Sekiguchi
Isamu Jikobe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Electric Industrial Co Ltd filed Critical Nitto Electric Industrial Co Ltd
Priority to JP22878182A priority Critical patent/JPS59120423A/en
Publication of JPS59120423A publication Critical patent/JPS59120423A/en
Publication of JPS6141932B2 publication Critical patent/JPS6141932B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/04Polymers of ethylene
    • B29K2023/06PE, i.e. polyethylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2707/00Use of elements other than metals for preformed parts, e.g. for inserts
    • B29K2707/04Carbon

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は超高分子量ポリエチレン(以下、
UHPEと称す)とグラフアイトの混合物から成る
滑りシートの製造方法に関するものである。 オーデイオカセツト、ビデオカセツトにおいて
は、ケース内壁面とリールに巻回された磁気テー
プの間に低摩擦性の滑りシートを介在せしめるこ
とにより、テープ走行時におけるテープ端面とケ
ース内壁面との摺動抵抗を減少させ、テープへの
過大な張力の作用を回避してテープの伸びを防止
したり、テープ走行の安定を計ることがある。 かような滑りシートとしては、UHPE粉末にカ
ーボン粉末を約2〜5重量%混合し、これをシー
ト成形せしめたものが知られている。この滑りシ
ートは摩擦係数が低く、帯電防止性を有し且つ耐
摩耗性が良好であるという長所を有している反
面、高温に曝されると湾曲状に変形し易い傾向を
有している。 例えば、ケース内壁面とリールに巻回された磁
気テープの間にこの滑りシートを配慮して得られ
るオーデイオカセツトを夏期にカーステレオに用
いた場合、滑りシートが高温に曝されて次第に湾
曲状に変形して磁気テープを過度に圧接するよう
になり、テープ走行が不安定となり、音質に悪影
響が出ることがあつた。 このような問題を解決するため、UHPE粉末に
グラフアイトを混合してシート成形することが提
案された。 本発明者達はこの提案の実用化を検討するうち
に、滑りシートの形状安定性を向上させると共に
帯電防止性を付与するには、グラフアイトの割合
が約10重量%以上になるように配合させる必要が
あるが、かように多量のグラフアイトを配合した
場合には得られる滑りシートの伸びが小さく、こ
のシートをオーデイオカセツトやビデオカセツト
等に組み込むため所定形状に打抜き加工する際に
亀裂が生じ易く、作業性が悪いことを知つた。 そこで、本発明者達は更に研究を重ね、UHPE
粉末として嵩比重が特定数値以下のものを用い、
グラフアイトとして特定範囲の粒子径を有し且つ
粒子径が特定数値以下の微細粒子の含有割合が特
定量以下の微粉末を用いることにより、得られる
滑りシートの伸び特性を改良でき、打抜き加工時
に作用する応力によつても亀裂を生ずることがな
いことを見出し、本発明を完成するに至つたもの
である。 即ち、本発明に係る滑りシートの製造法は、嵩
比重が0.25以下のUHPE粉末に、粒子径が1〜
100μmであり且つ粒子径が5μm以下の微細粒
子の含有割合が50重量%以下であるグラフアイト
微粉末を均一に混合せしめ、この混合物を加圧条
件下でブロツク状に成形した後、該ブロツク状物
を切削してシート状とし、次いで該シート状物を
熱処理することを特徴とするものである。 本発明においてUHPE粉末としては嵩比重0.25
以下のものが用いられる。なお、UHPEは分子量
が約100万以上(粘度法による測定値)であり、
一般のポリエチレンのそれが約2万〜10万であで
あるのに比べ大きなものである。UHPE粉末とし
て嵩比重が0.25以上のものを用いた場合には、滑
りシートの伸び特性が改良されず、所期の目的を
達成成できないので好ましくない。 また、グラフアイト微粉末としては粒子径が1
〜100μmであり且つ粒子径が5μm以下の微細
粒子の含有割合が50重量%以下の天然グラフアイ
ト或いは人造グラフアイトが用いられる。グラフ
アイトとして上記特定のもの以外のものを使用し
た場合には、嵩比重0.25以下のUHPE粉末を用い
ても滑りシートの伸び特性が改良されず、所期の
目的を達成ることができないので好ましくない。 本発明においては、先ずUHPE粉末とグラフア
イト微粉末が均一に混合され、この混合物が加圧
条件下でブロツク状に成形される。この成形は
UHPE粉末とグラフアイト微粉末の混合物を金型
に充填せしめ常温で圧力約150〜30Kg/cm2の条件
で圧縮予備成形した後、圧力を約50〜100Kg/cm2
まで下げると共に温度をUHPEの融点以上に上げ
てUHPE粉末を溶融焼成せしめ、次いで圧力を約
150〜30Kg/cm2まで上げ、この加圧状態を保つて
室温まで徐冷する方法により行なうことができ
る。 なお、UHPE粉末とグラフアイト微粉末の混合
割合は滑りシートの形状安定性を良好にすると共
に帯電防止性を付与するため、グラフアイト微粉
末を通常約10〜30重量%好ましくは15〜25重量%
とする。 このようにして得られるブロツク状物は、次い
で旋盤等により切削され厚さ約0.05〜0.5mm程度
のシート状物にされる。このシート状物はその内
部にUHPE粉末とグラフアイト微粉末の混合物を
ブロツク状に成形する際に加えられた応力が未だ
残存しており、また切削により表面が微小凹凸状
となつているので、本発明においては残存応力の
除去および表面平滑化のために熱処理を行なう。 本発明における熱処理は上記シート状物を枠に
固定して加熱する方法或いはシート状物を加熱し
た表面平滑なロールやドラムに沿わせる方法等に
よりシート状物の寸法を規制し、その変化を可及
的に小さくし得る手段で行なう。熱処理温度はブ
ロツク状物への成形時に加えられる圧力や熱処理
時間との兼ね合いによつて決定するが、通常〜90
℃〜UHPEの融融点好ましくは110〜125℃であ
る。 かような本発明によつて得られる滑りシート
は、オーデイオカセツト、ビデオカセツト等に組
み込んで使用する他、ビンや食品等の搬送用ガイ
ド、自動販売器内のガイド、札両替機内の札搬送
用ガイド、敷居スベリ、機器内のスタライドベア
リング等種々の用途に使用することができる。 本発明は上記のように構成され、特定の性状を
有するUHPE粉末およびグラフアイトを使用する
ことにより、下記実施例からも判るように伸び特
性が改良され、所定形状への打抜き加工性の優れ
た滑りシートが得られる特徴がある。 以下、実施例により本発明を更に詳細に説明す
る。なお、実施例中の「部」は「重量部」を示
す。 実施例 嵩比重0.2のUHPE粉末(ヘキスト社製、商品
名ホスタレンGUR212)778部と、粒子径が2〜
40μmで且つ粒子径5μm以下の微細粒子の含有
割合が40重量%であるグラフアイト微粉末22部を
ヘンシエルミキサーで均一に混合する。 次に、この混合物を金型に充填し、温度25℃で
200Kg/cm2の圧力を10分間加えて圧縮予備成形し
た後、圧力を50Kg/cm2まで下げると共に温度を
210℃に上げてこの状態を120分間保つてUHPE粉
末を溶融焼成せしめ、次いで圧力を20Kg/cm2に上
げ、この圧力を保ちながら120分間で室温まで冷
却して金型から取り出し、外径80mm、内径40mm円
筒状ブロツク状物を得る。 この円筒状ブロツク状物を旋盤により切削し、
幅110mm、厚さ100μmの長尺シート状物を得る。 次に、上記長尺シート状物の長尺方向の寸法が
200mmになるように切断し、このシートの四辺を
鋼製枠で固定することにより寸法を規制して、
110℃の温度で5分間熱処理を行つた後冷却し、
枠を取り外して滑りシート(試料番号1)を得
た。 また、これとは別に前記UHPE粉末85部に対
し、前記グラフアイト微粉末を15部配合する以外
は全て試料番号1と同様に作業し、試料番号2の
滑りシートを得た。 更に、前記UHPE粉末85部に対し、粒子径が20
〜80μmのグラフアイト微粉末15部を配合する以
外は全て試料番号1と同様に作業し、試料番号3
の滑りシートを得た。 これら滑りシートの体積抵抗率、伸び、打抜き
加工性および形状安定性を下記の試験方法により
測定して得られた結果を第1表に示す。 (A) 体積抵抗率 JIS K 688に準じて測定した。 (B) 伸び JIS K 6888に準じて測定した。 (C) 打抜き加工性 リールハブ用孔(直径14mmの丸孔)を2個、
透視用孔(12×22mmの角孔)を1個有し、長尺
方向および幅方向の寸法が50mmおよび100mmに
なるように滑りシートを100回打抜き加工し、
シートに亀裂が生じた回数を数え、これを不良
率(%)とした。 (D) 形状安定性 上記打抜き加工されて得られるシートを水平
盤上に置き、ハイトゲージにて湾曲部の最大高
さ(カール高)を測定し、更に該シートを80℃
の温度で24時間加熱した後室温まで冷却し、同
様にしてカール高さを測定した。 なお、比較例として粒子径が5μm以下の微細
粒子の含有割合の多いグラフアイト粉末を用いて
得た滑りシート(試料番号4,5)および嵩比重
が0.4であるUHPE粉末を用いて得た滑りシート
(試料番号6,7)のデータを同時に示す。
The present invention uses ultra-high molecular weight polyethylene (hereinafter referred to as
The present invention relates to a method for producing a sliding sheet made of a mixture of UHPE (referred to as UHPE) and graphite. In audio cassettes and video cassettes, by interposing a low-friction sliding sheet between the inner wall of the case and the magnetic tape wound on the reel, the sliding resistance between the end of the tape and the inner wall of the case is reduced when the tape is running. This may be used to avoid excessive tension on the tape, prevent tape elongation, or stabilize tape running. As such a sliding sheet, one in which about 2 to 5% by weight of carbon powder is mixed with UHPE powder and the mixture is formed into a sheet is known. This sliding sheet has the advantages of a low coefficient of friction, antistatic properties, and good wear resistance, but on the other hand, it tends to be easily deformed into a curved shape when exposed to high temperatures. . For example, when an audio cassette that is made with a sliding sheet between the inner wall of the case and the magnetic tape wound on a reel is used in a car stereo in the summer, the sliding sheet is exposed to high temperatures and gradually becomes curved. This caused deformation and excessive pressure on the magnetic tape, making tape running unstable and sometimes having a negative impact on sound quality. To solve these problems, it was proposed to mix graphite with UHPE powder and form it into a sheet. While considering the practical application of this proposal, the present inventors found that in order to improve the shape stability of the sliding sheet and impart antistatic properties, the proportion of graphite should be approximately 10% by weight or more. However, when such a large amount of graphite is blended, the elongation of the resulting sliding sheet is small, and cracks may occur when punching the sheet into a predetermined shape for incorporating into audio cassettes, video cassettes, etc. I learned that it is easy to occur and the workability is poor. Therefore, the inventors conducted further research and discovered that UHPE
Using a powder with a bulk specific gravity below a specific value,
By using fine powder as graphite, which has a particle size within a specific range and contains a specific amount or less of fine particles with a particle size below a specific value, the elongation characteristics of the resulting sliding sheet can be improved, and the elongation characteristics can be improved during punching. It was discovered that no cracks occur even under applied stress, and this led to the completion of the present invention. That is, the method for manufacturing a sliding sheet according to the present invention is to add UHPE powder with a bulk specific gravity of 0.25 or less and a particle size of 1 to 1.
Graphite fine powder having a particle size of 100 μm and a content of fine particles of 5 μm or less in a content of 50% by weight or less is mixed uniformly, and this mixture is formed into a block shape under pressure. This method is characterized by cutting an object into a sheet, and then heat-treating the sheet. In the present invention, the UHPE powder has a bulk specific gravity of 0.25.
The following are used: In addition, UHPE has a molecular weight of approximately 1 million or more (value measured by viscosity method),
This is larger than that of general polyethylene, which is about 20,000 to 100,000. If a UHPE powder with a bulk specific gravity of 0.25 or more is used, the elongation properties of the sliding sheet will not be improved and the intended purpose will not be achieved, which is not preferable. In addition, the graphite fine powder has a particle size of 1
Natural graphite or artificial graphite having a particle diameter of 100 μm or less and containing 50% by weight or less of fine particles with a particle size of 5 μm or less is used. If graphite other than those specified above is used, it is preferable because even if UHPE powder with a bulk specific gravity of 0.25 or less is used, the elongation characteristics of the sliding sheet will not be improved and the intended purpose will not be achieved. do not have. In the present invention, first, UHPE powder and fine graphite powder are mixed uniformly, and this mixture is formed into a block shape under pressure. This molding
A mixture of UHPE powder and graphite fine powder is filled into a mold and compression preformed at room temperature under a pressure of approximately 150 to 30 Kg/cm 2 , and then the pressure is increased to approximately 50 to 100 Kg/cm 2 .
The UHPE powder is melted and calcined by lowering the temperature to above the melting point of the UHPE, and then reducing the pressure to about
This can be carried out by increasing the pressure to 150 to 30 kg/cm 2 and slowly cooling it to room temperature while maintaining this pressurized state. The mixing ratio of UHPE powder and graphite fine powder is usually about 10 to 30% by weight, preferably 15 to 25% by weight, in order to improve the shape stability of the sliding sheet and provide antistatic properties. %
shall be. The block thus obtained is then cut using a lathe or the like to form a sheet having a thickness of about 0.05 to 0.5 mm. This sheet-like material still retains the stress applied when the mixture of UHPE powder and graphite fine powder was formed into a block shape, and the surface has minute irregularities due to cutting. In the present invention, heat treatment is performed to remove residual stress and smooth the surface. The heat treatment in the present invention involves regulating the dimensions of the sheet-like material and making changes possible, such as by heating the sheet-like material while fixing it to a frame, or by placing the sheet-like material along a heated roll or drum with a smooth surface. Do this by means that can be minimized as much as possible. The heat treatment temperature is determined depending on the pressure applied during molding into a block-like object and the heat treatment time, but it is usually ~90℃.
The melting point of UHPE is preferably 110-125°C. The sliding sheet obtained by the present invention can be used by being incorporated into audio cassettes, video cassettes, etc., and can also be used as a guide for transporting bottles, food, etc., as a guide in vending machines, and as a guide for transporting bills in currency exchange machines. It can be used for a variety of purposes such as guides, sliding sills, and stalide bearings in equipment. The present invention is constructed as described above, and by using UHPE powder and graphite having specific properties, the elongation properties are improved as can be seen from the examples below, and the punching processability into a predetermined shape is improved. It has the characteristic of providing a sliding sheet. Hereinafter, the present invention will be explained in more detail with reference to Examples. Note that "parts" in the examples indicate "parts by weight." Example 778 parts of UHPE powder with a bulk specific gravity of 0.2 (manufactured by Hoechst, trade name Hostalen GUR212) and a particle size of 2 to 2
22 parts of graphite fine powder having a particle size of 40 μm and a content of 40% by weight of fine particles with a particle size of 5 μm or less are uniformly mixed in a Henschel mixer. This mixture is then filled into molds and kept at a temperature of 25°C.
After compression preforming by applying a pressure of 200Kg/cm 2 for 10 minutes, the pressure was reduced to 50Kg/cm 2 and the temperature was lowered.
The temperature was raised to 210℃ and held for 120 minutes to melt and sinter the UHPE powder, then the pressure was increased to 20Kg/cm 2 , and while maintaining this pressure it was cooled to room temperature for 120 minutes, taken out from the mold, and the outer diameter was 80mm. , to obtain a cylindrical block with an inner diameter of 40 mm. This cylindrical block is cut using a lathe,
A long sheet with a width of 110 mm and a thickness of 100 μm is obtained. Next, the longitudinal dimension of the long sheet is
The dimensions were regulated by cutting the sheet to 200 mm and fixing the four sides of the sheet with a steel frame.
Heat treated at a temperature of 110℃ for 5 minutes and then cooled.
The frame was removed to obtain a sliding sheet (sample number 1). Separately, the same procedure as Sample No. 1 was carried out except that 15 parts of the graphite fine powder was added to 85 parts of the UHPE powder to obtain a sliding sheet of Sample No. 2. Furthermore, for 85 parts of the UHPE powder, the particle size is 20 parts.
All operations were performed in the same manner as sample number 1 except for blending 15 parts of graphite fine powder of ~80 μm, and sample number 3
I got a slippery sheet. The volume resistivity, elongation, punching workability and shape stability of these sliding sheets were measured by the following test methods, and the results are shown in Table 1. (A) Volume resistivity Measured according to JIS K 688. (B) Elongation Measured according to JIS K 6888. (C) Punching workability Two holes for the reel hub (round holes with a diameter of 14 mm),
The sliding sheet is punched 100 times so that it has one viewing hole (12 x 22 mm square hole) and the length and width dimensions are 50 mm and 100 mm.
The number of times that cracks occurred in the sheet was counted, and this was taken as the defective rate (%). (D) Shape stability The sheet obtained by the above punching process was placed on a horizontal plate, the maximum height of the curved part (curl height) was measured using a height gauge, and the sheet was further heated at 80°C.
After heating at a temperature of 24 hours, it was cooled to room temperature, and the curl height was measured in the same manner. In addition, as comparative examples, a sliding sheet obtained using graphite powder with a high content of fine particles with a particle size of 5 μm or less (sample numbers 4 and 5) and a sliding sheet obtained using UHPE powder with a bulk specific gravity of 0.4. The data of the sheets (sample numbers 6 and 7) are shown at the same time.

【表】 上記実施例および比較例から明らかなように、
本発明によつて得られる滑りシートは伸びが大き
く、打抜き加工時に亀裂が生ずるようなことがな
く、作業性が優れていることが判る。
[Table] As is clear from the above examples and comparative examples,
It can be seen that the sliding sheet obtained by the present invention has a large elongation, does not crack during punching, and has excellent workability.

Claims (1)

【特許請求の範囲】[Claims] 1 嵩比重が0.25以下の超高分子量ポリエチレン
粉末に、粒子径が1〜100μmであり且つ粒子径
が5μm以下の微細粒子の含有割合が50重量%以
下であるグラフアイト微粉末を均一に混合せし
め、この混合物を加圧条件下でブロツク状に成形
した後、該ブロツク状物を切削してシート状と
し、次いで該シート状物を熱処理することを特徴
とする滑りシートの製造法。
1. Ultra-high molecular weight polyethylene powder with a bulk specific gravity of 0.25 or less is uniformly mixed with graphite fine powder having a particle size of 1 to 100 μm and containing 50% by weight or less of fine particles with a particle size of 5 μm or less. . A method for producing a sliding sheet, which comprises forming the mixture into a block under pressure, cutting the block into a sheet, and then heat-treating the sheet.
JP22878182A 1982-12-28 1982-12-28 Manufacture of slide sheet Granted JPS59120423A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22878182A JPS59120423A (en) 1982-12-28 1982-12-28 Manufacture of slide sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22878182A JPS59120423A (en) 1982-12-28 1982-12-28 Manufacture of slide sheet

Publications (2)

Publication Number Publication Date
JPS59120423A JPS59120423A (en) 1984-07-12
JPS6141932B2 true JPS6141932B2 (en) 1986-09-18

Family

ID=16881744

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22878182A Granted JPS59120423A (en) 1982-12-28 1982-12-28 Manufacture of slide sheet

Country Status (1)

Country Link
JP (1) JPS59120423A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10850036B2 (en) 2015-08-27 2020-12-01 E3D Agricultural Cooperative Association Reusable automatic injection device

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990003422A1 (en) * 1988-09-28 1990-04-05 Dai Nippon Insatsu Kabushiki Kaisha Slider
KR0166945B1 (en) * 1988-12-29 1999-03-20 기타지마 요시토시 Ultra high molecular weight polyethylene and method for its manufacture
CH690721A5 (en) * 1996-07-24 2000-12-29 Ct Io Trading Lda a low friction coefficient material and utilization of the material for the manufacture of skis and the like as well as a method of manufacturing a low friction coefficient material
JP4933599B2 (en) * 2009-08-06 2012-05-16 旭サナック株式会社 Method for producing sintered resin sheet
CN104558777B (en) * 2015-01-14 2017-01-18 四川大学 Preparation method of natural graphite/polymer electromagnetic shielding composite
JP6626254B2 (en) * 2015-02-03 2019-12-25 株式会社テセック Semiconductor device measurement method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10850036B2 (en) 2015-08-27 2020-12-01 E3D Agricultural Cooperative Association Reusable automatic injection device

Also Published As

Publication number Publication date
JPS59120423A (en) 1984-07-12

Similar Documents

Publication Publication Date Title
EP2060344B1 (en) Powder magnetic core and iron-base powder for powder magnetic core
US4692507A (en) Propylene-base random copolymer particles and production process thereof
US20180281061A1 (en) Pressed powder magnetic core material, pressed powder magnetic core, and production method thereof
JPS6141932B2 (en)
JPS58157830A (en) Preparation of sliding sheet
WO1993023858A1 (en) Rare earth bond magnet, composition therefor, and method of manufacturing the same
EP0376319B1 (en) A composite ferrite material
Liebermann Warm consolidation and cladding of glassy alloy ribbons
SE1550819A1 (en) Iron powder for dust cores
US20040110853A1 (en) Process for preparing molded porous articles and the porous articles prepared therefrom
US4089466A (en) Lining alloy for bimetallic cylinders
JP2010235411A (en) Method of manufacturing hexagonal ferrite magnetic powder, magnetic recording medium and method of manufacturing the same
US4399198A (en) Lining alloy for bimetallic cylinders
US5683639A (en) Shortened sintering cycle for molded polytetrafluoroethylene articles
JP4353512B2 (en) Molding method of powder magnetic core
US4158561A (en) Method for preparing oxide coated microlamination particles
JP2018168402A (en) Powder for magnetic core and method for manufacturing powder magnetic core
JPS6161827A (en) Manufacture of semi-sintered polytetrafluoroethylene product
JPS6141931B2 (en)
JPS5950494B2 (en) Manufacturing method of laminated sheet
JPH0567385A (en) Slip sheet
EP0172277A1 (en) Thermoformable propylene polymer laminated sheet
CN114456471A (en) Heat-shrinkable sleeve and preparation method thereof
JPH01119642A (en) Soft magnetic material having high saturated magnetic flux density
JPS58210929A (en) Manufacture of slippery sheet