JPS614192A - Lined long distance skin current heating tube - Google Patents

Lined long distance skin current heating tube

Info

Publication number
JPS614192A
JPS614192A JP12327084A JP12327084A JPS614192A JP S614192 A JPS614192 A JP S614192A JP 12327084 A JP12327084 A JP 12327084A JP 12327084 A JP12327084 A JP 12327084A JP S614192 A JPS614192 A JP S614192A
Authority
JP
Japan
Prior art keywords
lining
heating tube
current heating
skin current
steel pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12327084A
Other languages
Japanese (ja)
Other versions
JPH0145195B2 (en
Inventor
安藤 政夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JNC Engineering Co Ltd
Original Assignee
Chisso Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chisso Engineering Co Ltd filed Critical Chisso Engineering Co Ltd
Priority to JP12327084A priority Critical patent/JPS614192A/en
Publication of JPS614192A publication Critical patent/JPS614192A/en
Publication of JPH0145195B2 publication Critical patent/JPH0145195B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Resistance Heating (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は1つの交流電源より給電される、好ましくはそ
の長さが数1以上の長距離表皮電流発熱管内に使用され
る絶縁電線の縁結不良、短絡、断線等の故障位置を交流
電源の位置より容易かつ正確に発見することに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention is designed to prevent poor connections, short circuits, disconnections, etc. of insulated wires used in long-distance skin current heating tubes that are powered by one AC power supply and preferably have a length of several tens or more. The present invention relates to finding the location of a fault more easily and accurately than the location of an AC power source.

ここにいう表皮電流発熱管とは原理的に2種類の回路の
ものを含むっその第1は第1図に示すような強磁性発熱
鋼管1に絶縁電線又はケーブル2を通し交流電源4に対
しこれらが直列になるように電線3によって結線された
ものである。
The skin current heating tube referred to here basically includes two types of circuits.The first is a ferromagnetic heating steel tube 1 as shown in FIG. These are connected in series by electric wires 3.

その第2は、第2図に示すよ5に強磁性発熱鋼管1に絶
縁電線2を通し、この絶縁電線を1次回路とし前記鋼°
管1が2次回路となるようにその両端部をできるだけ小
さいインピーダンス3′で結んだ誘導型表皮電流発熱管
と呼ばれるものである。
The second method is to pass an insulated wire 2 through a ferromagnetic heat-generating steel tube 1 as shown in FIG.
This is called an induced skin current heating tube in which both ends of the tube 1 are connected with an impedance 3' as small as possible so as to form a secondary circuit.

そしてこれらの強磁性管1は、その内表面にのみ電流1
が流れ管外表面に流出しないようにそれら管の肉厚が、
それを通る交流の表皮の深さの2倍以上の厚さを持って
いる。
These ferromagnetic tubes 1 carry a current of 1 only on their inner surfaces.
The wall thickness of these pipes is so that the flow does not flow out onto the outside surface of the pipe.
It has a thickness more than twice the depth of the epidermis of the alternating current passing through it.

−尚第1の種類の表皮電流発熱管は特公昭40−121
28号(米国特許第3293407号)に開示され、第
2の種類の表皮電流発熱管は特公昭示されている。
-The first type of skin current heating tube was published in 1977-121.
A second type of skin current heating tube is disclosed in US Pat.

近時このような表皮電流発熱管は、長距離パイプライン
の加熱保温に用いられ、その長さが数10−以上、10
0 Km以上に達するものが実施されている。しかし1
つの交流電源より供給される表皮電流発熱管の長さは1
0〜20b程度まであり、しかも陸上パイプラインが主
であった。
Recently, such skin current heating tubes have been used to heat and insulate long-distance pipelines, and their lengths are several 10- or more.
Some have been implemented that reach over 0 km. But 1
The length of the skin current heating tube supplied from two AC power sources is 1
The range ranges from 0 to 20b, and land pipelines are the main ones.

一方第1図又は第2図に示す表皮電流発熱管において絶
縁電線2に例えば短絡又は断線5が発生した場合、故障
5の電源4よりの位置の発見のために例えばパルスレー
ダー法が用いられた。
On the other hand, when a short circuit or disconnection 5 occurs in the insulated wire 2 in the skin current heating tube shown in FIG. 1 or FIG. .

しかしこのパルスレーダー法は特願昭58−213.7
58号「故障区画発見回路を有する表皮電流発熱管1に
も明記した如く、発熱錯、管1が強磁性体であるため、
電圧パルスの減衰が早く、電源より数1以遠の故障位置
50発見は困難であった。
However, this pulse radar method
As stated in No. 58 "Skin current heating tube 1 with fault section detection circuit, since the heating complex and tube 1 are ferromagnetic,
The attenuation of the voltage pulse was fast, and it was difficult to find the fault location 50 more than a few feet away from the power source.

本発明は表皮電流発熱管のもつ特性を損することなく、
20脂以上までの故障位置5の発見を可能にしようとす
るものである。
The present invention does not impair the characteristics of the skin current heating tube,
It is intended to make it possible to discover fault positions 5 up to 20 points or more.

第3図は本発明表皮電流発熱管の断面図であるが、第1
又は2図の公知例の強磁性発熱鋼管1と相違して、1の
内面に非磁性金属導体層6をもつ。
FIG. 3 is a sectional view of the skin current heating tube of the present invention.
Alternatively, unlike the known example of the ferromagnetic heating steel tube 1 shown in FIG. 2, the inner surface of the tube 1 has a non-magnetic metal conductor layer 6.

第1又は2図の・公知の表皮電流発熱管においては通常
電線20発熱量は全体の10〜30係稈度で残余は鋼管
1の内表面において発生される。
In the known skin current heating tube shown in FIGS. 1 and 2, the amount of heat generated by the electric wire 20 is usually 10 to 30 in the total culm, and the remainder is generated on the inner surface of the steel tube 1.

そして望ましいことは発熱はできるだ、け鋼管1の内表
皮において多く発生させる方が望ましい。
It is desirable that as much heat as possible be generated in the inner skin of the steel pipe 1.

それは、電線2における発熱は絶縁層7を通過して被加
熱物8へ流れるが、通常プラスチックスである電線2の
絶縁物は電気の絶縁物であると同時に熱絶縁物であるか
ら、電線の発熱の割合が多いほど導体2の温度が上昇す
る。これに反し、鋼管1の内表皮における発熱は、溶接
9などを通して被加熱物8に流れるが、この部分の熱抵
抗は極めて小さく、従って被加熱物8に対する鋼管1の
温1’r[上昇はIC以下にしかたらない。従って発熱
は電線2よりも、鋼管1の内表皮部分にできるだけ多く
なるように設計した方が、耐熱性の高い絶縁物7を使用
する必要を生ぜしめず、経済性が高くなる。その目的の
ためには第1又は2図では電線2に流れる電流はそのま
まの大きさで鋼管2に流れるから、鋼管2の内表皮部分
の抵抗を電線2のそれより大きくした方が良い。表皮電
流発熱管では単に電流iの管外流出を防止するだけでな
く、その表皮作用を大きくし、この部分の抵抗を高くす
るために強磁性鋼管を利用している。
This is because the heat generated in the wire 2 flows through the insulating layer 7 to the heated object 8, but the insulation of the wire 2, which is usually plastic, is both an electrical insulator and a thermal insulator. The higher the rate of heat generation, the higher the temperature of the conductor 2. On the other hand, the heat generated in the inner skin of the steel pipe 1 flows to the object to be heated 8 through welding 9, etc., but the thermal resistance in this part is extremely small, so the temperature 1'r of the steel pipe 1 relative to the object to be heated 8 is It has no choice but to be below IC. Therefore, if the design is designed so that as much heat is generated as possible in the inner skin portion of the steel pipe 1 than in the electric wire 2, there is no need to use the highly heat-resistant insulator 7, and the economical efficiency becomes higher. For that purpose, it is better to make the resistance of the inner skin part of the steel pipe 2 larger than that of the electric wire 2, since the current flowing through the electric wire 2 in FIG. 1 or 2 flows through the steel pipe 2 with the same magnitude. In the skin current heating tube, a ferromagnetic steel tube is used not only to prevent the current i from flowing out of the tube, but also to increase the skin action and increase the resistance of this part.

しかし万一電線2に5のような故障が発生した時、パル
スレーダー法で故障点を発見しようとしても、そのパル
スの巾は、時間で表わしたとき、マイクロ秒のオーダー
であるから、表皮効果のために等価抵抗が大きくなり、
表皮電流発熱管では非磁性管の場合に比べてパルスの減
衰は極めて大きく、パルスの発生湯所即ち測定点から故
障点までの距離はせいぜい数らまでである。
However, in the unlikely event that a fault like the one in 5 occurs in wire 2, even if you try to find the fault point using the pulse radar method, the width of the pulse is on the order of microseconds when expressed in time, so the skin effect cannot be detected. The equivalent resistance increases because of
In the case of a skin current heating tube, the attenuation of the pulse is extremely large compared to the case of a non-magnetic tube, and the distance from the pulse generation point, that is, the measurement point, to the failure point is at most a few meters.

本発明はこの測定可能距離を増大するために行われた。The present invention was made to increase this measurable distance.

本発明では発熱管として使用される場合その電源周波数
が10〜100Hzの範囲即ち通常の商用周波数である
のに対し、パルスレーダー法ではMHzのオーダである
ことに着目した。通常このような発熱管1の電流iの流
れる範囲を示す表皮の厚さく又は深さ)S(crn)は
ρを導体の抵抗率(Ωcrn)、μを比透磁率、fを電
源の周波数(H7,)としたとき であることは良く知られており、鋼管の場合でP、 =
 18 x IQ−’Qtrn、 μ= 1000. 
f = 60Hzとしたとき(1)式の8は −8,= 0.087crn= 0.87mm    
      (2)−であるのに対し、例えば非磁性材
料の亜鉛の場合で、μ=ρ4=6xto−’、f−IM
Hzとしたときは S2−0.0123cm= 0.123m(3)と(2
)式の場合の1t%程度しかない。
In the present invention, we focused on the fact that when used as a heating tube, the power frequency is in the range of 10 to 100 Hz, that is, a normal commercial frequency, whereas in the pulse radar method, it is on the order of MHz. Normally, the thickness or depth of the skin (skin thickness or depth) that indicates the range through which the current i of the heating tube 1 flows) S (crn), ρ is the resistivity of the conductor (Ωcrn), μ is the relative permeability, and f is the frequency of the power source ( It is well known that when H7, ), in the case of steel pipes P, =
18 x IQ-'Qtrn, μ=1000.
When f = 60Hz, 8 in equation (1) is -8, = 0.087crn = 0.87mm
(2)-, whereas, for example, in the case of zinc, which is a non-magnetic material, μ=ρ4=6xto-', f-IM
When set to Hz, S2 - 0.0123cm = 0.123m (3) and (2
) is only about 1t% of the case of formula.

そこで本発明は強磁性鋼管1の内表面に非磁性導体6を
1〜1000ミクロン、好ましくは3〜500ミクロン
、更に好ましくは10〜300ミクpンの程度に内張す
することを要旨とする。
Therefore, the gist of the present invention is to line the inner surface of the ferromagnetic steel pipe 1 with a non-magnetic conductor 6 to a thickness of 1 to 1000 microns, preferably 3 to 500 microns, and more preferably 10 to 300 microns. .

前記非磁性導体6として使用しうる材質としては、亜鉛
の他アルミニウム、銅、真ちゅう、オーステナイト系ス
テンレス、青銅等を例示することができる。
Examples of materials that can be used for the non-magnetic conductor 6 include aluminum, copper, brass, austenitic stainless steel, bronze, etc. in addition to zinc.

この内張りによる鋼管の円周方向内表面幅1α、鋼管長
さIQ当りの抵抗の減少は、まず内張りのない場合の抵
抗をrIとすると(2)式を利用して r+ ” P+ / 8+ = 18 X 10−’1
0.087= 2.069 X 10−’Ωであるのに
対し、内張りの抵抗r、は(3)式を利用して rz = Pt/St = 6×’0−”0.0123
 = 4.88×10−’Ωであるから合成抵抗rは となって、内張りのない場合の約70%に減少する。
The reduction in resistance per circumferential inner surface width 1α of the steel pipe and steel pipe length IQ due to this lining can be calculated by using equation (2), where the resistance without lining is rI, and then r+ ” P+ / 8+ = 18 X 10-'1
0.087 = 2.069 x 10-'Ω, whereas the resistance r of the lining is calculated using equation (3) as rz = Pt/St = 6 x '0-'0.0123
= 4.88 x 10-'Ω, so the combined resistance r is reduced to about 70% of the case without lining.

したがって以上の場合で内張りのないとき、電線20発
熱が20係、発熱管10発熱が80憾であったとすると
、内張りのために発熱は電iAr、 I一定とすると 20+80X0.7=76  ←) となり、76チに減少することになり、この点では経済
性が悪くなる。しかし、同時に発熱管単位長当りの電圧
は電流iを一定とすると、76チと低くなり、電線の定
格又は電源電圧を一定とすると、それに応じて単一電源
による給電距離は長くなるという利点がある。以上では
理解を容易にするために、内張りの存在による鋼管の表
皮の深さへの影響などを無視しているが、近似的な傾向
としては正しい。
Therefore, in the above case, when there is no lining, if the heat generated by the wire 20 is 20 and the heat generated by the heating tube 10 is 80, then the heat generated by the lining is 20+80 , 76 inches, which makes it less economical. However, at the same time, if the current i is constant, the voltage per unit length of the heating tube is as low as 76 cm, and if the wire rating or power supply voltage is constant, the power supply distance with a single power supply becomes correspondingly longer. be. In order to make it easier to understand, the above explanation ignores the influence of the presence of a lining on the depth of the skin of the steel pipe, but the approximate trend is correct.

以上で説明したように内張りの存在によって発熱管とし
ての経済性は多少影響を受けるが、亜鉛のような非磁性
内張りによってパルスレーダーによる故障点発見可能距
離は20〜40−と飛躍的に増大することが、計算と実
験によって確かめられた。
As explained above, the economic efficiency of the heat generating tube is somewhat affected by the presence of the lining, but the non-magnetic lining such as zinc dramatically increases the distance over which a pulse radar can detect a failure point by 20 to 40 mm. This was confirmed through calculations and experiments.

なお例えば発熱鋼管として25Aの鋼管を利用した場合
、その内径は27.6 ranであるから、内張り厚さ
を前記の0.123mとすると有効内径は27.354
mmとなるだけで、実用上内径が小さくなったことには
ならない。
For example, when a 25A steel pipe is used as a heat-generating steel pipe, its inner diameter is 27.6 ran, so if the lining thickness is 0.123 m, the effective inner diameter is 27.354 m.
The fact that the inner diameter is only mm does not mean that the inner diameter has become smaller in practical terms.

そして既に銅、アルミニウムなどの非磁性導体を利用す
る電カケープル、同軸ケーブルなどで確認されている如
くパルスレーダー法による故障点発見可能距離は桁違い
に増加する。
And, as has already been confirmed in electric cables, coaxial cables, etc. that use non-magnetic conductors such as copper and aluminum, the distance over which fault points can be found using the pulse radar method increases by an order of magnitude.

又発熱管として以上に述べた経済性の低下をできるだけ
防止するには、単一電源による発熱管の長さに縦って内
張りの厚さを変更することも考えねばならない。
Furthermore, in order to prevent as much as possible the above-mentioned decline in economical efficiency of the heating tube, consideration must be given to changing the thickness of the lining along the length of the heating tube powered by a single power source.

さらに内張りの非磁性金属導体層は一種類に限定される
必要はなく、2層以上であってもよい。たとえば耐蝕性
などの要求があれば、一層は亜鉛層、もう一層眸真ちゅ
う層の2層とすることも可能である。
Furthermore, the number of nonmagnetic metal conductor layers forming the inner lining does not need to be limited to one type, and may be two or more layers. For example, if there is a requirement for corrosion resistance, it is possible to use two layers, one layer being a zinc layer and the other being a brass layer.

第3図で9は発熱管1と被加熱物8間を固定し、さらに
は熱伝達を良くするための溶接又は伝熱セメントを意味
するが、溶接の場合、内張りが亜鉛等の鋼より低温で溶
解するものではその一部が損傷されるかもしれないが、
溶接は通常断続的に行われ、溶接のための加熱時間が短
時間であるから損傷部はほんの部分的なものであり、上
記本発明の効果に影響を与える程度には至らない。
In Fig. 3, 9 means welding or heat transfer cement to fix the heat generating tube 1 and the object to be heated 8 and to improve heat transfer. Some parts of it may be damaged by things that dissolve in it, but
Since welding is normally performed intermittently and the heating time for welding is short, the damage is only local and does not reach the extent that it affects the effects of the present invention.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は公知の直列型表皮電流発熱管、第2図は公知の
誘導型表皮電流発熱管の各縦断面略図で、1は強磁性発
熱鋼管、2は1に通される絶縁電線又はケーブル、3は
接続電線、3′は強磁性発熱鋼管の両端を接続する低イ
ンピーダンスの漕体、4は電源、5Gi故障点を示す。 第3図は本発明に従って改良された表皮電流発熱管の横
断面で6は鋼管lの内張り、7は電必要とするパイプラ
イン本管の管壁の一部を示している。9は発熱鋼管1と
被加熱物8間を固定しさらに熱伝達を良くするための溶
接又は伝熱セメント等を示している、 以   上
Fig. 1 is a schematic vertical cross-sectional view of a known series-type skin current heating tube, and Fig. 2 is a schematic vertical cross-sectional view of a known induction type skin current heating tube, where 1 is a ferromagnetic heating steel tube, and 2 is an insulated wire or cable passed through 1. , 3 is a connecting wire, 3' is a low impedance column connecting both ends of the ferromagnetic heat generating steel pipe, 4 is a power supply, and 5Gi failure point. FIG. 3 is a cross-sectional view of a skin current-generating tube improved according to the present invention, where 6 shows the lining of the steel pipe 1, and 7 shows a part of the pipe wall of the pipeline main pipe that requires electricity. 9 indicates welding, heat transfer cement, etc. for fixing the heat generating steel pipe 1 and the heated object 8 and further improving heat transfer.

Claims (5)

【特許請求の範囲】[Claims] (1)強磁性を有する鋼管に絶縁電線を通し、この絶縁
電線と鋼管を交流電源に対して直列になるように結線す
るか、この絶縁電線を1次回路とし、鋼管が2次回路と
なるように構成し、かつ鋼管の肉厚が、鋼管に流れる交
流電流の表皮の深さのほぼ2倍以上になるようにしたい
わゆる表皮電流発熱管において、前記絶縁電線が断線又
は絶縁破壊のような故障発生のとき、所定位置より故障
点までをレーダーパルス法によって発見を可能にする肉
厚の非磁性金属導体層を前記鋼管の内表面に内張りとし
て少くとも一層もつことを特徴とする内張りのある長距
離表皮電流発熱管。
(1) Pass an insulated wire through a ferromagnetic steel pipe and connect the insulated wire and steel pipe in series with an AC power supply, or use the insulated wire as the primary circuit and the steel pipe as the secondary circuit. In a so-called skin current heating tube, which is constructed as shown in FIG. A lining characterized in that the inner surface of the steel pipe has at least one thick non-magnetic metal conductor layer as a lining, which enables detection from a predetermined position to the failure point by a radar pulse method when a failure occurs. Long distance skin current heating tube.
(2)前記内張りである非磁性金属導体層の厚さが1〜
1000ミクロンであることを特徴とする特許請求範囲
第(1)項記載の内張りのある長距離表皮電流発熱管。
(2) The thickness of the non-magnetic metal conductor layer that is the lining is 1 to 1.
A long-distance skin current heating tube with a lining as claimed in claim (1), characterized in that the lining is 1000 microns.
(3)前記内張りである非磁性金属導体層の厚さが5〜
500ミクロンであることを特徴とする特許請求範囲第
(2)項記載の内張りのある長距離表皮電流発熱管。
(3) The thickness of the non-magnetic metal conductor layer that is the lining is 5 or more.
A long-distance skin current heating tube with a lining according to claim 2, characterized in that the lining is 500 microns.
(4)前記内張りである非磁性金属導体層の厚さが10
〜300ミクロンであることを特徴とする特許請求範囲
第(3)項記載の内張りのある長距離表皮電流発熱管。
(4) The thickness of the non-magnetic metal conductor layer that is the lining is 10
A long-distance skin current heating tube with a lining according to claim 3, characterized in that the lining is 300 microns.
(5)前記内張りである非磁性金属導体層が亜鉛、アル
ミニウム、銅、鉛、真ちゅう、オーステナイト系ステン
レス、青銅の内の少なくとも一種からできていることを
特徴とする第(1)〜(5)項のいずれかに記載の内張
りのある長距離表皮電流発熱管。
(5) Items (1) to (5) characterized in that the non-magnetic metal conductor layer serving as the lining is made of at least one of zinc, aluminum, copper, lead, brass, austenitic stainless steel, and bronze. A long-distance skin current heating tube with a lining as described in any of paragraphs.
JP12327084A 1984-06-15 1984-06-15 Lined long distance skin current heating tube Granted JPS614192A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12327084A JPS614192A (en) 1984-06-15 1984-06-15 Lined long distance skin current heating tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12327084A JPS614192A (en) 1984-06-15 1984-06-15 Lined long distance skin current heating tube

Publications (2)

Publication Number Publication Date
JPS614192A true JPS614192A (en) 1986-01-10
JPH0145195B2 JPH0145195B2 (en) 1989-10-02

Family

ID=14856403

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12327084A Granted JPS614192A (en) 1984-06-15 1984-06-15 Lined long distance skin current heating tube

Country Status (1)

Country Link
JP (1) JPS614192A (en)

Also Published As

Publication number Publication date
JPH0145195B2 (en) 1989-10-02

Similar Documents

Publication Publication Date Title
US4449098A (en) Arrangement for detecting the location of an electrically insulative continuous item positioned underground
JPS5852315B2 (en) Epidermal current heating pipeline
US20150237679A1 (en) Mineral Insulated Skin Effect Heating Cable
US5241147A (en) Method for heating a transport pipeline, as well as transport pipeline with heating
US10641424B2 (en) Subsea direct electric heating system
JPS5816104B2 (en) Simple induced current heating tube
US3780250A (en) Apparatus for heating the surface of constructions
RU2662635C2 (en) Induction-resistive electric heating system
US10959295B2 (en) Shielded wire for high voltage skin effect trace heating
JPS614192A (en) Lined long distance skin current heating tube
Lervik et al. Direct electrical heating of subsea pipelines
Lervik et al. Design of anode corrosion protection system on electrically heated pipelines
JPH0142596B2 (en)
Czarnywojtek et al. Computer simulation of responses of earth‐return circuits to the AC and DC external excitation
KR830001381B1 (en) Cuticle current heating pipeline
Lervik et al. Prevention of hydrate formation in pipelines by electrical methods
JPS60107290A (en) Skin current heat generating tube with defect zone discovering circuit
RU2694103C2 (en) Heating element of device for heating of industrial facility
JP2011007224A (en) Device for reducing electromagnetically-induced voltage of pipeline
Lervik et al. Measurements and Calculations on Direct Electrical Heating of Duplex Steel Risers
JPS6234263Y2 (en)
JPH07288177A (en) Electric heater to prevent freezing of rail point
Maksimenko et al. Determination of the position of an underground pipeline using the results of measurements of its magnetic field strength
JPS5963689A (en) Direct energization heater for pipeline
JPS60151493A (en) Heating pipe device containing flow branching type double electric heating pipe, inner and outer pipe thereof has collar