JPS6141850B2 - - Google Patents

Info

Publication number
JPS6141850B2
JPS6141850B2 JP55027178A JP2717880A JPS6141850B2 JP S6141850 B2 JPS6141850 B2 JP S6141850B2 JP 55027178 A JP55027178 A JP 55027178A JP 2717880 A JP2717880 A JP 2717880A JP S6141850 B2 JPS6141850 B2 JP S6141850B2
Authority
JP
Japan
Prior art keywords
moles
mol
silver
potassium persulfate
silver oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55027178A
Other languages
Japanese (ja)
Other versions
JPS55130074A (en
Inventor
Kozo Kajita
Hiroshi Ishiuchi
Tadashi Goryo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP2717880A priority Critical patent/JPS55130074A/en
Publication of JPS55130074A publication Critical patent/JPS55130074A/en
Publication of JPS6141850B2 publication Critical patent/JPS6141850B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/54Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of silver
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、アルカリ電池の陽極活物質として好
適な酸化第二銀の製法に係る。 近年、アルカリ電池の陽極活物質として酸化第
二銀(AgO)を用いることが種々検討されてい
る。従来から常用されている酸化第一銀
(Ag2O)の単位体積当りの放電容量が約1680mA
H/cm3であるのに対し、酸化第二銀は約3330mA
H/cm3で約2.0倍もの放電容量を有しており、陽極
活物質として好適である。 酸化第二銀の製法として、硝酸銀溶液を電解浴
とし、陽極および陰極にそれぞれ白金網を使用し
て電解を行い、陽極に銀酸化物を電着させる陽極
酸化法。硝酸銀溶液にオゾンを吹き込んで酸化を
行い、コロイド状の微粒子を生成させるオゾン酸
化法。硝酸銀溶液をアルカリの存在下で酸化剤を
用いて酸化する化学酸化法などが知られている。
陽極酸化法ならびにオゾン酸化法では、Ag6O8
AgNO3の如き銀酸素酸塩が主に生成するため、
生成物を熱処理して酸化第二銀にする必要があ
り、作業が煩雑になり量産的でなく、また収率が
低い。さらにこれらの製法で得られた酸化第二銀
はアルカリ溶液からなる電解液中で分解して多量
のガスを発生するとともに、活物質の放電容量が
減少するため、電池用の活物質としては好ましく
ない。 本発明は、製造工程が簡単で収率の高い量産に
適した化学酸化法に関するもので、酸化第二銀の
純度が高く、かつアルカリ電解液中での分解率が
低い酸化第二銀の製法を提供するものである。 酸化第二銀を製造する際の主原料である硝酸銀
を酸化する酸化剤として、過硫酸カリウム
(K2S2O8)のごとき過硫酸塩、過マンガン酸カリ
ウム(KMnO4)のごとき過マンガン酸塩、亜塩素
酸ナトリウム(NaClO2)のごとき塩素酸塩などが
ある。 1.2mol/の水酸化ナトリウム水溶液に前記各
種の酸化剤を添加し、これを3mol/の硝酸銀
水溶液を徐々に滴下して、硝酸銀を各種の酸化剤
で酸化して得た酸化第二銀0.5gを陽極活物質、
亜鉛を陰極活物質、25重量%の水酸化ナトリウム
水溶液を電解液としてGS12型酸化銀電池をつく
り、各試料電池の開路電圧と、端子電圧が1.4V
になるまでの放電容量と、放電利用率を次の表1
に示す。
The present invention relates to a method for producing silver oxide suitable as an anode active material for alkaline batteries. In recent years, various studies have been made on using silver oxide (AgO) as an anode active material for alkaline batteries. The discharge capacity per unit volume of silver oxide (Ag 2 O), which has been commonly used, is approximately 1680 mA.
H/cm 3 , whereas silver oxide is about 3330mA
It has a discharge capacity of about 2.0 times H/cm 3 and is suitable as an anode active material. A method for producing ferric oxide is an anodizing method in which silver nitrate solution is used as an electrolytic bath, electrolysis is performed using platinum mesh as the anode and cathode, and silver oxide is electrodeposited on the anode. Ozone oxidation method involves blowing ozone into a silver nitrate solution to oxidize it and generate colloidal particles. Chemical oxidation methods are known in which a silver nitrate solution is oxidized using an oxidizing agent in the presence of an alkali.
In the anodic oxidation method and ozone oxidation method, Ag6O8
Because silver oxylates such as AgNO 3 are mainly produced,
It is necessary to heat-treat the product to convert it into silver oxide, which makes the work complicated, making it difficult to mass-produce, and the yield is low. Furthermore, the silver oxide obtained by these manufacturing methods decomposes in an electrolyte consisting of an alkaline solution and generates a large amount of gas, and the discharge capacity of the active material decreases, so it is not suitable as an active material for batteries. do not have. The present invention relates to a chemical oxidation method that has a simple manufacturing process and is suitable for mass production with high yield.The present invention relates to a chemical oxidation method that has a simple manufacturing process and is suitable for mass production with high yield. It provides: Persulfates such as potassium persulfate (K 2 S 2 O 8 ) and permanganese such as potassium permanganate (KMnO 4 ) are used as oxidizing agents to oxidize silver nitrate, which is the main raw material when producing silver oxide. These include acid salts and chlorates such as sodium chlorite (NaClO 2 ). The various oxidizing agents mentioned above were added to a 1.2 mol/aqueous sodium hydroxide solution, and a 3 mol/aqueous silver nitrate solution was gradually added dropwise to the solution, and silver nitrate was oxidized with the various oxidizing agents to obtain 0.5 g of ferric oxide. the anode active material,
A GS12 type silver oxide battery was made using zinc as the cathode active material and a 25% by weight aqueous sodium hydroxide solution as the electrolyte, and the open circuit voltage and terminal voltage of each sample battery were 1.4V.
The following table 1 shows the discharge capacity and discharge utilization rate until
Shown below.

【表】 この表から明らかなように、過マンガン酸カリ
ウムで酸化したものは開路電圧が低いうえ、放電
容量も小さく、また亜鉛素酸ナトリウムで酸化し
たものは放電容量が小さく、放電利用率が低い。
これらに比べて過硫酸カリウムで酸化して得た酸
化第二銀を用いたものは、放電容量が大きく高い
放電利用率を有しているから酸化剤として好適で
あることがわかる。 次に本発明者らは収率が良く純度が高く、かつ
アルカリ溶液中での分解率の低い酸化第二銀の合
成条件について検討を行い、特に酸化第二銀の特
性に大きく影響をおよぼす硝酸銀、過硫酸塩およ
びアルカリの使用量の比率について明らかにし
た。なおその他の合成条件は反応温度80℃、反応
時間60分、熟成時間60分の条件で好適であること
が分つたのでこれらの条件は同一で実験を行つ
た。 硝酸銀1モルを使用し、その時の過硫酸カリウ
ムの使用量を種々変えて酸化第二銀を合成した際
の、酸化第二銀の純度と過硫酸カリウムの使用量
との関係を第1図に示す。またこの条件で合成し
た酸化第二銀を、45℃に維持された25重量%の水
酸化ナトリウム水溶液中に浸漬した際の一日平均
のガス発生量と過硫酸カリウムの使用量との関係
を第2図に示す。なおアルカリの量は過剰の10モ
ルをいずれも加えた。 第1図から明らかなように、過硫酸カリウムの
量が0.7モル以上の合成条件で製造した酸化第二
銀は、純度が高くすなわち陽極活物質としての単
位重量当りの放電エネルギーが大である。また第
2図から明らかなように、過硫酸カリウム量が
0.7モルから2.0モルの合成条件で製造したもの
は、アルカリ溶液中でのガス発生量が少ないすな
わち分解の小さい酸化第二銀である。酸化第二銀
の分解は活物質の放電容量が減少するともに、分
解にともなつて発生するガスにより漏液を促進し
たり電池の変形や破裂を招来することがあるため
酸化第二銀の分解は可及的に抑制しなければなら
ない。 次に硝酸銀1モル、過硫酸カリウムを0.7モル
から2.0モルの範囲内で合成し、収率とアルカリ
使用量との関係を検討したのが第3図である。な
お硝酸銀1モルと過硫酸カリウム0.7モルを使用
した場合の曲線をA、硝酸銀1モルと過硫酸カリ
ウム1.0モルを使用した場合の曲線をB、硝酸銀
1モルと過硫酸カリウム2.0モルを使用した場合
の曲線をCとする。第3図から100%に近い収率
を示すアルカリ量はAが2.4モルBが3モルCが
5モル以上のアルカリ量が必要であるが、しかし
大過剰に使用する必要はない。 第1図、第2図および第3図より硝酸銀の使用
モル数に対し、過硫酸カリウムの使用モル数を、
硝酸銀の使用モル数の0.7倍から2.0倍の範囲と
し、アルカリの使用モル数を硝酸銀の使用モル数
と2倍の過硫酸カリウムの使用モル数とを加算し
たモル数以上の範囲にすることにより収率98%以
上、純度98%以上で、さらにアルカリ溶液中での
分解の小さい酸化第二銀を合成することができ
る。 本発明者らはさらに硝酸銀、過硫酸カリウムお
よびアルカリの使用量のモル比率を上記範囲内に
し、さらに硝酸銀とアルカリの濃度について検討
した結果を表2に示す。
[Table] As is clear from this table, those oxidized with potassium permanganate have a low open circuit voltage and small discharge capacity, and those oxidized with sodium zinc oxide have a small discharge capacity and a low discharge utilization rate. low.
Compared to these, those using ferric oxide obtained by oxidation with potassium persulfate have a large discharge capacity and a high discharge utilization rate, and are thus found to be suitable as an oxidizing agent. Next, the present inventors investigated the conditions for synthesizing silver oxide with good yield, high purity, and low decomposition rate in alkaline solutions. , the ratio of persulfate and alkali usage was clarified. The other synthesis conditions were found to be suitable: reaction temperature of 80° C., reaction time of 60 minutes, and aging time of 60 minutes, so the experiment was conducted under the same conditions. Figure 1 shows the relationship between the purity of silver oxide and the amount of potassium persulfate used when synthesizing silver oxide using 1 mole of silver nitrate and varying the amount of potassium persulfate used. show. We also investigated the relationship between the daily average amount of gas generated and the amount of potassium persulfate used when silver oxide synthesized under these conditions was immersed in a 25% by weight aqueous sodium hydroxide solution maintained at 45°C. Shown in Figure 2. An excess of 10 moles of alkali was added in each case. As is clear from FIG. 1, the silver oxide produced under synthesis conditions in which the amount of potassium persulfate is 0.7 mol or more has a high purity, that is, it has a large discharge energy per unit weight as an anode active material. Also, as is clear from Figure 2, the amount of potassium persulfate
Silver oxide produced under the synthesis conditions of 0.7 mol to 2.0 mol generates less gas in an alkaline solution, that is, has less decomposition. The decomposition of silver oxide reduces the discharge capacity of the active material, and the gas generated during decomposition may promote leakage or cause deformation or rupture of the battery. must be suppressed as much as possible. Next, 1 mol of silver nitrate and potassium persulfate were synthesized within the range of 0.7 mol to 2.0 mol, and the relationship between the yield and the amount of alkali used was investigated, as shown in Figure 3. Curve A is when using 1 mole of silver nitrate and 0.7 mole of potassium persulfate, curve B is when using 1 mole of silver nitrate and 1.0 mole of potassium persulfate, and curve B is when using 1 mole of silver nitrate and 2.0 mole of potassium persulfate. Let the curve be C. As shown in FIG. 3, the amount of alkali required to achieve a yield close to 100% is 2.4 moles of A, 3 moles of B, and 5 moles or more of C, but it is not necessary to use a large excess. From Figures 1, 2, and 3, the number of moles of potassium persulfate used relative to the number of moles of silver nitrate used is
By setting the number of moles of alkali to be in the range of 0.7 to 2.0 times the number of moles of silver nitrate used, and the number of moles of alkali to be greater than the sum of the number of moles of silver nitrate and twice the number of moles of potassium persulfate used. It is possible to synthesize silver oxide with a yield of 98% or more, a purity of 98% or more, and less decomposition in an alkaline solution. The present inventors further determined the molar ratios of the amounts of silver nitrate, potassium persulfate, and alkali to be within the above-mentioned ranges, and further investigated the concentrations of silver nitrate and alkali, and Table 2 shows the results.

【表】【table】

【表】 この表から明らかなように、硝酸銀濃度が約
0.2〜5mol/で、アルカリ濃度が約0.8〜2.0mo
l/の条件で製造したものは純度が高く、かつア
ルカリ溶液中でのガス発生量が少ないすなわち分
解の遅い酸化第二銀が合成できる。 前述のように合成条件をある範囲に規制するこ
とにより、高収率、高純度でかつ分解の遅い酸化
第二銀を得ることができた。なお前記の合成例で
はアルカリとして水酸化ナトリウム、酸化剤とし
て過硫酸カリウムを用いたが、その他水酸化カリ
ウム、過硫酸ナトリウムなども同様に使用でき
る。
[Table] As is clear from this table, the silver nitrate concentration is approximately
0.2 to 5 mol/, alkaline concentration approximately 0.8 to 2.0 mo
Silver oxide produced under the conditions of 1/20% has high purity and generates a small amount of gas in an alkaline solution, that is, it decomposes slowly. By controlling the synthesis conditions within a certain range as described above, it was possible to obtain silver oxide with high yield, high purity, and slow decomposition. In the above synthesis example, sodium hydroxide was used as the alkali and potassium persulfate was used as the oxidizing agent, but other materials such as potassium hydroxide and sodium persulfate can also be used.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は過硫酸カリウムの量と酸化第二銀の純
度との関係図、第2図は過硫酸カリウムの量とガ
ス発生量との関係図、第3図はアルカリの量と収
率との関係図である。
Figure 1 shows the relationship between the amount of potassium persulfate and the purity of silver oxide, Figure 2 shows the relationship between the amount of potassium persulfate and the amount of gas generated, and Figure 3 shows the relationship between the amount of alkali and the yield. It is a relationship diagram.

Claims (1)

【特許請求の範囲】[Claims] 1 アルカリ溶液中において、銀塩を過硫酸塩か
らなる酸化剤で酸化して電池用の酸化第二銀を製
造する際、銀塩の使用モル数に対し、過硫酸塩の
使用モル数を銀塩の使用モル数の0.7倍から2.0倍
の範囲とし、アルカリの使用モル数を銀塩の使用
モル数と2倍の過硫酸塩の使用モル数とを加算し
たモル数以上の範囲に規制し、かつ、銀塩の溶液
濃度を0.2モル/から5モル/の範囲に、ア
ルカリ溶液濃度を0.8モル/から2.0モル/の
範囲に規制したことを特徴とする電池用酸化第二
銀の製法。
1. When producing silver oxide for batteries by oxidizing silver salt with an oxidizing agent consisting of persulfate in an alkaline solution, the number of moles of persulfate used is equal to the number of moles of silver salt used. The number of moles of alkali used should be within the range of 0.7 to 2.0 times the number of moles of salt used, and the number of moles of alkali used should be regulated to a range of more than the sum of the number of moles of silver salt used and twice the number of moles of persulfate used. , and a method for producing ferric oxide for batteries, characterized in that the concentration of the silver salt solution is regulated in the range of 0.2 mol/ to 5 mol/, and the concentration of the alkaline solution is regulated in the range of 0.8 mol/ to 2.0 mol/.
JP2717880A 1980-03-03 1980-03-03 Production of silver oxide for battery Granted JPS55130074A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2717880A JPS55130074A (en) 1980-03-03 1980-03-03 Production of silver oxide for battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2717880A JPS55130074A (en) 1980-03-03 1980-03-03 Production of silver oxide for battery

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2951277A Division JPS53113797A (en) 1977-03-16 1977-03-16 Production of silver(ii) oxide for cell

Publications (2)

Publication Number Publication Date
JPS55130074A JPS55130074A (en) 1980-10-08
JPS6141850B2 true JPS6141850B2 (en) 1986-09-18

Family

ID=12213811

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2717880A Granted JPS55130074A (en) 1980-03-03 1980-03-03 Production of silver oxide for battery

Country Status (1)

Country Link
JP (1) JPS55130074A (en)

Also Published As

Publication number Publication date
JPS55130074A (en) 1980-10-08

Similar Documents

Publication Publication Date Title
US4269670A (en) Electrode for electrochemical processes
KR940011665A (en) Method for producing pure nickel hydroxide and uses thereof
JP3793800B2 (en) Method for producing hydrogen and oxygen using iodine compound and semiconductor photocatalyst
JPS6141850B2 (en)
EP0013415B1 (en) Fabrication of nickel electrodes for alkaline batteries
JPS5813498B2 (en) Denchiyousankagin (2) Noseihou
US2813825A (en) Method of producing perchlorates
JP2005068007A (en) Method for manufacturing hydrogen and oxygen by iodine compound and semiconductor photocatalyst
KR890002059B1 (en) Electrolytic process for manufacturing pure potassium peroxydiphosphate
JPH10284075A (en) Manufacture of positive electrode active material for alkaline battery
US3523828A (en) Method of activating nickel battery electrode
US1901364A (en) Process of making basic metal sulphates and recovery of metal from waste metallic compounds
US2772229A (en) Preparation of perchlorates
JP7399189B2 (en) Composition for forming tin oxide
JPH01184293A (en) Production of iodine and iodate
US2583799A (en) Electrolytic process of preparing selenic acid from selenious acid
US2770589A (en) Electrolytic production of alkali salts
US1826773A (en) Electrolytic production of alkali and alkaline earth metals
US2561656A (en) Electrolytic production of polyhydric alcohols
JPH03503333A (en) Method for producing improved electrolytic manganese dioxide
JPH0665754B2 (en) Method for producing electrolytic manganese dioxide
SU973029A3 (en) Process for producing titanium electrode with lead dioxide coating
KR820001462B1 (en) Process for producing sodium hypochloride
JPS5924494B2 (en) Manufacturing method of positive electrode for silver oxide batteries
JPS6211459B2 (en)