JPS6141609B2 - - Google Patents

Info

Publication number
JPS6141609B2
JPS6141609B2 JP4045079A JP4045079A JPS6141609B2 JP S6141609 B2 JPS6141609 B2 JP S6141609B2 JP 4045079 A JP4045079 A JP 4045079A JP 4045079 A JP4045079 A JP 4045079A JP S6141609 B2 JPS6141609 B2 JP S6141609B2
Authority
JP
Japan
Prior art keywords
iodine
collection
present
collecting
silver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4045079A
Other languages
Japanese (ja)
Other versions
JPS55132634A (en
Inventor
Seiichiro Uno
Mitsuo Narutomi
Susumu Kitani
Kunio Nakajima
Yoshizumi Ogawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON GENSHIRYOKU KENKYUSHO
NITSUTA KK
TSURUMI KOORU KK
Original Assignee
NIPPON GENSHIRYOKU KENKYUSHO
NITSUTA KK
TSURUMI KOORU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON GENSHIRYOKU KENKYUSHO, NITSUTA KK, TSURUMI KOORU KK filed Critical NIPPON GENSHIRYOKU KENKYUSHO
Priority to JP4045079A priority Critical patent/JPS55132634A/en
Publication of JPS55132634A publication Critical patent/JPS55132634A/en
Publication of JPS6141609B2 publication Critical patent/JPS6141609B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Filtering Materials (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は改良されたヨウ素捕集用過材に関す
る。より詳しく述べるならば、本発明は真空蒸着
または他の方法によつて任意量の銀が片面または
全面に添着された元素状のヨウ素を捕集する過
材に関する。 元素状ヨウ素を選択的に捕集する過材として
は銅製あみまたは銅製あみに銀をメツキしたもの
が従来代表的に使用されてきた。これらの過材
は化学反応によつて元素状ヨウ素を捕集するが、
単位面積当りの捕集表面積が少なく、高い捕集効
率を期待する場合、大量の捕集材を使用しなけれ
ばならないという欠点がある。また、活性炭又は
活性炭を基材にした過材はヨウ素化合物等を高
効率で捕集することが知られている。元素状ヨウ
素とヨウ化メチルの分離性を比較すると、元素状
ヨウ素は本発明の過材と従来から使用されてい
る活性炭等の両者とも高効率で捕集されるが、ヨ
ウ化メチルは活性炭等に比較的高い効率で無視出
来ない量が捕集されそのため、分離性能が悪いと
いう欠点があつた。 本発明はかかる従来技術の欠点を改善を目的と
する。 本発明による捕集材は、気体および液体を過
する織布、不織布等過材に蒸気又は微細粒子状
の銀を任意量だけ真空蒸着法又は任意の添着法に
よつて施したもので、元素状ヨウ素を化学反応又
は物理的な手段により捕集する捕集材である。本
発明の捕集材は試料気体を含有する流体中に流れ
方向の流体を遮る位置に配置し、ヨウ素化合物等
の中から元素状ヨウ素のみを選択的に分離捕集す
る物である。本発明の捕集材は元素状ヨウ素を
99.9%以上、ヨウ化メチルを0.1%以下の効率で
捕集することができる。 本発明の捕集用材は従来のものに比較して下
記の如き利点を有する。 〔イ〕 有機材等の織布、不織布又はこれに類似
した目的の過材を用いることで、従来の銅あ
み又は銅あみに銀メツキした物よりも、著しく
捕集表面積を増大させた。すなわち、銀物質が
材の深部まで浸透付着するので、捕集表面積
が増大する。 〔ロ〕 元素状ヨウ素とヨウ化メチルの分離性能
は銀物質の化学特性を活かし、活性炭等よりも
向上させた。 〔ハ〕 非放射性である元素状ヨウ素の濃度を非
破壊状で測定する場合は主として前記従来品で
捕集し、ヨウ素に高感度の螢光X線装置を使用
する方法がある。従来の捕集材で測定する場
合、螢光X線装置は測定物が多量の金属で構成
されていると、B.G(バツクグラウンド)値が
高くなり、ヨウ素のスペクトルに影響し、スペ
クトルの分離が困難になる。そのために、狭い
範囲の高濃度だけしか測れない欠点がある。本
発明の捕集材は、捕集材の母材が有機物のセル
ローズで構成されているため0.4μg/cm2の極め
て低い値の検出限界値が得られ、実用範囲を充
分に満足することが出来る。 以下実施例を掲げ本発明の構成および効果をよ
り具体的に説明する。 実施例 1 セルローズ製紙の両面に1枚当り平均17.1
mg/7cm2の銀を蒸着した本発明のヨウ素捕集材8
枚および5枚と従来より使用されていたヨウ素捕
集用銀あみ24枚および15枚を使用して雰囲気温度
80℃においてヨウ素の捕集効果をテストした。そ
の結果を第1図にグラフとして示した。第1図の
グラフから、下記の事が明らかにされた。 本発明の捕集能は“銀あみ”の約3倍に達す
ることが分る。 元素状ヨウ素の捕集効率は99.9%以上であつ
た。 ヨウ化メチルの捕集効率は本発明の捕集材を
使用した数回の試験で、0.1%以下の捕集効率
であることを確認した。 元素状ヨウ素とヨウ素化メチルの分離度は
との結果から本発明の捕集材は活性炭等より
も秀れていると結論出来る。 所で、現在原子力関係で問題となつているヨウ
素化合物は大別して無機と有機に分けられる。元
素状ヨウ素、ヨウ化メチルの2種が最も代表的で
ある。これらのガスを別して採取する装置に
May Pack Samplerがある。May Pack Sampler
とは混合ガスを吸引し装置内に内蔵した各種捕集
材により各化学組成毎に分離捕集するのを目的に
開発された装置である。 本発明の捕集材は元素状ヨウ素を99.9%、ヨウ
化メチルを0.1%以下の割合で選択的に捕集する
性能を有するためMay Pack Samplerの捕集材と
して最適である。さらに、従来から使用されてい
る、銅あみに銀をメツキした捕集材よりも約3倍
の捕集能であるため、May Pack Samplerに使用
する場合は少量で済む利点がある。 本発明の捕集材を使用した現在までの実施例と
して、非放射性ヨウ素についてはモデル格納容器
スプレイ効果実証試験に、一方、放射性ヨウ素に
ついては原子炉用活性炭フイルタの各種基礎研究
に役立て、多大な成果を挙げている。 原子力施設フイルタは、特に気相中に浮遊する
放射性物質のヨウ素を主たる対象物質としてい
る。 本発明の捕集材は元素状ヨウ素を選択的に捕集
するヨウ素捕集材として最も秀れている。本発明
の捕集材の特長を活かし既存の原子炉用フイルタ
を工夫すれば用途の拡大に繋がる。以下その一例
を記述する。 実施例 2 (1) 本発明の捕集材を使用した原子力施設用フイ
ルタのコスト試算 過表面積 0.25m×0.6m×20段=2m2 3m2×10層×30m2 ヨウ素捕集材のコスト 30m2×10000円 /m2=300000円 その他、構造材等 50000円 合計 300000+50000=350000円/1台 (2) 市販品の原子炉用活性炭 フイルタ 価格 500000円/1台 at 2″ bed 過表面積 1.14m2 重量 75Kg/1台 (3) 本発明の捕集材と使用したフイルタと市販品
の原子炉用活性炭フイルタとの規格等に関する
比較
The present invention relates to an improved filter material for collecting iodine. More particularly, the present invention relates to a supermaterial for collecting elemental iodine that has been impregnated on one or all sides with any amount of silver by vacuum deposition or other methods. Conventionally, as a filter material for selectively collecting elemental iodine, a copper net or a copper net plated with silver has been typically used. These overmaterials capture elemental iodine through a chemical reaction;
If the collection surface area per unit area is small and high collection efficiency is expected, there is a drawback that a large amount of collection material must be used. Furthermore, activated carbon or a filter material based on activated carbon is known to collect iodine compounds and the like with high efficiency. Comparing the separability of elemental iodine and methyl iodide, elemental iodine is collected with high efficiency by both the filter material of the present invention and conventionally used activated carbon, etc., but methyl iodide is collected by activated carbon, etc. However, a non-negligible amount was collected with relatively high efficiency, resulting in poor separation performance. The present invention aims to improve these drawbacks of the prior art. The collection material according to the present invention is a filter material such as a woven fabric or a non-woven fabric that permeates gases and liquids, and a desired amount of vapor or fine particle silver is applied by vacuum evaporation method or any impregnation method. This is a collection material that collects iodine by chemical reaction or physical means. The collection material of the present invention is placed in a fluid containing a sample gas at a position that blocks the fluid in the flow direction, and selectively separates and collects only elemental iodine from iodine compounds and the like. The collection material of the present invention contains elemental iodine.
It can collect more than 99.9% of methyl iodide with an efficiency of less than 0.1%. The collection material of the present invention has the following advantages compared to conventional collection materials. [B] By using woven fabrics, non-woven fabrics, or similar materials made of organic materials, the collection surface area is significantly increased compared to conventional copper nets or silver-plated copper nets. That is, since the silver substance penetrates deep into the material and adheres thereto, the collection surface area increases. [B] The separation performance between elemental iodine and methyl iodide was improved compared to activated carbon etc. by taking advantage of the chemical properties of silver substances. [C] When measuring the concentration of elemental iodine, which is non-radioactive, in a non-destructive manner, there is a method that mainly involves collecting it with the conventional product described above and using a fluorescent X-ray device that is highly sensitive to iodine. When measuring with conventional collection materials, fluorescent X-ray equipment has a high BG (background) value when the object to be measured consists of a large amount of metal, which affects the iodine spectrum and causes spectral separation. It becomes difficult. Therefore, it has the disadvantage that it can only measure high concentrations in a narrow range. The collection material of the present invention has an extremely low detection limit of 0.4 μg/cm 2 because the base material of the collection material is composed of organic cellulose, which satisfies the practical range. I can do it. EXAMPLES The structure and effects of the present invention will be explained in more detail with reference to Examples below. Example 1 Average of 17.1 per sheet on both sides of cellulose paper
Iodine collecting material 8 of the present invention deposited with mg/7cm 2 of silver
Atmospheric temperature using 24 sheets and 15 sheets and 5 sheets and 24 sheets and 15 sheets of silver net for iodine collection, which were conventionally used.
The iodine trapping effect was tested at 80℃. The results are shown as a graph in FIG. From the graph in Figure 1, the following things were clarified. It can be seen that the collection ability of the present invention reaches approximately three times that of "silver net". The collection efficiency of elemental iodine was over 99.9%. The collection efficiency of methyl iodide was confirmed to be 0.1% or less in several tests using the collection material of the present invention. From the results of the separation of elemental iodine and methyl iodide, it can be concluded that the collection material of the present invention is superior to activated carbon and the like. By the way, iodine compounds, which are currently a problem in nuclear power, can be roughly divided into inorganic and organic compounds. The two most typical are elemental iodine and methyl iodide. A device that collects these gases separately
There is May Pack Sampler. May Pack Sampler
is a device developed for the purpose of sucking in a mixed gas and separating and collecting each chemical composition using various collection materials built into the device. The collecting material of the present invention has the ability to selectively collect 99.9% of elemental iodine and 0.1% or less of methyl iodide, and is therefore optimal as a collecting material for May Pack Sampler. Furthermore, since it has about three times the trapping ability as the conventionally used trapping material made of copper plated with silver, it has the advantage of requiring only a small amount when used in the May Pack Sampler. Examples of the use of the collection material of the present invention to date include non-radioactive iodine in a model containment vessel spray effectiveness verification test, and radioactive iodine in various basic studies of activated carbon filters for nuclear reactors. We are achieving results. Nuclear facility filters primarily target iodine, a radioactive substance floating in the gas phase. The trapping material of the present invention is most excellent as an iodine trapping material that selectively traps elemental iodine. If existing nuclear reactor filters are modified by taking advantage of the features of the collecting material of the present invention, the range of uses will be expanded. An example is described below. Example 2 (1) Cost estimation of a filter for nuclear facilities using the collection material of the present invention Surface area 0.25m x 0.6m x 20 stages = 2m 2 3m 2 x 10 layers x 30m 2 Cost of iodine collection material 30m 2 × 10,000 yen / m 2 = 300,000 yen Other structural materials, etc. 50,000 yen Total 300,000 + 50,000 = 350,000 yen / 1 unit (2) Commercially available activated carbon filter for reactors Price 500,000 yen / 1 unit at 2″ bed Oversurface area 1.14 m 2 Weight 75Kg/1 unit (3) Comparison of standards, etc. between the filter used with the collecting material of the present invention and a commercially available activated carbon filter for nuclear reactors

【表】 実施例2に記載した比較実験からも本発明の捕
集材で既存の原子炉用フイルターを改良すること
によつて用途を拡大することが出来ることが明ら
かである。
[Table] From the comparative experiment described in Example 2, it is clear that the use of existing nuclear reactor filters can be expanded by improving them with the collection material of the present invention.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明および従来技術の捕集材を使用して
元素状ヨウ素を捕集した結果を示すグラフであ
る。尚、図は雰囲気温度80℃におけるヨウ素捕集
材と銀あみのヨウ素捕集効率を示すグラフであ
り、図中 〇:ヨウ素捕集材 8枚、□:ヨウ
素捕集材 3枚、●:ヨウ素捕集用銀あみ 24
枚、■:ヨウ素捕集用銀あみ 15枚である。
The figure is a graph showing the results of collecting elemental iodine using the collecting materials of the present invention and the prior art. The figure is a graph showing the iodine trapping efficiency of iodine trapping material and silver net at an ambient temperature of 80°C. Collection silver net 24
15 pieces of silver net for collecting iodine.

Claims (1)

【特許請求の範囲】 1 片面または全面に銀が施された主として有機
質材から成る元素状ヨウ素捕集用材。 2 有機質材が織布および不織布から選択され
る特許請求の範囲第1項記載の元素状ヨウ素捕集
用材。 3 有機質材がセルローズである特許請求の範
囲第2項記載の元素状ヨウ素捕集用材。 4 銀が真空蒸着または添着法によつて施された
特許請求の範囲第1項記載の元素状ヨウ素捕集用
材。
[Scope of Claims] 1. An elemental iodine collection material mainly made of an organic material coated with silver on one or the entire surface. 2. The material for collecting elemental iodine according to claim 1, wherein the organic material is selected from woven fabrics and nonwoven fabrics. 3. The material for collecting elemental iodine according to claim 2, wherein the organic material is cellulose. 4. The material for collecting elemental iodine according to claim 1, in which silver is applied by vacuum deposition or impregnation.
JP4045079A 1979-04-04 1979-04-04 Filter medium for collecting iodine Granted JPS55132634A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4045079A JPS55132634A (en) 1979-04-04 1979-04-04 Filter medium for collecting iodine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4045079A JPS55132634A (en) 1979-04-04 1979-04-04 Filter medium for collecting iodine

Publications (2)

Publication Number Publication Date
JPS55132634A JPS55132634A (en) 1980-10-15
JPS6141609B2 true JPS6141609B2 (en) 1986-09-16

Family

ID=12580968

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4045079A Granted JPS55132634A (en) 1979-04-04 1979-04-04 Filter medium for collecting iodine

Country Status (1)

Country Link
JP (1) JPS55132634A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0546933Y2 (en) * 1988-12-06 1993-12-09

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5882597B2 (en) * 2011-04-15 2016-03-09 国立大学法人信州大学 Filter and filter manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0546933Y2 (en) * 1988-12-06 1993-12-09

Also Published As

Publication number Publication date
JPS55132634A (en) 1980-10-15

Similar Documents

Publication Publication Date Title
Michel et al. . gamma.-Ray spectrometry for determination of radium-228 and radium-226 in natural waters
Jabbar et al. A review on 129I analysis in air
Veeh et al. COBALT, SILVER, AND URANIUM CONCENTRATIONS OF REEF‐BUILDING CORALS IN THE PACIFIC OCEAN 1
Gäbler et al. Determination of atmospheric iodine species using a system of specifically prepared filters and IDMS
JPS6141609B2 (en)
Tadmor Applications of Isotopic Exchange in Gas Chromatography.
Haller et al. Organic iodine-131 compounds released from a nuclear fuel chemical processing plant
Obruchikov et al. Radioiodine removal from air streams with impregnated UVIS® carbon fiber
Nazarov et al. Resonance neutrons for determination of elemental content of moss, lichen and pine needles in atmospheric deposition monitoring
Lieser et al. Multielement trace analysis of solid and liquid samples by X-ray fluorescence
Milley et al. Preconcentration and instrumental neutron activation analysis of acid rain for trace elements
Holzbecher et al. Determination of trace metals by neutron activation after coprecipitation with lead phosphate
JPH0475455B2 (en)
Hakimi Improved iodine-125 removal in anionic form of iodate by column method using laterite soil
Copin-Montegut et al. Occurrence of mercury in the atmosphere and waters of the Mediterranean
Matsunami et al. Detection of uranium in rain water from nuclear explosions
Wilhelm et al. Inorganic adsorber materials for trapping of fission product iodine
Naritomi et al. Method for improving the collecting performance of iodine samplers under high relative humidity
Van Grieken et al. Enrichment procedures for water analysis by X-ray energy spectrometry
Joshi et al. Studies on 226 Ra and 210 Pb activities and the concentration factors of 226 Ra in the surface organic layers of the estuarine sediments of Mindola and Purna rivers in India
McCormack Some Observations on Iodine Removal from Plant Streams with Charcoal
Buat-Menard et al. Multi-element neutron activation analysis measurements towards the geochemistry of particulate matter exchange between continent—Atmosphere—Ocean
Collins et al. Experiments relating to the control of fission-product release from advanced gas-cooled reactors
Parker et al. Fission product transport and behavior in the stainless steel lined containment research installation (CRI)
SJ et al. Heavy metals in drinking water in Taiwan and their possible bearing on an endemic disease