JPS6141483Y2 - - Google Patents

Info

Publication number
JPS6141483Y2
JPS6141483Y2 JP2427081U JP2427081U JPS6141483Y2 JP S6141483 Y2 JPS6141483 Y2 JP S6141483Y2 JP 2427081 U JP2427081 U JP 2427081U JP 2427081 U JP2427081 U JP 2427081U JP S6141483 Y2 JPS6141483 Y2 JP S6141483Y2
Authority
JP
Japan
Prior art keywords
valve
movable
valve seat
chamber
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2427081U
Other languages
Japanese (ja)
Other versions
JPS57137877U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP2427081U priority Critical patent/JPS6141483Y2/ja
Publication of JPS57137877U publication Critical patent/JPS57137877U/ja
Application granted granted Critical
Publication of JPS6141483Y2 publication Critical patent/JPS6141483Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Magnetically Actuated Valves (AREA)

Description

【考案の詳細な説明】 本考案は比例流量制御弁、特に気体の比例流量
制御弁に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a proportional flow control valve, particularly a proportional flow control valve for gases.

従来の流体の流量制御弁、特に空気等の電磁式
流量制御弁は次のような構成のものが一般的であ
る。
Conventional fluid flow control valves, particularly electromagnetic flow control valves for air, etc., generally have the following configuration.

即ち、この種電磁式流量制御弁は、ケーシング
内に軸方向へ移動可能に組付けられて電磁コイル
への通電により原位置から一方向へ移動する可動
コアと、この可動コアの軸心に設けたシヤフト
と、このシヤフトの先端に組付けられて前記可動
コアが原位置にあるとき前記ハウジング内に設け
た弁座に着座しまた前記可動コアが一方向へ移動
したとき前記弁座から離れる可動弁体と、前記可
動コア及びシヤフトを他方向へ付勢するスプリン
グを備えて、前記電磁コイルへの電流付与値に応
じて前記弁体を通る流体の流量を制御するように
したものが一般的構造である。この種の流量制御
弁において、流量制御は、可動弁体の弁座からの
開度の制御によつて行われるが、その際に流体通
路は弁ケーシングの吸込口−ケーシング内に形成
された吸気室(1次弁室)−弁座開口−弁座と可
動弁体との空隙−出口室(2次弁室)−流体出口
と連通形成される。
In other words, this type of electromagnetic flow control valve has a movable core that is installed in a casing so as to be movable in the axial direction and moves in one direction from its original position when an electromagnetic coil is energized, and a movable core that is installed at the axis of the movable core. a shaft that is assembled to the tip of the shaft so that when the movable core is in the original position, the movable core seats on a valve seat provided in the housing, and when the movable core moves in one direction, the movable shaft moves away from the valve seat; Generally, a valve body is provided with a spring that biases the movable core and shaft in the other direction, and the flow rate of fluid passing through the valve body is controlled according to the value of current applied to the electromagnetic coil. It is a structure. In this type of flow control valve, the flow rate is controlled by controlling the opening degree of the movable valve element from the valve seat. Communication is formed between the chamber (primary valve chamber), the valve seat opening, the gap between the valve seat and the movable valve body, the outlet chamber (secondary valve chamber), and the fluid outlet.

従来特に空気等の気体の正確な制御のためには
ポペツト弁開度に対応ないし比例した気体流量特
性を備えることが要求されている。しかし、従来
の弁構成では上記流路の管路抵抗が大きく、所定
印加電流ないし電圧に対し、充分な対応電流を確
保することが困難であつた。従つて、所与の流量
の確保のためには、吸込口の口径、1次、2次弁
室、弁座開口口径等の口径を大きくする必要があ
り、結果的に大きなサイズの弁を必要とするとい
う問題があつた。
Conventionally, in order to accurately control gas such as air, it has been required to have gas flow characteristics that correspond to or are proportional to the poppet valve opening. However, in the conventional valve configuration, the resistance of the flow path is large, and it is difficult to ensure a sufficient current for a given applied current or voltage. Therefore, in order to secure a given flow rate, it is necessary to increase the diameter of the suction port, the primary and secondary valve chambers, the valve seat opening diameter, etc., and as a result, a large-sized valve is required. There was a problem.

本考案は、口径を大きくせずに流量を十分確保
することを目的とする。即ち、本考案の比例流量
制御弁の基本的構成は1次弁室のポペツト弁軸に
直交する横断面の中心から、弁座開口中心を偏心
させることにある。
The purpose of this invention is to ensure a sufficient flow rate without increasing the diameter. That is, the basic structure of the proportional flow rate control valve of the present invention is to make the center of the opening of the valve seat eccentric from the center of the cross section of the primary valve chamber perpendicular to the poppet valve shaft.

以下、本考案について詳述する。 The present invention will be explained in detail below.

本考案の弁構造は、吸込口から流入する流体を
弁座開口へ導く過程の流路をなす吸気室(1次弁
室)の横断面中心に対し、弁座開口中心を偏心さ
せることにより、流体の流れを容易かつスムース
にして乱流或いは渦流の生成を防止し、もつて弁
通過の際の管路抵抗を最低減に減少せしめる。従
来の弁構造においては、弁座開口25a中心Cと
1次弁室の横断面23a中心とは同心に形成され
ており、吸込口から流入したエアが弁座開口部に
向かうとき渦流が発生して、管路抵抗を増大さ
せ、所定差圧下において十分な弁流量が得られな
いことが判明した。
The valve structure of the present invention makes the center of the valve seat opening eccentric with respect to the cross-sectional center of the intake chamber (primary valve chamber), which forms the flow path for guiding the fluid flowing in from the suction port to the valve seat opening. The fluid flow is facilitated and smoothed, preventing the formation of turbulence or vortices, thereby reducing the line resistance to the minimum when passing through the valve. In the conventional valve structure, the center C of the valve seat opening 25a and the center of the cross section 23a of the primary valve chamber are formed concentrically, and a vortex is generated when air flowing from the suction port heads toward the valve seat opening. It was found that the pipe resistance increased and a sufficient valve flow rate could not be obtained under a predetermined differential pressure.

本考案によれば、上述の管路抵抗増大の主たる
原因は互いに偏心させた弁座開口中心と1次弁室
断面中心との基本的構成により、解消される。吸
込口は、本考案では、1次弁室の外周に対し略々
接線方向に配設することが望ましいが、他の取付
態様をとることもできる。
According to the present invention, the above-mentioned main cause of increased pipe line resistance is eliminated by the basic configuration of the valve seat opening center and the primary valve chamber cross-sectional center being eccentric from each other. In the present invention, the suction port is desirably disposed substantially tangentially to the outer periphery of the primary valve chamber, but other mounting configurations are also possible.

その結果、本考案においては第3図に定性的に
図示する如く、同一の1次弁室、吸込口及び弁座
開口等の弁体内管路口径において、従来の同心配
置の構造の弁よりも、同一の制御印加電流に対
し、より優れた流量応答性を得ることができる。
As a result, in the present invention, as shown qualitatively in FIG. 3, with the same primary valve chamber, suction port, valve seat opening, etc., the valve body has a larger diameter than the conventional concentric structure. , it is possible to obtain better flow rate response for the same control applied current.

以下、図面により実施例を説明する。Hereinafter, the embodiments will be described with reference to the drawings.

第1図は、本考案の一実施例を示す、中心軸方
向断面図である。電磁式の比例流量制御弁1は、
ケーシング2内に1次弁室3、2次弁室4を有
し、両弁室を区画する弁座5(弁座開口を備えて
いる)と、この弁座5に着座可能かつ開弁方向
(中心軸方向)可動な可動弁体6、可動弁体6を
支持かつ制御する中心軸7を弁部分の基本構成と
する。
FIG. 1 is a sectional view in the central axis direction showing an embodiment of the present invention. The electromagnetic proportional flow control valve 1 is
The casing 2 has a primary valve chamber 3 and a secondary valve chamber 4, and a valve seat 5 (equipped with a valve seat opening) that partitions both valve chambers, and a valve seat 5 that can be seated on the valve seat 5 and that can be seated in the valve opening direction. A movable valve body 6 that is movable (in the central axis direction) and a central shaft 7 that supports and controls the movable valve body 6 are the basic components of the valve portion.

1次弁室3は、第2図(第1図−断面を示
す)において点C3を中心とする円形断面3aを
成し、弁座開口5aは点C3とX−Y両軸に夫々
X,tYだけ偏心した点C5を中心とした円形開
口を成す。1次弁室3への吸込口8は、その断面
外周3aに対し接線方向に開口し、2次弁室4か
らはその断面外周から接線方向にポート(出口)
9が形成される。ポート9は好ましくは、ポート
(吸込口)8と弁座中心C5について反対側とする
が、吸込口と出口との相互配置関係は、同じく
夫々の弁室に対して接線方向に開口する場合、必
要に応じた角度位置において可能であり、図示の
実施例に限定されない。また、弁室接線方向以外
の、吸込口、出口配置も、必要に応じて許容され
うる。なお偏心の程度は、好ましくは弁座の開口
が1次弁室の外周に内接する程度にとる。本実施
例においては、1次弁室は、弁座に関し可動弁体
の反対側に配されており、これは好ましい効果を
生ずるが、1次弁室を可動弁体と同じ側に配した
場合においても、1次弁室断面と弁座開口の夫々
の中心の偏心位置は同様の効果を期待できる。
The primary valve chamber 3 has a circular cross section 3a centered at point C3 in FIG. It forms a circular aperture centered on point C5 , which is eccentric by tX and tY . A suction port 8 to the primary valve chamber 3 opens in a tangential direction to its cross-sectional outer circumference 3a, and a port (outlet) from the secondary valve chamber 4 opens in a tangential direction from its cross-sectional outer circumference.
9 is formed. The port 9 is preferably on the opposite side of the valve seat center C5 from the port 8, but the mutual arrangement of the inlet and the outlet is such that they open tangentially to the respective valve chamber. , in any desired angular position and is not limited to the illustrated embodiment. In addition, an arrangement of the suction port and the outlet other than in the tangential direction of the valve chamber may be allowed as required. The degree of eccentricity is preferably such that the opening of the valve seat is inscribed in the outer periphery of the primary valve chamber. In this example, the primary valve chamber is placed on the opposite side of the valve seat from the movable valve body, which produces a favorable effect, but if the primary valve chamber is placed on the same side as the movable valve body, Similar effects can also be expected from the eccentric positions of the primary valve chamber cross section and the center of the valve seat opening.

2次弁室4は一般には弁座開口中心C5と同心
に形成するをもつて足りるが、1次弁室と同様に
一定量偏心させることもできる。
Generally, it is sufficient to form the secondary valve chamber 4 concentrically with the valve seat opening center C5 , but it can also be made eccentric by a certain amount like the primary valve chamber.

このような、1次弁室3と弁座開口5a中心と
の偏心配置は、特に第1図図示のような、電磁式
比例流量制御弁において、特に有利な結果を生ず
る。即ち、ケーシング2の2次弁室4の側には中
心軸7が軸受12aを貫通して電磁コイル11の
端部にまで延在し軸受12bに貫通して支持され
その右端はスプリング17により弁閉方向に付勢
されている。スプリング17はメクラネジ18に
より付勢力調節可能に抗支されている。中心軸7
には可動コア(鉄心)10が少なくとも弁開方向
に軸方向位置固定的に取付けられ、コイル11の
通電時(好ましくは可変電流値、場合により可変
電圧値)に中心軸7に対し開弁方向(図中右向
き)の力を及ぼす。
This eccentric arrangement of the primary valve chamber 3 and the center of the valve seat opening 5a produces particularly advantageous results, particularly in an electromagnetic proportional flow control valve as shown in FIG. That is, on the side of the secondary valve chamber 4 of the casing 2, the central shaft 7 passes through the bearing 12a, extends to the end of the electromagnetic coil 11, and is supported by passing through the bearing 12b, and the right end thereof is connected to the valve by the spring 17. It is biased in the closing direction. The spring 17 is supported by a blind screw 18 so that the urging force can be adjusted. central axis 7
A movable core (iron core) 10 is attached at least in a fixed axial position in the valve opening direction, and when the coil 11 is energized (preferably with a variable current value, and in some cases with a variable voltage value), the movable core (iron core) 10 moves in the valve opening direction with respect to the central axis 7. (towards the right in the figure).

コイル11、可動コア10を収容する部分は、
隔壁13により2次弁室4と区画され、軸受12
aは同時に気密シールをなす。軸受12aと可動
弁体6との間には、ベローズ14(好ましくはテ
フロン製)が二次弁室4とは気密に配され、ベロ
ーズ14の内室は、可動弁体6を貫通する連通孔
15を介して一次弁室3ないし弁座開口5a内に
連通する。ベローズ14の両端は夫々フランジ部
14a,14bを成し、夫々係止具16及びパツ
キング17を介してポペツト弁6及びケーシング
2に気密に固定されている。なお係止具16は連
通孔15との連通路16aを有する。
The part that accommodates the coil 11 and the movable core 10 is
It is divided into a secondary valve chamber 4 by a partition wall 13, and a bearing 12
a simultaneously forms an airtight seal. Between the bearing 12a and the movable valve body 6, a bellows 14 (preferably made of Teflon) is arranged airtightly from the secondary valve chamber 4, and the inner chamber of the bellows 14 has a communication hole passing through the movable valve body 6. 15, it communicates with the primary valve chamber 3 and into the valve seat opening 5a. Both ends of the bellows 14 form flange portions 14a and 14b, respectively, and are airtightly fixed to the poppet valve 6 and the casing 2 via a locking tool 16 and a packing 17, respectively. Note that the locking tool 16 has a communication path 16a with the communication hole 15.

可動弁体6の弁座5に対する着座面は好ましく
は弾性体被覆され弁開時の密封に資する。電磁コ
イル11の詳細は、本願考案の対象外なので説明
を省略する。
The seating surface of the movable valve body 6 against the valve seat 5 is preferably coated with an elastic material to contribute to sealing when the valve is opened. The details of the electromagnetic coil 11 are outside the scope of the invention of the present application, so a description thereof will be omitted.

このように構成した電磁式比例流量制御弁1の
作動は次の通りである。例えば、内燃機関の吸気
系の制御弁として用いる場合、吸込口8は大気圧
側(高圧側)出口9は負圧側に接続される。この
場合、コイルに直流制御電流を徐々に通電して行
くと、可動コアは対応して弁開方向反撥力をコイ
ル磁界から受けるが、当初はスプリング17の付
勢力、ベローズ14の抵抗、軸受部の摩擦抵抗等
により中心軸7(従つて可動弁体6)は停止(弁
閉)のまゝにある。さらに電流値が増大すると、
可動弁体は右動しはじめ開弁開始する。
The operation of the electromagnetic proportional flow control valve 1 configured as described above is as follows. For example, when used as a control valve for an intake system of an internal combustion engine, the suction port 8 is connected to the atmospheric pressure side (high pressure side) and the outlet 9 is connected to the negative pressure side. In this case, when a DC control current is gradually applied to the coil, the movable core receives a corresponding repulsive force in the valve opening direction from the coil magnetic field. The central shaft 7 (therefore, the movable valve body 6) remains stopped (valve closed) due to the frictional resistance and the like. When the current value increases further,
The movable valve body begins to move to the right and the valve begins to open.

さらに電流値の増大に伴つて、可動弁体は右動
し弁開度は対応して増大し、流量は比例的に増大
する。この際、ベローズ14は補助的に弁制御に
作用し、連通孔15を介して弁座開口5aの部分
の圧力変動に対応する圧をベローズ14内に受圧
する。その結果ベローズは2次弁室内の圧力との
差圧が減少し弁開方向への力をポペツト弁に及ぼ
し、即ち弁座開口5aの部分の負圧に応じた弁開
方向作用力をもつて、弁開度の制御の安定化と精
度向上に寄与する。この関係、即ち制御信号(電
流値)に対する弁流量応答性は、第3図のグラフ
中の曲線Aに概略示される。他方、偏心配置を有
しない同一の各部口径の弁においては一例として
点線Bに示すような応答特性を示すのみである。
Further, as the current value increases, the movable valve body moves to the right, the valve opening increases accordingly, and the flow rate increases proportionally. At this time, the bellows 14 acts auxiliary to control the valve, and receives pressure in the bellows 14 through the communication hole 15 corresponding to pressure fluctuations in the portion of the valve seat opening 5a. As a result, the differential pressure between the bellows and the pressure in the secondary valve chamber decreases, and a force in the valve opening direction is exerted on the poppet valve. In other words, the bellows has an acting force in the valve opening direction corresponding to the negative pressure at the valve seat opening 5a. , contributes to stabilizing and improving the accuracy of valve opening control. This relationship, ie, the valve flow rate responsiveness to the control signal (current value), is schematically shown by curve A in the graph of FIG. On the other hand, valves with the same diameter of each part without eccentric arrangement only exhibit response characteristics as shown by dotted line B, as an example.

このように、本願考案においては、一定の各部
口径の制御弁において、入力信号に対してより応
答特性(ないし感度)の良好な比例流量制御弁を
得ることができる。このため、一定の最大許容流
量に対しては、従来法に比しかなり小径の各部口
径の弁をもつて足り、小型軽量化、コストダウ
ン、制御信号(電流、電圧)の微小化がもたらさ
れる。また、第3図に示される如く、本願考案に
おては比較的広い範囲にわたつて良好な直線性が
得られる。
As described above, in the present invention, it is possible to obtain a proportional flow rate control valve with better response characteristics (or sensitivity) to input signals in a control valve having a fixed diameter for each part. Therefore, for a certain maximum allowable flow rate, it is sufficient to use valves with considerably smaller diameters for each part than in conventional methods, resulting in smaller size, lighter weight, lower costs, and miniaturization of control signals (current, voltage). . In addition, as shown in FIG. 3, the present invention provides good linearity over a relatively wide range.

ポペツト弁は信号無印加時開とし信号の増大と
共に弁閉方向に移動する形式の制御弁にも本考案
は当然応用される。
Naturally, the present invention can also be applied to control valves in which the poppet valve opens when no signal is applied and moves in the valve closing direction as the signal increases.

なお、電磁式制御機構は最も精密な制御に適す
るが、本実施例の如く直接軸方向駆動式のものに
限らず、回転駆動(電磁式等)を機械的に可動弁
体又は中心軸の直線運動に変換する間接直線駆動
方式、等を採用することもでき、さらに電気信号
でなく他の制御媒体(流体圧等)を用いること
も、当然可能である。しかし、いずれの制御機構
を採用するにしても、微小なる制御信号ないし作
動力によつて制御する、小型の流量制御弁におい
て、本願考案は、特にその有利にその効果が現わ
れる。
Note that the electromagnetic control mechanism is suitable for the most precise control, but it is not limited to the direct axial drive type as in this example, and the rotational drive (electromagnetic type, etc.) can be mechanically controlled by a movable valve body or a straight line of the central axis. It is also possible to adopt an indirect linear drive system that converts the signal into motion, and it is also naturally possible to use other control media (such as fluid pressure) instead of electric signals. However, whichever control mechanism is adopted, the present invention is particularly effective in small flow control valves that are controlled by minute control signals or operating forces.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案の一実施例を示す中心軸方向断
面図、第2図は第1図−断面の断面図、及び
第3図は、本考案と従来法との弁応答特性を示す
グラフを夫々示す。第3図中曲線A:本考案の
弁、曲線B:従来法。 1……比例流量制御弁、2……ケーシング、3
……1次弁室(C31次弁室中心)、4……2次弁
室、5……弁座(5a弁座開口、C5弁座開口中
心)、6……可動弁体、7……中心軸、8,9…
…ポート、10……可動コア、11……コイル、
14……ペローズ、17……スプリング。
FIG. 1 is a cross-sectional view in the central axis direction showing an embodiment of the present invention, FIG. 2 is a cross-sectional view taken from FIG. 1, and FIG. 3 is a graph showing valve response characteristics of the present invention and the conventional method. are shown respectively. In Fig. 3, curve A: valve of the present invention, curve B: conventional method. 1...Proportional flow control valve, 2...Casing, 3
...Primary valve chamber ( C3 primary valve chamber center), 4...Secondary valve chamber, 5...Valve seat (5a valve seat opening, C5 valve seat opening center), 6...Movable valve body, 7... Central axis, 8, 9...
...port, 10...movable core, 11...coil,
14...Peroz, 17...Spring.

Claims (1)

【実用新案登録請求の範囲】 (1) 各ポートを夫々1次弁室及び2次弁室に備え
たケーシングと、該ケーシング内を1次弁室及
び2次弁室に区画する弁座と、該弁座に着座可
能かつ制御機構により制御信号に応答して弁座
から離隔及び/又は接近方向に可動な可動弁体
と、該可動弁体を支持かつ制御する中心軸とか
ら成り、前記制御機構への制御信号に応じて該
弁座の開口を通過する流体の流量を制御する形
式の比例流量制御弁において、1次弁室の可動
弁体中心軸に直交する横断面中心を弁座開口断
面中心から偏心して形成した比例流量制御弁。 (2) 前記制御機構は、前記中心軸に軸方向固定に
配され該ケーシング内に軸方向へ移動可能に組
付けられて電磁コイルへの通電により原位置か
ら弁開方向へ移動するコアと、該可動コアと同
心にケーシング内に配された電磁コイルと、該
可動弁体を弁開方向へ付勢するスプリングとか
ら成り、前記電磁コイルへの電気信号に応じて
流量制御を行う実用新案登録請求の範囲第1項
記載の弁。
[Claims for Utility Model Registration] (1) A casing in which each port is provided as a primary valve chamber and a secondary valve chamber, respectively, and a valve seat that divides the inside of the casing into a primary valve chamber and a secondary valve chamber; It consists of a movable valve body that can sit on the valve seat and is movable in a direction away from and/or toward the valve seat in response to a control signal by a control mechanism, and a central shaft that supports and controls the movable valve body, and a central shaft that supports and controls the movable valve body. In a proportional flow control valve of the type that controls the flow rate of fluid passing through the opening of the valve seat in response to a control signal to the mechanism, the center of the cross section perpendicular to the center axis of the movable valve body of the primary valve chamber is the valve seat opening. Proportional flow control valve formed eccentrically from the center of the cross section. (2) The control mechanism includes a core that is axially fixedly disposed on the central shaft, is assembled in the casing so as to be axially movable, and moves from its original position in the valve opening direction when an electromagnetic coil is energized; Registration of a utility model consisting of an electromagnetic coil arranged in a casing concentrically with the movable core and a spring that biases the movable valve element in the valve opening direction, and which controls the flow rate according to an electric signal to the electromagnetic coil. The valve according to claim 1.
JP2427081U 1981-02-23 1981-02-23 Expired JPS6141483Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2427081U JPS6141483Y2 (en) 1981-02-23 1981-02-23

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2427081U JPS6141483Y2 (en) 1981-02-23 1981-02-23

Publications (2)

Publication Number Publication Date
JPS57137877U JPS57137877U (en) 1982-08-28
JPS6141483Y2 true JPS6141483Y2 (en) 1986-11-26

Family

ID=29821993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2427081U Expired JPS6141483Y2 (en) 1981-02-23 1981-02-23

Country Status (1)

Country Link
JP (1) JPS6141483Y2 (en)

Also Published As

Publication number Publication date
JPS57137877U (en) 1982-08-28

Similar Documents

Publication Publication Date Title
JP4851056B2 (en) Solenoid valve
KR100428500B1 (en) Butterfly valve for egr
JP2667967B2 (en) Valve assembly
US3873063A (en) Aspirated balance piston
JPH0539882A (en) Solenoid valve
JPH0893950A (en) Valve assembly
US4825906A (en) Angle pattern control valve
JPH10500465A (en) EGR valve with force-balanced pin
JPS6141483Y2 (en)
JPS6315828B2 (en)
US3773071A (en) Gas regulator
JPH07208631A (en) Solenoid valve
JP3070222B2 (en) Flow control device
JP2663226B2 (en) Constant flow valve
JPH032780Y2 (en)
JPS6024352B2 (en) Proportional flow control valve device
JPS6230343B2 (en)
JPS6342220Y2 (en)
JP3032943B2 (en) Constant flow valve
JPS6018702Y2 (en) solenoid valve
JP2890883B2 (en) Solenoid valve for fluid control
JPH0337487A (en) Electromagnetic proportion control valve
JPH0716167Y2 (en) Governor
JPH0617948A (en) Cage valve
JPS5837382A (en) Flow rate control valve