JPS6141334B2 - - Google Patents
Info
- Publication number
- JPS6141334B2 JPS6141334B2 JP52074676A JP7467677A JPS6141334B2 JP S6141334 B2 JPS6141334 B2 JP S6141334B2 JP 52074676 A JP52074676 A JP 52074676A JP 7467677 A JP7467677 A JP 7467677A JP S6141334 B2 JPS6141334 B2 JP S6141334B2
- Authority
- JP
- Japan
- Prior art keywords
- isomer
- cake
- dinitroanthraquinone
- purity
- separated
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000002253 acid Substances 0.000 claims description 24
- 239000012452 mother liquor Substances 0.000 claims description 16
- 150000004056 anthraquinones Chemical class 0.000 claims description 13
- MBIJFIUDKPXMAV-UHFFFAOYSA-N 1,8-dinitroanthracene-9,10-dione Chemical compound O=C1C2=CC=CC([N+]([O-])=O)=C2C(=O)C2=C1C=CC=C2[N+](=O)[O-] MBIJFIUDKPXMAV-UHFFFAOYSA-N 0.000 claims description 12
- NMNSBFYYVHREEE-UHFFFAOYSA-N 1,2-dinitroanthracene-9,10-dione Chemical class C1=CC=C2C(=O)C3=C([N+]([O-])=O)C([N+](=O)[O-])=CC=C3C(=O)C2=C1 NMNSBFYYVHREEE-UHFFFAOYSA-N 0.000 claims description 10
- 239000011541 reaction mixture Substances 0.000 claims description 8
- 239000013078 crystal Substances 0.000 claims description 4
- 238000004519 manufacturing process Methods 0.000 claims description 4
- XVMVHWDCRFNPQR-UHFFFAOYSA-N 1,5-dinitroanthracene-9,10-dione Chemical compound O=C1C=2C([N+](=O)[O-])=CC=CC=2C(=O)C2=C1C=CC=C2[N+]([O-])=O XVMVHWDCRFNPQR-UHFFFAOYSA-N 0.000 claims description 2
- 238000000034 method Methods 0.000 description 30
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 22
- 229910017604 nitric acid Inorganic materials 0.000 description 22
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 18
- 238000000926 separation method Methods 0.000 description 15
- 238000002425 crystallisation Methods 0.000 description 14
- 230000008025 crystallization Effects 0.000 description 14
- 239000000203 mixture Substances 0.000 description 14
- PYKYMHQGRFAEBM-UHFFFAOYSA-N anthraquinone Natural products CCC(=O)c1c(O)c2C(=O)C3C(C=CC=C3O)C(=O)c2cc1CC(=O)OC PYKYMHQGRFAEBM-UHFFFAOYSA-N 0.000 description 12
- 238000001704 evaporation Methods 0.000 description 11
- 239000007788 liquid Substances 0.000 description 11
- 230000008020 evaporation Effects 0.000 description 9
- 238000006396 nitration reaction Methods 0.000 description 9
- 238000010926 purge Methods 0.000 description 5
- 238000004064 recycling Methods 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- ADJYQFBOMQAMAI-UHFFFAOYSA-N 1,8-diphenoxyanthracene-9,10-dione Chemical compound C=12C(=O)C3=C(OC=4C=CC=CC=4)C=CC=C3C(=O)C2=CC=CC=1OC1=CC=CC=C1 ADJYQFBOMQAMAI-UHFFFAOYSA-N 0.000 description 2
- 239000010839 body fluid Substances 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- UQKJUEALIQRECQ-UHFFFAOYSA-N 1,6-dinitroanthracene-9,10-dione Chemical compound O=C1C2=CC([N+](=O)[O-])=CC=C2C(=O)C2=C1C=CC=C2[N+]([O-])=O UQKJUEALIQRECQ-UHFFFAOYSA-N 0.000 description 1
- FAVDZWIRBSMLOV-UHFFFAOYSA-N 1,7-dinitroanthracene-9,10-dione Chemical compound C1=CC([N+]([O-])=O)=C2C(=O)C3=CC([N+](=O)[O-])=CC=C3C(=O)C2=C1 FAVDZWIRBSMLOV-UHFFFAOYSA-N 0.000 description 1
- QWXDVWSEUJXVIK-UHFFFAOYSA-N 1,8-diaminoanthracene-9,10-dione Chemical compound O=C1C2=CC=CC(N)=C2C(=O)C2=C1C=CC=C2N QWXDVWSEUJXVIK-UHFFFAOYSA-N 0.000 description 1
- QCSZITHNACKGTF-UHFFFAOYSA-N 1,8-dimethoxyanthracene-9,10-dione Chemical compound O=C1C2=CC=CC(OC)=C2C(=O)C2=C1C=CC=C2OC QCSZITHNACKGTF-UHFFFAOYSA-N 0.000 description 1
- XFLONXIGNOXKCG-UHFFFAOYSA-N 2,7-dinitroanthracene-9,10-dione Chemical compound C1=C([N+]([O-])=O)C=C2C(=O)C3=CC([N+](=O)[O-])=CC=C3C(=O)C2=C1 XFLONXIGNOXKCG-UHFFFAOYSA-N 0.000 description 1
- ZXVONLUNISGICL-UHFFFAOYSA-N 4,6-dinitro-o-cresol Chemical group CC1=CC([N+]([O-])=O)=CC([N+]([O-])=O)=C1O ZXVONLUNISGICL-UHFFFAOYSA-N 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- KADDEZWVEAQOCJ-UHFFFAOYSA-N anthracene-9,10-dione;nitric acid Chemical compound O[N+]([O-])=O.C1=CC=C2C(=O)C3=CC=CC=C3C(=O)C2=C1 KADDEZWVEAQOCJ-UHFFFAOYSA-N 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- -1 dinitrate anthraquinones Chemical class 0.000 description 1
- 239000000986 disperse dye Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 238000000935 solvent evaporation Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Landscapes
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Description
本発明は高純度1・8−ジニトロアントラキノ
ンの製造方法に関するものである。詳しくはアン
トラキノンを混酸でジニトロ化して得られるジニ
トロアントラキノンの各種異性体および混酸を含
む混合物より、高純度1・8−ジニトロアントラ
キノンを分離して製造する方法に関するものであ
る。
高純度1・8−ジニトロアントラキノンは分散
染料などの重要な中間体である1・8−ジオキシ
アントラキノン、1・8−ジメトキシアントラキ
ノン、1・8−ジフエノキシアントラキノン、
1・8−ジアミノアントラキノンの原料として有
用な物質である。
従来高純度の1・8−ジニトロアントラキノン
を製造するにはアントラキノンのジニトロ体混合
物より(1)一旦粗ケーキを分離し、これを更に硝酸
で精製する方法(特開昭50−77357)、(2)有機溶媒
を高度で使用して1・5−ジニトロアントラキノ
ンと分離し、低温でなお媒体中に存在する不純物
を分ける方法、(3)オリウム、硝酸などで粗分離し
た1・8−ジニトロアントラキノンを含む粗ケー
キを有機溶媒で精製する方法(特開昭51−
127062)等の方法が知られている。しかしながら
(1)の方法は二段の工程を要し、残ケーキを回収し
再使用するなどの方法を採らなければ収率が低
い、(2)の方法は沸点での過を必須とし、またニ
トロ化混酸からケーキ取り出し乾燥が必須で工程
数が多くならざるを得ない、また(3)の方法は工程
数が多く煩雑等の欠点があつた。
そこで本発明者らはかかる欠点のない高純度
1・8−ジニトロアントラキノンの製造法につい
て、鋭意検討したところ、驚くべきことにジニト
ロアントラキノン混合物の分離における1・8−
ジニトロアントラキノン晶析の際、特定の条件で
晶析、分離するのみで簡単に高純度のものが得ら
れることを見出し本発明を完成した。
すなわち本発明の要旨は、アントラキノン類を
混酸でジニトロ化してジニトロアントラキノン類
を含む反応混合物を得、該反応混合物から1・5
−ジニトロアントラキノン(以下1・5−体と称
する)の大部分を結晶として分離し、次いで、得
られる分離母液から、添付図面の第1図における
縦軸、横軸、A線及びB線で囲まれた範囲に該当
する条件で、1・8−ジニトロアントラキノン
(以下1・8−体と称する)を晶析し分離するこ
とを特徴とする高純度1・8−体の製造方法に存
する。
以下に本発明を詳細に説明するに、本発明では
まずアントラキノンを混酸でニトロ化し、ジニト
ロアントラキノンの各種異性体を含む反応混合物
を得、これから1・5−体の大部分を結晶として
分離する必要がある。
ニトロ化反応は従来公知の方法で行えばよい
が、続く1・5−体分離のための分離媒体中でニ
トロ化するのが好ましく硝酸:硫酸=50〜65:50
〜35(重量比)の混酸を、硝酸:アントラキノン
=35〜150モル比使用し、0〜50℃で反応させる
のがよい。ニトロ化反応により得られる反応混合
物は混酸、1・5−体、1・8−体の他に、2・
6−ジニトロアントラキノン、2・7−ジニトロ
アントラキノン、1・6−ジニトロアントラキノ
ン及び1・7−ジニトロアントラキノンなど(以
下これらを「β−体」と称す)を含む。この反応
混合物より1・5−体をそのまま分離したのでは
純度が低いものしか得られないので、通常加熱懸
濁処理をする。加熱懸濁処理は50〜90℃詳しくは
硝酸:硫酸=50:50の混酸を用いたときは75〜90
℃、55:45の混酸を用いたときは65〜90℃、65:
35の混酸を用いたときは50〜70℃で、0.5〜5時
間程度加熱することによつて行われる。次に反応
混合物を1・8−体が析出しない範囲、好ましく
は50〜70℃に冷却すると、1・5−体粒子が粗大
化され1・5−体の85〜95重量%の分離を容易に
行なうことができる。1・5−体の用途により、
低純度のケーキでも差し支えないときは30〜50℃
で冷却してもよい。
上記のような処理を行つて得られる1・5−体
結晶を含むスラリーからヌツチエ過機などの通
常の過機又は遠心分離機などにより、高純度
1・5−体ケーキを分離する。
本発明は1・5−体の大部分を分離したのち得
られる分離母液から、添付面図の第1図における
縦軸、横軸、A線及びB線で囲まれた範囲に該当
する条件で、硝酸を蒸発させることによつて1・
8−体を晶析し分離することを特徴とする。
第1図は高純度1・8−体製造の晶析条件を示
し、横軸は1・5−体分離時と1・8−体晶析時
の温度差(℃)を、また縦軸は硝酸蒸発率(%)
を示す。そして図中A〜Dの直線を数式で表わす
と次のようになる。
A:y=−0.8x+37
B:y=−0.8x+10
C:y=−0.8x+30
D:y=−0.8x+20
図中の斜線部分が縦軸、横軸、A線及びB線で
囲まれた範囲であり、この範囲内の条件で1・8
−体を晶析すれば高純度の1・8−体が得られ
る。A線より右側の範囲の条件で実施すると、
1・8−体ケーキ収量は大きいが、1・5−体の
残りが晶析され、1・8−体ケーキ中の1・5−
体含量が10重量%以上となり、高純度1・8−体
が得られない。B線より左側の範囲の条件では実
質的にケーキが得られない。C線より右側の範囲
の条件では、1・8−体ケーキ収量は大きいが
1・8−体ケーキ中の1・5−体含量が40〜10重
量%となる。D線より左側の範囲の条件では、
1・8−体ケーキ収量は小さくなるが十分高純度
の1・8−体ケーキが得られる。
具体的な晶析手段としては、1・5−体ケーキ
分離後の母液を通常の溶媒蒸発に適用される方法
で硝酸を上記範囲に適合する一定の温度で、通常
0.5〜8時間、好ましくは0.5〜3時間蒸発し、な
お場合によつて1〜4時間等温度に保持して熟成
を行えばよく、特に強制循環蒸発法、撹拌缶によ
る蒸発が好ましい。
晶析後はヌツチエ過機、遠心分離機などで、
母液より高純度1・8−体ケーキを分離すること
ができる。このようにして高純度1・8−体が得
られる。
なお本発明方法は第2図に示すようにニトロ化
反応に混酸の一部として、1・8−体分離後の母
液を再使用する場合(以下「リサイクル法」と称
する。)と、再使用せず1・8−体分離後の母液
全部を硝酸回収後パージする方法(以下「ワンパ
ス法」と称す。)の両者の方法に適用できる。
リサイクル法では、高純度1・8−体ケーキ分
離後の母材(リサイクル混酸)はそのまま、ニト
ロ化反応に再使用してもよいが、なお母液中に存
在する1・8−体、β−体が1・5−体ケーキの
純度を低下させるので、通常第2図のように高純
度1・8−体ケーキ分離後更に硝酸蒸発を続けて
低純度1・8−体を晶析し、粗1・8−ジニトロ
アントラキノンケーキとして分離した後の液
(リサイクル混酸)をリサイクルし、ニトロ化に
再使用する。しかし、混酸のパージ率(ここにパ
ージ率とは1・8−体を分離した後の液である
混酸中の硫酸量に対する、パージされるべき混酸
中の硫酸量の割合)と、高純度1・8−体晶析の
条件を適当に選ぶと、第2図の破線部分の工程を
行なうことなく高銃度1・5−体及び1・8−体
が得られ好ましい。そのための条件を例示すれ
ば、パージ率20%のときは第1図のA′線で示さ
れるy値±2の範囲、15%のときはC線で示され
るY値±2の範囲、10%のときは点(0、27)と
点(34、0)を結んだ線で示されるy値±2の範
囲である。
ワンパス法の場合は第1図の斜線部分のうち、
縦軸、横軸、C線及びD線で囲まれた範囲で晶析
するのが好ましい。
またワンパス法においては、第1図の条件で高
純度1・8−体ケーキを分離した母液中には、な
お反応で生成した1・8−体の約40〜60%が残存
するので、これを更に晶析し、1・5−体、1・
8−体、β−体などより成る粗1・8−体ケーキ
としてさらに利用することもできる。
本発明方法は、ジニトロアントラキノン混合物
を混酸により分離する際、1・5−体の大部分を
除去した液中の硝酸蒸発を第1図の条件で行な
えば、液中に残存する1・5−体は、その溶解
度が1・8−体よりもはるかに小さいにもかかわ
らず実質的に晶析されないという事実に基づくも
のであり、工業的にもアントラキノンのジニトロ
化及び分離という単純な工程で、かつ使用媒体を
リサイクルする方法で節減し得るプロセスで実施
し得るので極めて有利である。また、本発明の方
法で分離される高純度1・8−体ケーキを原料と
する1・8−ジフエノキシアントラキノン製造に
おいては、従来法に比し、副生ハルツ量が極めて
少なく、この点でも有利である。
以下に本発明をその実施例により更に詳細に説
明するが、本発明はその要旨を越えない限り、以
下の実施例に限定されるものではない。
実施例 1〜5
ここに示す例はHNO3:H2SO4=55:45の混酸
を用いるワンパス法に関するものである。この各
例の高純度1・8−体分離を実施する1・5−体
分離母液の調製は次の通り行なつた。
連続式装置の第1槽に100%硫酸303Kg/hr、98
%硝酸389Kg/hr、及びアントラキノン20.8Kg/hr
を供給し40℃で滞留時間0.5hrでニトロ化を行な
つた。その抜出しスラリーを滞留時間3hrで60℃
で加熱処理したのち同温でヌツチエで過し所定
の洗滌を行なつて1・5−体ケーキ(純度94.5
%)を10.5Kg/hr(収率アントラキノンに対し
35.2%)を分離した。その分離母液(699.05Kg/h
r)はHNO352.4%、H2SO443.3%、ケーキ分2.55
%を含みケーキ分の組成は1・5−体10.48%、
1・8−体52.38%、β−体29.84%、その他7.2%
であつた。
この分離母液を用いて第1表に示すように連続
(給液699Kg/hr)又は回分(液699Kg使用)で一
部を蒸発させて1・8−体を晶析し、過して高
純度1・8−体を得た。
高純度1・8−体分離後の母液より更に硝酸を
蒸留して粗ケーキを得たがこの2段の晶析ケーキ
中の全1・8−体の収率はいずれも対アントラキ
ノン28.5〜29%であつた。
The present invention relates to a method for producing highly purified 1,8-dinitroanthraquinone. Specifically, the present invention relates to a method for separating and producing highly pure 1,8-dinitroanthraquinone from a mixture containing various isomers of dinitroanthraquinone and a mixed acid obtained by dinitrating anthraquinone with a mixed acid. High purity 1,8-dinitroanthraquinone is an important intermediate for disperse dyes such as 1,8-dioxyanthraquinone, 1,8-dimethoxyanthraquinone, 1,8-diphenoxyanthraquinone,
It is a substance useful as a raw material for 1,8-diaminoanthraquinone. Conventionally, high-purity 1,8-dinitroanthraquinone was produced by (1) separating a crude cake from a dinitro mixture of anthraquinone, and further refining this with nitric acid (Japanese Patent Application Laid-Open No. 77357/1989), (2) ) A method of separating 1,5-dinitroanthraquinone using an organic solvent at a high temperature and separating impurities still present in the medium at low temperatures; (3) A method of separating 1,8-dinitroanthraquinone roughly using olium, nitric acid, etc. A method for purifying a crude cake containing a
127062) and other methods are known. however
Method (1) requires a two-stage process, and the yield is low unless a method such as collecting and reusing the remaining cake is used. Method (2) requires filtration at the boiling point, and It is necessary to remove the cake from the mixed acid and dry it, which increases the number of steps, and method (3) has disadvantages such as a large number of steps and complexity. Therefore, the present inventors conducted intensive studies on a method for producing high-purity 1,8-dinitroanthraquinone without such drawbacks, and surprisingly found that 1,8-dinitroanthraquinone in the separation of dinitroanthraquinone mixtures
When dinitroanthraquinone is crystallized, the present invention has been completed by discovering that highly pure dinitroanthraquinone can be obtained simply by crystallizing and separating under specific conditions. That is, the gist of the present invention is to dinitrate anthraquinones with a mixed acid to obtain a reaction mixture containing dinitroanthraquinones, and from the reaction mixture, 1.5
- Most of dinitroanthraquinone (hereinafter referred to as 1,5-isomer) is separated as crystals, and then, from the resulting separated mother liquor, the area surrounded by the vertical axis, horizontal axis, line A, and line B in Figure 1 of the attached drawings is obtained. 1.8-dinitroanthraquinone (hereinafter referred to as 1.8-isomer) is crystallized and separated under conditions falling within the specified range. To explain the present invention in detail below, in the present invention, it is first necessary to nitrate anthraquinone with a mixed acid to obtain a reaction mixture containing various isomers of dinitroanthraquinone, and from this, most of the 1,5-isomers are separated as crystals. There is. The nitration reaction may be carried out by a conventionally known method, but it is preferable to carry out the nitration in a separation medium for the subsequent 1,5-isomer separation at a ratio of nitric acid:sulfuric acid=50 to 65:50.
It is preferable to use a mixed acid with a molar ratio of nitric acid: anthraquinone of 35 to 150 (weight ratio) and carry out the reaction at 0 to 50°C. The reaction mixture obtained by the nitration reaction contains mixed acids, 1,5-isomers, 1,8-isomers, and 2-isomers.
It includes 6-dinitroanthraquinone, 2,7-dinitroanthraquinone, 1,6-dinitroanthraquinone, 1,7-dinitroanthraquinone, etc. (hereinafter these are referred to as "β-forms"). If the 1,5-isomer is separated directly from this reaction mixture, only a product with low purity will be obtained, so a heating suspension treatment is usually performed. Heating suspension treatment is 50 to 90℃.For details, 75 to 90℃ when using a mixed acid of nitric acid: sulfuric acid = 50:50.
℃, 65 to 90℃ when using a mixed acid of 55:45, 65:
When a mixed acid No. 35 is used, it is heated at 50 to 70°C for about 0.5 to 5 hours. Next, the reaction mixture is cooled to a temperature within a range where the 1,8-isomer does not precipitate, preferably 50 to 70°C, to coarsen the 1,5-isomer particles, making it easier to separate 85 to 95% by weight of the 1,5-isomer. can be done. Depending on the purpose of the 1.5-body,
30-50℃ when low-purity cake is acceptable
It may be cooled down. A high-purity 1.5-isomer cake is separated from the slurry containing 1.5-isomer crystals obtained by the above-described treatment using a conventional filter such as a Nutsche filter or a centrifugal separator. The present invention is carried out from the separated mother liquor obtained after separating most of the 1,5-isomer under the conditions corresponding to the range surrounded by the vertical axis, horizontal axis, line A and line B in Figure 1 of the attached drawing. , by evaporating nitric acid.
It is characterized by crystallizing and separating the 8-isomer. Figure 1 shows the crystallization conditions for producing high-purity 1,8-isomer, the horizontal axis shows the temperature difference (°C) between the separation of 1,5-isomer and the crystallization of 1,8-isomer, and the vertical axis Nitric acid evaporation rate (%)
shows. The straight lines A to D in the figure can be expressed mathematically as follows. A: y=-0.8x+37 B: y=-0.8x+10 C: y=-0.8x+30 D: y=-0.8x+20 The shaded area in the figure is the range surrounded by the vertical axis, horizontal axis, A line, and B line and 1.8 under conditions within this range.
High purity 1,8-isomer can be obtained by crystallizing the -isomer. When carried out under conditions to the right of line A,
Although the yield of the 1,8-body cake is large, the remainder of the 1,5-body is crystallized, and the 1,5- body in the 1,8-body cake is
The body content becomes 10% by weight or more, and high purity 1,8-body cannot be obtained. Under conditions in the range to the left of line B, substantially no cake is obtained. Under conditions in the range to the right of line C, the yield of the 1,8-body cake is large, but the 1,5-body content in the 1,8-body cake is 40 to 10% by weight. Under the conditions to the left of line D,
Although the yield of 1,8-body cake is small, a 1,8-body cake of sufficiently high purity can be obtained. As a specific method of crystallization, the mother liquor after separation of the 1,5-body cake is treated with nitric acid using a method applied to ordinary solvent evaporation at a constant temperature that falls within the above range.
Aging may be carried out by evaporating for 0.5 to 8 hours, preferably 0.5 to 3 hours, and optionally maintaining the same temperature for 1 to 4 hours. Particularly preferred is forced circulation evaporation or evaporation using a stirred can. After crystallization, it is processed using a Nutsuchie filter, centrifuge, etc.
A highly purified 1.8-body cake can be separated from the mother liquor. In this way, a highly purified 1.8-isomer is obtained. As shown in Figure 2, the method of the present invention includes two cases in which the mother liquor after separation of 1,8-isomers is reused as part of the mixed acid in the nitration reaction (hereinafter referred to as the "recycle method"); This method can be applied to both methods (hereinafter referred to as "one-pass method"), in which the entire mother liquor after 1,8-isomer separation is recovered with nitric acid and then purged. In the recycling method, the base material (recycled mixed acid) after separation of the high-purity 1,8-isomer cake may be reused as is for the nitration reaction, but the 1,8-isomer, β- Since the 1,5-isomer reduces the purity of the 1,5-isomer cake, usually after separating the high-purity 1,8-isomer cake, nitric acid evaporation is continued to crystallize the low-purity 1,8-isomer. The liquid after separation as a crude 1,8-dinitroanthraquinone cake (recycled mixed acid) is recycled and reused for nitration. However, the purge rate of the mixed acid (here, the purge rate is the ratio of the amount of sulfuric acid in the mixed acid to be purged to the amount of sulfuric acid in the mixed acid, which is the liquid after separating the 1.8-body), and the high purity 1 - If the conditions for crystallizing the 8-body are appropriately selected, high-intensity 1.5-body and 1.8-body can be obtained without performing the steps indicated by the broken line in FIG. 2, which is preferable. To give an example of the conditions for this purpose, when the purge rate is 20%, the y value is within the range of ±2 shown by line A' in Figure 1, when the purge rate is 15%, the Y value is within the range of ±2 shown by line C; When it is %, the y value is within the range of ±2 indicated by the line connecting the points (0, 27) and (34, 0). In the case of the one-pass method, among the shaded areas in Figure 1,
It is preferable to crystallize in the range surrounded by the vertical axis, the horizontal axis, the C line, and the D line. In addition, in the one-pass method, approximately 40 to 60% of the 1,8-isomer produced in the reaction still remains in the mother liquor from which a high-purity 1,8-isomer cake is separated under the conditions shown in Figure 1. was further crystallized to give 1.5-isomer, 1.
It can also be further used as a crude 1,8-body cake consisting of 8-body, β-body, etc. In the method of the present invention, when a dinitroanthraquinone mixture is separated using a mixed acid, if nitric acid is evaporated from the liquid from which most of the 1,5- isomers have been removed under the conditions shown in Figure 1, the remaining 1,5- This is based on the fact that although the solubility of the 1,8-isomer is much lower than that of the 1,8-isomer, it does not substantially crystallize, and industrially, the simple process of dinitration and separation of anthraquinone can be used. Moreover, it is extremely advantageous because it can be carried out in a process that can be saved by recycling the used media. In addition, in the production of 1,8-diphenoxyanthraquinone from the high-purity 1,8-body cake separated by the method of the present invention, the amount of by-product Harz is extremely small compared to the conventional method. But it is advantageous. EXAMPLES The present invention will be explained in more detail with reference to examples below, but the present invention is not limited to the following examples unless it exceeds the gist thereof. Examples 1 to 5 The examples shown here relate to a one-pass method using a mixed acid of HNO 3 :H 2 SO 4 =55:45. The 1,5-isomer separation mother liquor for carrying out the high-purity 1,8-isomer separation in each of these examples was prepared as follows. 100% sulfuric acid 303Kg/hr in the first tank of continuous equipment, 98
% nitric acid 389Kg/hr, and anthraquinone 20.8Kg/hr
Nitration was carried out at 40°C for a residence time of 0.5 hr. The extracted slurry was heated to 60℃ with a residence time of 3 hours.
After heat treatment with
%) to 10.5Kg/hr (yield anthraquinone)
35.2%) were separated. The separated mother liquor (699.05Kg/h
r) is HNO 3 52.4%, H 2 SO 4 43.3%, cake content 2.55
The cake composition is 1.5-body 10.48%,
1.8-form 52.38%, β-form 29.84%, other 7.2%
It was hot. Using this separated mother liquor, as shown in Table 1, a part of it is evaporated continuously (699Kg/hr of liquid supplied) or batchwise (699Kg of liquid is used) to crystallize the 1,8-isomer, which is filtered to obtain high purity. A 1.8-body was obtained. Nitric acid was further distilled from the mother liquor after separation of the high purity 1,8-isomer to obtain a crude cake, but the total yield of the 1,8-isomer in this two-stage crystallization cake was 28.5 to 29% based on the anthraquinone. It was %.
【表】
実施例 6〜9
ここには、HNO3:H2SO4=65:35の混酸を用
いるワンパス法を示す100%硫酸154.8Kg/hr、98
%の硝酸308.7Kg/hr及びアントラキノン20.8Kg/h
rを用いた以外は実施例1〜5記載と同一の操作
条件で処理することにより1・5−体ケーキ(純
度94.7%)を10.0Kg(収率アントラキノンに対し
33.4%)及び分離液(469.7Kg/hr)を得た。分
離液はHNO361.2%、H2SO432.9%、ケーキ分
3.82%を含み、ケーキ分の組成は1・5−体10.3
%、1・8−体52.4%、β−体30.2%、その他7.0
%であつた。
この母液を用い実施例1〜5と同様に1・8−
体を晶析した結果を第2表に示す。高純度1・8
−体晶析母液から更に硝酸を蒸発して粗1・8−
体ケーキを回収したとき1・8−体の全収率はい
ずれもアントラキノン28.3〜28.6%であつた。[Table] Examples 6 to 9 Here, 100% sulfuric acid 154.8Kg/hr, 98
% nitric acid 308.7Kg/hr and anthraquinone 20.8Kg/h
The 1,5-body cake (purity 94.7%) was processed under the same operating conditions as those described in Examples 1 to 5 except that r
33.4%) and a separated liquid (469.7 Kg/hr) were obtained. Separated liquid is HNO 3 61.2%, H 2 SO 4 32.9%, cake content
Contains 3.82%, and the cake composition is 1.5-body 10.3
%, 1.8-form 52.4%, β-form 30.2%, other 7.0
It was %. Using this mother liquor, 1・8-
The results of crystallization of the compound are shown in Table 2. High purity 1.8
- Further evaporate nitric acid from the crystallization mother liquor to produce crude 1.8-
When the body cake was collected, the total yield of the 1,8-isomer was 28.3 to 28.6% for each anthraquinone.
【表】
実施例 10〜12
HNO3:H2SO4=50:50の混酸を用いるワンパ
ス法を示す。100%硫酸548.7Kg/hr、98%硝酸
560.1Kg/hr、アントラキノン20.8Kg/hrを用いた
以外は実施例1〜5記載と同一の操作条件で処理
することにより1・5−体ケーキ(純度92.5%)
を9.7Kg(収率アントラキノンに対し32.5%)及
び分離液(1117.1Kg/hr)を得た。液組成は
HNO349.1%、H2SO447.8%、ケーキ分1.62%を含
み、ケーキ分の組成は1・5−体10.7%、1・8
−体51.7%、β−体29.5%、その他7.7%であつ
た。
この液から実施例1〜5と同様に1・8−体
を晶析した結果を第3表に示す。高純度1・8−
体晶析母液より更に粗1・8−体を晶析したとき
1・8−体の全収率はアントラキノンに対し28.3
〜28.8%であつた。[Table] Examples 10 to 12 A one-pass method using a mixed acid of HNO 3 :H 2 SO 4 =50:50 is shown. 100% sulfuric acid 548.7Kg/hr, 98% nitric acid
A 1-5-body cake (purity 92.5%) was obtained by processing under the same operating conditions as described in Examples 1 to 5 except that 560.1 Kg/hr and anthraquinone 20.8 Kg/hr were used.
9.7Kg (yield: 32.5% based on anthraquinone) and a separated liquid (1117.1Kg/hr) were obtained. The liquid composition is
Contains 49.1% HNO 3 , 47.8% H 2 SO 4 , 1.62% cake content, and the composition of the cake content is 1.5-body 10.7%, 1.8
-51.7%, β-form 29.5%, and other 7.7%. The 1.8-isomer was crystallized from this liquid in the same manner as in Examples 1 to 5. The results are shown in Table 3. High purity 1.8-
Crystallization When the crude 1,8-isomer was further crystallized from the mother liquor, the total yield of the 1,8-isomer was 28.3% based on anthraquinone.
It was ~28.8%.
【表】
実施例 13〜20
ここにはリサイクル法による高純度1・8−体
製造例を示す。条件及び結果第4表に示す。これ
らの実験は第2図のプロセスに従つて行なつたが
そのニトロ化及び1・5−体分離に至る各操作条
件は実質的に実施例1に示した通りであり、後述
する1・8−体分離母液からのリサイクル混酸を
含めてHNO3/AQモル比及びHNO3/H2SO4重量
比を表示の値に調製した混酸を用いて行なつた。
リサイクル混酸の使用は反応時の全硫酸に対する
リサイクル混酸中の硫酸の比率が全量マイナスパ
ージ率(%)に相当する割合で行なつた。
このように1・5−体ケーキ(いずれも純度93
〜94%)を分離した液を用いて1・8−体晶析
条件に示した温度と硝酸蒸発率で晶析を行なつて
高純度1・8−体ケーキを得た。
実施例13〜18においては、高純度1・8−体
液のうち上記リサイクル率に相当する量を直接ニ
トロ化工程にリサイクルした。
実施例19〜20においては更に硝酸を蒸発して
(蒸発率は1・5−体液中硝酸に対する全蒸発
分の比率を示す)粗1・8−体ケーキを分離した
のちその液をリサイクルした。[Table] Examples 13 to 20 Examples of producing high-purity 1.8-isomers by the recycling method are shown here. Conditions and results are shown in Table 4. These experiments were conducted according to the process shown in Figure 2, and the operating conditions leading to the nitration and separation of the 1,5-isomer were essentially as shown in Example 1, and 1 and 8 described later. The experiment was carried out using a mixed acid whose HNO 3 /AQ molar ratio and HNO 3 /H 2 SO 4 weight ratio were adjusted to the indicated values, including the recycled mixed acid from the mother liquor separated from the body.
The recycled mixed acid was used in such a manner that the ratio of sulfuric acid in the recycled mixed acid to the total sulfuric acid during the reaction corresponded to the total amount minus the purge rate (%). In this way, 1-5-body cake (both purity 93
~94%) was used to conduct crystallization at the temperature and nitric acid evaporation rate shown in the 1,8-body crystallization conditions to obtain a highly pure 1,8-body cake. In Examples 13 to 18, an amount of the high purity 1,8-body fluid corresponding to the above recycling rate was directly recycled to the nitration process. In Examples 19 and 20, nitric acid was further evaporated (the evaporation rate indicates the ratio of the total evaporated content to nitric acid in the 1.5-body fluid) to separate a crude 1.8-body cake, and the resulting liquid was recycled.
【表】【table】
【表】
比較例 1
硝酸蒸発率を27.5%に変えた他は実施例1と同
一の条件で処理を行なつたところ1・8−体ケー
キ組成は1・5−体18.7%、1・8−体78.8%、
β−体1.7%であり収率は27.8%であつた。
また1・8−体晶析温度を20℃とする他は実施
例1と同様に処理することにより1・8−体ケー
キ組成1・5−体16.8%、1・8−体80.2%、β
−体2.0%のものを収率26.8%で得た。
比較例 2
実施例14の条件のうち硝酸蒸発率を22%とする
ほかは実施例14と同一の条件で処理したところ
1・8−体ケーキ組成は1・5−体14.7%、1・
8−体70.4%、β−体14.9%でその収率は36.5%
であつた。
また1・8−体晶析温度を10℃とした他は実施
例14と同様に処理したところ1・8−体ケーキ組
成は1・5−体13.6%、1・8−体71.5%、β−
体15.3%で収率は37.3%であつた。[Table] Comparative Example 1 The treatment was carried out under the same conditions as in Example 1 except that the nitric acid evaporation rate was changed to 27.5%. The 1.8-body cake composition was 1.5-body 18.7%, 1.8-body cake composition. - body 78.8%,
The β-isomer was 1.7%, and the yield was 27.8%. In addition, by carrying out the same treatment as in Example 1 except that the 1,8-isomer crystallization temperature was changed to 20°C, the 1,8-isomer cake composition was 16.8% of the 1.5-isomer, 80.2% of the 1,8-isomer, and β
- 2.0% of the compound was obtained in a yield of 26.8%. Comparative Example 2 When treated under the same conditions as in Example 14 except that the nitric acid evaporation rate was 22%, the composition of the 1.8-body cake was 14.7%, 1.5-body cake composition.
The yield was 36.5% with 70.4% of the 8-isomer and 14.9% of the β-isomer.
It was hot. In addition, when the treatment was carried out in the same manner as in Example 14 except that the 1,8-isomer crystallization temperature was changed to 10°C, the 1,8-isomer cake composition was 13.6% of the 1,5-isomer, 71.5% of the 1,8-isomer, and β −
The yield was 37.3% with a body content of 15.3%.
第1図は高純度1・8−ジニトロアントラキノ
ン製造の晶析条件を示し、図中、横軸は1・5−
ジニトロアントラキノン分離時と1・8−ジニト
ロアントラキノン晶析時の温度差を示し、縦軸は
硝酸蒸発率(%)を示す。第2図は本発明の1例
を示すブロツクダイヤグラムである。
Figure 1 shows the crystallization conditions for producing high-purity 1,8-dinitroanthraquinone; in the figure, the horizontal axis is 1,5-
The temperature difference between dinitroanthraquinone separation and 1,8-dinitroanthraquinone crystallization is shown, and the vertical axis shows the nitric acid evaporation rate (%). FIG. 2 is a block diagram showing one example of the present invention.
Claims (1)
ニトロアントラキノン類を含む反応混合物を得、
該反応混合物に含まれる1・5−ジニトロアント
ラキノンの大部分を結晶として分離し、次いで、
得られる分離母液から添付図面の第1図における
縦軸、横軸、A線及びB線で囲まれた範囲に該当
する条件で1・8−ジニトロアントラキノンを晶
析し分離することを特徴とする高純度1・8−ジ
ニトロアントラキノンの製造方法。1 Anthraquinones are dinitrated with a mixed acid to obtain a reaction mixture containing dinitroanthraquinones,
Most of the 1,5-dinitroanthraquinone contained in the reaction mixture is separated as crystals, and then
It is characterized by crystallizing and separating 1,8-dinitroanthraquinone from the obtained separated mother liquor under conditions corresponding to the range surrounded by the vertical axis, horizontal axis, line A, and line B in Figure 1 of the attached drawings. A method for producing high purity 1,8-dinitroanthraquinone.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7467677A JPS549257A (en) | 1977-06-23 | 1977-06-23 | Preparation of highly pure 1,8-dihydroanthraquinone |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7467677A JPS549257A (en) | 1977-06-23 | 1977-06-23 | Preparation of highly pure 1,8-dihydroanthraquinone |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS549257A JPS549257A (en) | 1979-01-24 |
JPS6141334B2 true JPS6141334B2 (en) | 1986-09-13 |
Family
ID=13554061
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7467677A Granted JPS549257A (en) | 1977-06-23 | 1977-06-23 | Preparation of highly pure 1,8-dihydroanthraquinone |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS549257A (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58133477A (en) * | 1982-02-03 | 1983-08-09 | Hitachi Ltd | Electronic ignition device for marine use |
CN109438246A (en) * | 2018-09-27 | 2019-03-08 | 青岛海湾精细化工有限公司 | A kind of processing method and processing system of anthraquinone |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5046654A (en) * | 1973-08-20 | 1975-04-25 |
-
1977
- 1977-06-23 JP JP7467677A patent/JPS549257A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5046654A (en) * | 1973-08-20 | 1975-04-25 |
Also Published As
Publication number | Publication date |
---|---|
JPS549257A (en) | 1979-01-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1030829B1 (en) | Method and apparatus for preparing purified terephthalic acid | |
US3931305A (en) | Terephthalic acid recovery by continuous flash crystallization | |
JP3085776B2 (en) | How to recover adipic acid | |
JPH07258131A (en) | Continuous preparation of highly pure bisphenol a | |
JP3110459B2 (en) | Purification of p-aminophenol composition and direct conversion to N-acetyl-p-aminophenol | |
EP0337323B1 (en) | Method for producing high-purity caprolactam | |
US3393236A (en) | Stereoisomeric preparation of bis(p-aminocyclohexyl) methane | |
JPS6141334B2 (en) | ||
EP1193237B1 (en) | Method for manufacturing 2,6-Dimethylnaphthalene | |
US3686276A (en) | Purification process for dimethyl terephthalate | |
GB1564373A (en) | Process for the separation of dinitroanthraquinone mixtures | |
US2861988A (en) | Caprolactam manufacture | |
US4158009A (en) | Process for preparing 1,5-dinitroanthraquinone | |
US3963762A (en) | Process for producing 1,5-dinitroanthraquinone and 1,8-dinitroanthraquinone | |
JPS6113460B2 (en) | ||
JPH0717539B2 (en) | Method for obtaining 2,6-dialkylnaphthalene from its isomer mixture | |
JPH07238051A (en) | Production of naphthalene-dicarboxylic acid of high purity | |
US4155921A (en) | Process for the isolation of 1,6- and 1,7-dinitroanthraquinone | |
US2767224A (en) | Hexachlorocyclohexane isomer separation | |
JPS5941973B2 (en) | Terphenyl separation and purification method | |
US5382725A (en) | Process for the purification of 1,3-dihalobenzene from an isomeric mixture of dihalobenzenes | |
US4031116A (en) | Process for preparing pure 1-nitroanthraquinone | |
JPH03127751A (en) | Purification of dimethylphenol | |
JPS5811938B2 (en) | Nitroanthraquinone 1- Nitroanthraquinone | |
US3627825A (en) | Purification of 1,12-dodecanedioic acid using perchloroethylene |