JPS6140918A - Improver for seabed soft ground - Google Patents

Improver for seabed soft ground

Info

Publication number
JPS6140918A
JPS6140918A JP16241484A JP16241484A JPS6140918A JP S6140918 A JPS6140918 A JP S6140918A JP 16241484 A JP16241484 A JP 16241484A JP 16241484 A JP16241484 A JP 16241484A JP S6140918 A JPS6140918 A JP S6140918A
Authority
JP
Japan
Prior art keywords
depth
stirring blade
stirring
barge
stirring shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16241484A
Other languages
Japanese (ja)
Inventor
Makoto Motoyoshi
誠 元吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP16241484A priority Critical patent/JPS6140918A/en
Publication of JPS6140918A publication Critical patent/JPS6140918A/en
Pending legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D3/00Improving or preserving soil or rock, e.g. preserving permafrost soil
    • E02D3/12Consolidating by placing solidifying or pore-filling substances in the soil
    • E02D3/126Consolidating by placing solidifying or pore-filling substances in the soil and mixing by rotating blades

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Structural Engineering (AREA)
  • Agronomy & Crop Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Soil Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Paleontology (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)

Abstract

PURPOSE:To obtain well-improved ground by using a ground improver in which a grount improving agent jet nozzle and a stirring blade are provided to the lower end of a hollow stirring shaft, and a water depth sensor, a sensor for the vertically moving amount of the stirring blade, and the penetration depth arithmetic device for the stirring blade are provided to the base ship. CONSTITUTION:A ground improving agent is supplied pneumatically to a stirring blade 3 and injected from an jet nozzle 5, where the agent is mixed with soil by the stirring blade 6. Water depth D0 from a base ship 1 to the seabed face A is detected by a water depth sensor 12 during the ground improving operation and the detected value is sent to an arithmetic unit 21. The vertically moving amounts l1 and l2 of the shaft 3 and an air recovery tube 8 are detected by a vertically moving amount sensor using laser beams and sent to an arithmetic unit 21. The penetration depth D2 of the blade 6 is calculated by the unit 21 11 to adjust the depth D2 of the blade 6 by a controller 22.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、海底等の軟弱地盤を改良するための海底軟弱
地盤改良装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a submarine soft ground improvement device for improving soft ground such as the seabed.

(従来技vFI) 従来、海底の軟弱地盤を改良する工法として、台船に回
転ならびに昇降自在に設けられた中空攪拌軸を回転させ
ながら、その先端に設けられた攪拌翼を海底の軟弱地盤
中に所定深さまで貫入させた後、引抜き、その貫入また
は引抜きのいずれか一方の工程で、地盤改良材を攪拌軸
内に設けられた改良材供給通路に空気圧送し、攪拌軸下
端の噴射口から軟弱地盤中に噴射し、攪拌翼で地盤改良
材と軟弱地盤とを攪拌混合して軟弱地盤を改良する噴射
攪拌工@ (DJM工法)が知られている。
(Conventional technique vFI) Conventionally, as a construction method for improving soft ground on the seabed, a hollow stirring shaft installed on a barge that can be rotated and raised and lowered is rotated, and a stirring blade installed at the tip is inserted into the soft ground on the seabed. After penetrating to a predetermined depth, the soil improvement material is pulled out, and in either the penetration or withdrawal process, the ground improvement material is pneumatically fed to the improvement material supply passage provided in the stirring shaft, and is then pumped through the injection port at the lower end of the stirring shaft. An injection stirring method @ (DJM method) is known that improves the soft ground by injecting it into the soft ground and stirring and mixing the ground improvement material and the soft ground using stirring blades.

この工法では、攪拌翼の貫入位置を径方向に順次変位さ
せて上記の工程を繰返すことにより、杭状の改良地盤を
多数隣接させて所定の範囲の地盤改良が行われるが、良
質な改良地盤を得るために、各杭状の改良地盤の深度を
均一にし、かつ、軟弱地盤の軟弱度に合わせて調節する
必要があり、これに伴って攪拌翼の海底面からの貫入深
度を調節する必要がある。
In this method, by sequentially displacing the penetration position of the stirring blade in the radial direction and repeating the above process, a large number of pile-shaped improved soils are placed adjacent to each other to improve the ground in a predetermined range. In order to obtain this, it is necessary to make the depth of each pile-shaped improved ground uniform and adjust it according to the degree of soft ground, and accordingly, it is necessary to adjust the penetration depth of the stirring blade from the seabed surface. There is.

このため、従来では、台船上において、攪拌軸を昇降さ
せるウィンチの巻取ドラムの回転量を検出し、あるいは
攪拌軸にワイヤを連動させ、そのワイヤを張゛架するプ
ーリの回転量を検出し、その検出値によって攪拌軸の昇
降量を算出してい−た。
For this reason, conventional methods have been to detect the amount of rotation of a winding drum of a winch that raises and lowers the stirring shaft on a barge, or to interlock a wire with the stirring shaft and detect the amount of rotation of a pulley that stretches the wire. The amount of vertical movement of the stirring shaft was calculated based on the detected value.

しかしながら、この種の海底の地盤改良作業では、たと
え台。船に対する攪拌軸の昇降量を7正確に検出し得た
としても、台船から海底面までの水深が時々刻々と変化
するため、海底面から攪拌翼の一員入深度を正確に検出
することはできない。このため、従来では、潮位表によ
って作業時の水深を見出し、この潮位表による水深の変
化に対応してその都度攪拌軸の昇降向を補正し、前記貫
入深度を調節するようにしているが、この場合、−々潮
位表を見なければならないため、非常に面倒であるとと
もに、潮位表による水深値が不正確であり、前記貴人深
度の正確な制御を行うことできず、地盤改良深度が不均
一になる等の種々の問題があっ1こ 。
However, in this type of seabed ground improvement work, even a stand is required. Even if it is possible to accurately detect the amount of elevation of the stirring shaft relative to the ship, the depth of the water from the barge to the seabed changes from moment to moment, so it is difficult to accurately detect the depth at which the stirring blade enters from the seabed. Can not. For this reason, conventionally, the water depth at the time of work is found from the tide table, and the vertical direction of the stirring shaft is corrected each time in response to changes in water depth based on the tide table, and the penetration depth is adjusted. In this case, it is very troublesome to have to look at the tide table, and the water depth value from the tide table is inaccurate, making it impossible to accurately control the depth, and the depth of the ground improvement is inadequate. There were various problems such as uniformity.

(発明の目的) 本発明は、このような点に鑑み、作業日時によって水深
が変化したとしても、海底面に対する攪拌翼の貫入深度
を常に正確に検出することができ、地盤改良深度を常に
最適な状態にできるとともに、容易に均一化し得て、良
質な改良地盤を得ることができる装置を提供づ”るもの
である。
(Objective of the Invention) In view of these points, the present invention is capable of always accurately detecting the depth of penetration of the stirring blade into the seabed, even if the water depth changes depending on the work date and time, so that the soil improvement depth can always be optimized. To provide a device that can obtain improved ground of good quality by easily making it uniform and in a good condition.

−(発明の構成) 本発明は、台船にリーダを介して回転ならびに、昇降自
在に設けられた中空攪拌軸の下端に、攪拌軸内の通路を
経て空気圧送された地盤改良材の噴射口と、攪拌翼とを
設け、かつ、台船に、台船から海底面までの水深を検出
する水探検出装置と、台船に対する攪拌軸の昇降量を検
出する昇降量検出装置と、前記両検出装置の検出値に基
いて海底面に対する攪拌翼の貫入深度を演算する演算器
とを装備してなることを特徴とするものである。
- (Structure of the Invention) The present invention provides an injection port for a ground improvement material that is pneumatically fed through a passage in the stirring shaft at the lower end of a hollow stirring shaft that is provided on a barge through a leader so as to be able to rotate and move up and down. and a stirring blade, and the barge is provided with a water exploration device for detecting the water depth from the barge to the seabed surface, and a lifting amount detection device for detecting the lifting amount of the stirring shaft with respect to the barge; The apparatus is characterized in that it is equipped with a calculator that calculates the depth of penetration of the stirring blade into the seabed based on the detected value of the detection device.

(実施例) まず、海底軟弱地盤改良装置の全体構成を第2図によっ
て説明する。
(Example) First, the overall configuration of the submarine soft ground improvement device will be explained with reference to FIG. 2.

第2図において、台船1にはリーダ2が装備され、この
リーダ2に攪拌軸3が回転ならびに昇降自在に支持され
ている。攪拌軸3は中空でその内部に改良材供給通路4
が形成され、下端に地盤改良材の噴射口5および攪拌翼
6が設けられている。
In FIG. 2, a barge 1 is equipped with a leader 2, and a stirring shaft 3 is supported by the leader 2 so as to be rotatable and movable up and down. The stirring shaft 3 is hollow and has an improving material supply passage 4 inside it.
is formed, and a ground improvement material injection port 5 and stirring blades 6 are provided at the lower end.

攪拌軸3の上端は回転駆動機7に連結されでいる。The upper end of the stirring shaft 3 is connected to a rotary drive device 7.

攪拌軸3の外側には空気回収管8が昇−1在に嵌挿され
、この空気回収管8と攪拌軸3との間に空気回収通路9
が形成されている。空気回収管8の下端には、改良材と
分離されて上昇してきた空気を前記空気回収通路9に導
くために、攪拌翼6の直径より大ざい内径をもったフー
ド10tfi設けられ、上端に排気口11が設けられて
いる。
An air recovery pipe 8 is fitted onto the outside of the stirring shaft 3, and an air recovery passage 9 is formed between the air recovery pipe 8 and the stirring shaft 3.
is formed. At the lower end of the air recovery pipe 8, a hood 10tfi having an inner diameter larger than the diameter of the stirring blade 6 is provided in order to guide the air that has been separated from the improving material and has risen to the air recovery passage 9, and an exhaust pipe is provided at the upper end. A port 11 is provided.

−次に、本発明装置にお番する深度検出のための機器に
ついて第1図に基いて説明する。
-Next, the device for depth detection used in the apparatus of the present invention will be explained based on FIG.

第1図におい−C1台船1め底部には、台船1から海底
面Aまでの水深Doを検出するために、音波探査器等の
水探検出装M12がatプられている。
In FIG. 1, a water exploration device M12 such as a sonic probe is installed at the bottom of the C1 barge 1 in order to detect the water depth Do from the barge 1 to the seabed surface A.

一方、台船1の上部において、台船1に対する攪拌軸3
および空気回収管8の昇降量を検出する°ために、レー
ザ発振器13と、ハーフミラ−14と、切替えミラー1
5と、全方向ミラー16゛、 17ど、受振器18とか
らな6昇降最検出装置が設けられている。前記レーザ発
振器13と、ハーフミラ−14および受振器18は、台
船1に設けられたリーダ2(第2図参照)その他の固定
フレームの所定の高さ位置に設けられ、全方向ミラー1
6は攪拌軸3の上端に、全方向ミラー17は空気回収管
8の上端にそれぞれ固着されて、両ミラー16゜17が
上下に対向され、その間でリーダ等の固定フレームに切
替えミラー15が、ト下位置変更自在に゛設けられてい
る。
On the other hand, at the upper part of the barge 1, the stirring shaft 3 is connected to the barge 1.
In order to detect the vertical movement of the air recovery pipe 8, a laser oscillator 13, a half mirror 14, and a switching mirror 1 are used.
5, omnidirectional mirrors 16', 17, etc., and a geophone 18. The laser oscillator 13, the half mirror 14, and the receiver 18 are installed at predetermined height positions of the leader 2 (see FIG. 2) and other fixed frames provided on the barge 1, and are mounted on the omnidirectional mirror 1.
6 is fixed to the upper end of the stirring shaft 3, and the omnidirectional mirror 17 is fixed to the upper end of the air recovery pipe 8. Both mirrors 16 and 17 are vertically opposed to each other, and between them, a switching mirror 15 is fixed to a fixed frame such as a reader. The bottom position can be changed freely.

また、前記水探検出装置12からの検出信号と受振51
8から゛の信号はコンピュータ19に送られる。このコ
ンピュータ19には設定器2’ O−1演算器21、制
御装置22等が設けられており、後述するような演算、
制御が行われる。
In addition, the detection signal from the water exploration device 12 and the vibration receiver 51
The signals from 8 to 2 are sent to the computer 19. This computer 19 is provided with a setting device 2' O-1 calculator 21, a control device 22, etc., and performs calculations such as those described later.
Control takes place.

次に、地盤改良作業について説明する。Next, the ground improvement work will be explained.

まず、作業の概要について説明すると、図外のウィンチ
その他の周知の昇降手段により、攪拌軸3と空気回収管
8が一体的に水中に降下され、該攪拌翼6および空気回
収管8の下端が海底面Aに接地された時点でその降下が
一旦停止され、その後、空気回収管8のみが図外の昇降
装置により再度降下され、その下端のフード10が海底
の軟弱地盤に貫入される。
First, to explain the outline of the work, the stirring shaft 3 and the air recovery pipe 8 are lowered into the water together by a winch (not shown) or other well-known elevating means, and the lower ends of the stirring blades 6 and the air recovery pipe 8 are lowered into the water. When it touches down on the seabed surface A, its descent is temporarily stopped, and then only the air recovery pipe 8 is lowered again by a lifting device (not shown), and the hood 10 at its lower end penetrates into the soft ground of the seabed.

次いで、フード10の貫入状態が保持された状態で、攪
拌@3が回転駆動機7により回転されながら図外の昇降
装置により降下され、攪拌翼6が回転されながら前記軟
弱地盤に貫入され、該攪拌翼6が所定の深度まで貫入さ
れた後、攪拌翼6が回転されながら引抜かれる。そして
、この攪拌翼6の貫入または引抜きのいずれが一方の工
程において、粉粒状の地盤改良材が、空気圧送により攪
拌軸3内の改良材供給通路4に供給され、噴射口5から
軟弱地盤中に噴射されるとともに、前記攪拌翼6の回転
によって該地盤改良材と地盤土壌とが攪拌、混合され、
以って、軟弱地盤の改良が行われる。
Next, with the hood 10 maintained in the penetrating state, the stirring @ 3 is lowered by a lifting device (not shown) while being rotated by the rotary drive machine 7, and penetrates into the soft ground while the stirring blades 6 are rotated. After the stirring blade 6 has penetrated to a predetermined depth, the stirring blade 6 is pulled out while being rotated. Then, in one process of penetrating or pulling out the stirring blade 6, the powdery ground improvement material is supplied to the improvement material supply passage 4 in the stirring shaft 3 by air pressure, and is inserted into the soft ground from the injection port 5. At the same time, the ground improvement material and the ground soil are stirred and mixed by the rotation of the stirring blade 6,
Therefore, the soft ground will be improved.

なお、この地盤改良時において、地盤改良材の空気圧送
に用いられた用済み後の空気は、攪拌軸3の外周面に沿
っておよび貫入、引抜き時に攪拌された地盤土壌中を上
昇してフード1o内に回収され、該フード10がら空気
回収通路9を通り排気口11を経て大気中に放出される
In addition, during this ground improvement, the used air used for pneumatically feeding the ground improvement material rises along the outer circumferential surface of the stirring shaft 3 and through the ground soil stirred during penetration and extraction, and reaches the hood. The air is collected in the hood 10, passes through the air recovery passage 9, and is discharged into the atmosphere through the exhaust port 11.

こうして、上記地盤改良が終了すると、前記攪拌TA6
の引抜き工程で、攪拌翼6を貫入深度に対応する量だけ
引抜いた後、攪拌軸3と空気回収管8とを一体的に上昇
させて軟弱地盤から抜取り、次いで、それらを次の地盤
改良位置にずらせ、以下、上記の工程を繰返すことによ
り、所定範囲の地盤改良を行うのである。
In this way, when the above-mentioned ground improvement is completed, the above-mentioned stirring TA6
In the extraction process, after the stirring blade 6 is pulled out by an amount corresponding to the penetration depth, the stirring shaft 3 and the air recovery pipe 8 are raised together and extracted from the soft ground, and then they are moved to the next ground improvement position. Then, by repeating the above steps, the ground is improved in a predetermined range.

この場合、各地盤改良位置において、軟弱地盤の軟弱度
に応じて、改良深度を調節する必要があり、また、軟弱
度が一定の場合は、改良深度を均一化する必要がある。
In this case, at each ground improvement position, it is necessary to adjust the improvement depth according to the degree of softness of the soft ground, and if the degree of softness is constant, it is necessary to equalize the improvement depth.

次に、その深度の制御について説明する。  ′上記地
盤改良作業時には、水探検出装置12により、台船1か
ら海底面Aまでつまり水探検出装置12から海底面Aま
での水深り、Oが検出され、その検出値Doが演算器2
1に送られている。
Next, the depth control will be explained. 'During the above-mentioned ground improvement work, the water depth O from the barge 1 to the seabed surface A is detected by the water exploration device 12, that is, from the water exploration device 12 to the seabed surface A, and the detected value Do is sent to the calculator 2.
It is sent to 1.

そして、前記フード1oの貫入時には、切替えミラー1
5が図面破線位置に必り、レーザ発振器13から発射さ
れた光がハーフミラ−14を通過し、切替えミラー15
により下方に反射さ、れ、空気回収管8の上端に設けら
れた全方向ミラー17に至り、このミラー17により反
射された光が前記切替えミラー15およびハーフミラ−
14を経て受振器18に受信され、これによりレーザ発
振器13の光軸から前記ミラー17までの距+mρ1が
計測される。この距l1IliQ1 は台船1に対する
空気回収管8の昇降量に相当するものであり、その計測
値が受振器18から前記演算器21に送られる。
When the hood 1o penetrates, the switching mirror 1
5 is located at the broken line position in the drawing, the light emitted from the laser oscillator 13 passes through the half mirror 14, and the switching mirror 15
The light is reflected downward and reaches the omnidirectional mirror 17 provided at the upper end of the air recovery tube 8, and the light reflected by this mirror 17 is reflected by the switching mirror 15 and the half mirror.
14 and is received by the geophone 18, thereby measuring the distance +mρ1 from the optical axis of the laser oscillator 13 to the mirror 17. This distance l1IliQ1 corresponds to the amount of elevation of the air recovery pipe 8 with respect to the barge 1, and its measured value is sent from the geophone 18 to the arithmetic unit 21.

ここで、前記水探検出装置12にて検出された水深をD
o、受振器18から送られた空気回収管8の昇降量をΩ
1、台船1の甲板面から前記レーザ発振器13の光軸ま
での高さをt−h 、該甲板面から水探検出装置12ま
での高さを82、空気回収@8の全長をLlとすると、
空気回収管80下端に設りられたフード10の海底面へ
に対する貫入深度D1は、次式によって求められる。
Here, the water depth detected by the water exploration device 12 is D.
o, the amount of elevation of the air recovery pipe 8 sent from the geophone 18 is Ω
1. The height from the deck surface of the barge 1 to the optical axis of the laser oscillator 13 is t-h, the height from the deck surface to the water exploration device 12 is 82, and the total length of the air recovery @8 is Ll. Then,
The penetration depth D1 of the hood 10 installed at the lower end of the air recovery pipe 80 into the seabed surface is determined by the following equation.

Dl−(L1+l11)−(Do +81 +82 >
この場合、前記高さH’l、H2は一定であり、かつ、
空気回収管8の全長L1が特定されているので、これら
の数値を予め設定器20に設定しておくことにより、水
深Doと昇降量p1が分れば、フード10の海底面Aに
対する貫入深度D1は、演算器21によって容易に演算
することができる。
Dl-(L1+l11)-(Do +81 +82>
In this case, the heights H'l and H2 are constant, and
Since the total length L1 of the air recovery pipe 8 is specified, by setting these values in the setting device 20 in advance, if the water depth Do and the amount of elevation p1 are known, the penetration depth of the hood 10 into the seabed surface A can be determined. D1 can be easily calculated by the calculator 21.

また、このフード10の貫入時において、前記水*Do
と、゛空気回収@8の昇降量Q1を逐次検出しながら、
制御装置22により、空気回収管8の昇降装置を制御す
ることによって、フード10の貫入深度D1を海底の軟
弱地盤の軟弱度に対応して調節し、後の地盤改良時にヒ
ービング現象が生じないようにすることができる。
Also, when the hood 10 penetrates, the water *Do
While sequentially detecting the lifting amount Q1 of air recovery @8,
By controlling the lifting device of the air recovery pipe 8 by the control device 22, the penetration depth D1 of the hood 10 is adjusted in accordance with the softness of the soft ground on the seabed, so that the heaving phenomenon does not occur during subsequent ground improvement. It can be done.

次に、攪拌翼6の貫入および引抜き工程では、−切替え
ミラー15が図面実線位置に切替えられており、レーザ
発振器13から発射された光がハーフミラ−14を通過
し、切替えミラー15により上方に反射され、攪拌軸3
の上端に設けられた全方向ミラー16に至り、このミラ
ー16により反射された光が前記切替えミラー15およ
びハーフミラ−14を経て受振器18に受信され、以っ
て、レーザ発振′器13の光軸から全方向ミラー16ま
での距離ρ2が計測される。この距離Ω2は台船1に対
する攪拌軸3の昇降量に相当するものであり、その計測
値が受振器18から前記演算器21に送られる。
Next, in the penetration and extraction process of the stirring blade 6, the -switching mirror 15 is switched to the solid line position in the figure, and the light emitted from the laser oscillator 13 passes through the half mirror 14 and is reflected upward by the switching mirror 15. and stirring shaft 3
The light reaches the omnidirectional mirror 16 provided at the upper end, and the light reflected by this mirror 16 is received by the receiver 18 via the switching mirror 15 and the half mirror 14, so that the light from the laser oscillator 13 is The distance ρ2 from the axis to the omnidirectional mirror 16 is measured. This distance Ω2 corresponds to the amount of elevation of the stirring shaft 3 with respect to the barge 1, and its measured value is sent from the geophone 18 to the arithmetic unit 21.

ここで、攪拌軸3の昇降量をρ2、攪拌軸3の全長を1
2とすると、前記フード10の貫入時と同様に、攪拌翼
〇の海底面Aに対する貫入深度D2は、次式によって求
められる。
Here, the lifting amount of the stirring shaft 3 is ρ2, and the total length of the stirring shaft 3 is 1.
2, the penetration depth D2 of the stirring blade 〇 into the seabed surface A is determined by the following equation, as in the case of the penetration of the hood 10.

D2 =L2− (Do −N−11+82−)[z 
)この場合、前記高さHl 、H2が一定で、攪拌軸3
の全長L2が特定されているので、これらの数値を予め
設定器20に設定しておくことにより、曲間水深Doと
攪拌軸3の昇降量ρ2が分れば、前記演算器21によっ
て攪拌翼6の貫入深度D2を容易に演算することができ
る。
D2 = L2- (Do -N-11+82-) [z
) In this case, the heights Hl and H2 are constant, and the stirring shaft 3
Since the total length L2 of the stirring blade is specified, by setting these values in the setting device 20 in advance, once the water depth between the bends Do and the lifting amount ρ2 of the stirring shaft 3 are known, the calculation unit 21 determines the length of the stirring blade. The penetration depth D2 of 6 can be easily calculated.

また、この攪拌翼6の貫入時において、前記水深Doと
、攪拌軸3の昇降量ρ2を逐次検出しながら、制御装置
22により攪拌軸3の昇降装置を制御し、攪拌116の
貫入深度D2を前記軟弱地盤の軟弱度に対応して調節す
ることによって、最適なお、上記実施例では、レーザ光
線を用いて攪拌軸3の昇降IJ1および空気回収管8の
昇降量Q2を検出しているが、これら昇降11.ρ2の
検出手段は本発明においてとくに限定するものではなく
、周知の検出手段を用いてもよい。ただし、この場合で
も水探検出装置12を用いて台船1から海底面Aまでの
水深Doを検出し、この水深DOと、前記昇降量Ω1.
ρ2に基いてフード10の貫入深度D1および攪拌翼6
の貫入深度D2を制御する。
Further, when the stirring blade 6 penetrates, the control device 22 controls the lifting device of the stirring shaft 3 while sequentially detecting the water depth Do and the lifting amount ρ2 of the stirring shaft 3, and controls the penetration depth D2 of the stirring 116. By adjusting it in accordance with the degree of softness of the soft ground, it is optimal.In the above embodiment, the elevation IJ1 of the stirring shaft 3 and the elevation Q2 of the air recovery pipe 8 are detected using a laser beam. These lifting and lowering 11. The means for detecting ρ2 is not particularly limited in the present invention, and any known detecting means may be used. However, even in this case, the water depth Do from the barge 1 to the seabed surface A is detected using the water exploration device 12, and this water depth DO and the above-mentioned lifting amount Ω1.
Penetration depth D1 of hood 10 and stirring blade 6 based on ρ2
The penetration depth D2 is controlled.

(発明の効果) 以上説明したように、本発明は、台船から海底までの水
深と、台船に対する攪拌軸の昇降量に基いて、海底面に
対する攪拌翼の貫入深度を検出することによって、作業
日時によって水深が変化したとしても、海底面に対する
攪拌翼の貫入深度を常に正確に検出することができ、地
盤改良深度を常に最適な状態にできるとともに、容易に
均一化し得て、良質な改良地盤を得ることができるもの
である。
(Effects of the Invention) As explained above, the present invention detects the penetration depth of the stirring blade into the seabed based on the water depth from the barge to the seabed and the amount of elevation of the stirring shaft with respect to the barge. Even if the water depth changes depending on the work date and time, it is possible to always accurately detect the depth of penetration of the stirring blade into the seabed surface, and the soil improvement depth can always be optimal, and it can be easily uniformized, resulting in high-quality improvement. It is something that can gain ground.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明装置における主要機器の配置例を示す説
明図、第2図は海底軟弱地盤改良装置の概要を示ず要部
側面図である。 1・・・台船、2・・・リーダ、3・・・攪拌軸、6・
・・攪拌翼、8・・・空気回収管、10・・・フード、
12・・・水探検出装置、13・・・レーザ発振器、1
4・・・ハーフミラ−115・・・切替えミラー、16
.17・・・全方向ミラー、18・・・受振器、19・
・・コンピュータ、21・・・演算器、A・・・海底面
FIG. 1 is an explanatory diagram showing an example of the arrangement of main equipment in the apparatus of the present invention, and FIG. 2 is a side view of the main parts without showing an overview of the submarine soft ground improvement apparatus. 1... Barge, 2... Leader, 3... Stirring shaft, 6...
... Stirring blade, 8... Air recovery pipe, 10... Hood,
12... Water exploration device, 13... Laser oscillator, 1
4... Half mirror 115... Switching mirror, 16
.. 17... Omnidirectional mirror, 18... Geophone, 19.
...Computer, 21...Arithmetic unit, A...Seafloor surface.

Claims (1)

【特許請求の範囲】[Claims] 1、台船にリーダを介して回転ならびに昇降自在に設け
られた中空攪拌軸の下端に、攪拌軸内の通路を経て空気
圧送された地盤改良材の噴射口と、攪拌翼とを設け、か
つ、台船に、台船から海底までの水深を検出する水探検
出装置と、台船に対する攪拌軸の昇降量を検出する昇降
量検出装置と、前記両検出装置の検出値に基いて海底面
に対する攪拌翼の貫入深度を演算する演算器とを装備し
てなることを特徴とする海底軟弱地盤改良装置。
1. At the lower end of a hollow stirring shaft that is rotatably and movably provided on the barge via a leader, an injection port for the ground improvement material that is pneumatically fed through a passage in the stirring shaft and stirring blades are provided, and , the barge is equipped with a water exploration device that detects the water depth from the barge to the seabed, a lift amount detection device that detects the amount of elevation of the stirring shaft relative to the barge, and a seabed surface based on the detected values of both of the detection devices. A submarine soft ground improvement device characterized by being equipped with a computing unit that computes the penetration depth of a stirring blade into a soil.
JP16241484A 1984-07-31 1984-07-31 Improver for seabed soft ground Pending JPS6140918A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16241484A JPS6140918A (en) 1984-07-31 1984-07-31 Improver for seabed soft ground

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16241484A JPS6140918A (en) 1984-07-31 1984-07-31 Improver for seabed soft ground

Publications (1)

Publication Number Publication Date
JPS6140918A true JPS6140918A (en) 1986-02-27

Family

ID=15754143

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16241484A Pending JPS6140918A (en) 1984-07-31 1984-07-31 Improver for seabed soft ground

Country Status (1)

Country Link
JP (1) JPS6140918A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007002391A3 (en) * 2005-06-23 2007-10-18 Marine 1 Llc Marine vessel control system related applications
US9274528B2 (en) 2005-06-23 2016-03-01 Marine 1, Llc Marine vessel control system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007002391A3 (en) * 2005-06-23 2007-10-18 Marine 1 Llc Marine vessel control system related applications
US9274528B2 (en) 2005-06-23 2016-03-01 Marine 1, Llc Marine vessel control system

Similar Documents

Publication Publication Date Title
US3978679A (en) Method and apparatus for underwater trench excavation and pipeline laying
US3881695A (en) Device for measuring the rate of penetration of the drill bit during drilling operations performed from a floating installation
EP0096671B1 (en) A method and apparatus for compacting compactable soils by vibration
JPS6140918A (en) Improver for seabed soft ground
CN114319332B (en) High-pressure jet grouting pile device for reinforcing foundation and construction process
JP3571585B2 (en) Position / depth measurement device of land preparation equipment such as ground improvement using GPS
US4177585A (en) Method and apparatus for dredging
JPS584134B2 (en) Dredging method and cut-head suction dredger
JP2006027830A (en) Grab dredge construction support device and dredge method
JP3405656B2 (en) Ground improvement equipment
CN220104029U (en) Ultrasonic pile foundation pore-forming quality detection device
CN215907775U (en) Can keep straightness's multiple pipe four-axis stirring stake construction equipment that hangs down
JP5360908B2 (en) Ground improvement method
CN219257647U (en) Multi-beam sea sweeping measurement auxiliary device
CN215593999U (en) Overwater piling equipment
JPS60233223A (en) Soft ground improving ship
JP3436848B2 (en) Ground improvement equipment
JP2739650B2 (en) Method and apparatus for applying tension to position detection wire of excavator
CN115369862A (en) High-pressure rotary spraying construction method and construction device
JPH0630899Y2 (en) Hydraulic cylinder speed adjusting device for root consolidation in medium excavation method
JPS5628933A (en) Processing method for head of pile at sea
JP3759235B2 (en) Construction management equipment for medium digging method
JPH0826492A (en) Control method of continuous unloader and its device
KR20240096014A (en) control method of movable lifting apparatus
JPH0140074Y2 (en)