JPS6140809A - Refreshing method of phosgene manufacturing catalyst - Google Patents

Refreshing method of phosgene manufacturing catalyst

Info

Publication number
JPS6140809A
JPS6140809A JP59161624A JP16162484A JPS6140809A JP S6140809 A JPS6140809 A JP S6140809A JP 59161624 A JP59161624 A JP 59161624A JP 16162484 A JP16162484 A JP 16162484A JP S6140809 A JPS6140809 A JP S6140809A
Authority
JP
Japan
Prior art keywords
activated carbon
catalyst
phosgene
reaction
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59161624A
Other languages
Japanese (ja)
Inventor
Teruhiko Yamagiwa
山際 輝彦
Akihiko Mikura
三倉 昭彦
Takuya Yoshinouchi
芳之内 卓也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Chemicals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Chemicals Ltd filed Critical Teijin Chemicals Ltd
Priority to JP59161624A priority Critical patent/JPS6140809A/en
Publication of JPS6140809A publication Critical patent/JPS6140809A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To diminish the refreshed quantity of the titled catalyst by refreshing the only activated carbon of specified part incorporated in a reaction tube in a method for manufacruring phosgene by passing continuously the gaseous Cl2- CO mixture through the activated carbon layer packed in the inside of the reaction tube. CONSTITUTION:Phosgene is manufactured by packing activated carbon as a catalyst into a reaction tube and passing gaseous Cl2-CO mixture there-through but the catalyst (the activated carbon) is refreshed when the discharge side temp. of the activated carbon layer reaches about 100 deg.C. (When the discharge side temp. is less than 100 deg.C, about>= 99.5% reaction rate is obtained ). At this time, the activated carbon only is refreshed which is positioned in the gaseous raw material feeding side apart from the position showing the maximum temp. in the temp. distribution of the activated carbon layer in the reaction period. By the above-mentioned method, about <=1/2 catalyst only may be refreshed in comparison with the refreshing of all the catalysts in a conventional method.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はホスゲン製造触媒の更新方法に関し、更に詳し
くは塩素と一酸化炭素を触媒反応させてホスゲンを連続
的に製造するのに使用した反応管中の活性炭触媒を合理
的、経済的に更新する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for renewing a catalyst for producing phosgene, and more particularly, it relates to a method for renewing a catalyst for producing phosgene, and more specifically, for renewing a catalyst for producing phosgene in a reaction tube used to continuously produce phosgene by catalytically reacting chlorine and carbon monoxide. This invention relates to a method for rationally and economically renewing activated carbon catalysts.

従来技術 ホスゲンの工業的製造方法の一つに、反応管に充填され
た活性炭層に塩素と一酸化炭素の混合ガスを連続的に通
す方法がある。この方法においては、原料混合ガス中に
含まれる不純物等により活性炭の触媒活性が徐々に低下
、失活するので、適当な時期に活性炭を更新する必要が
ある。
BACKGROUND OF THE INVENTION One of the industrial methods for producing phosgene is a method in which a mixed gas of chlorine and carbon monoxide is continuously passed through an activated carbon bed filled in a reaction tube. In this method, the catalytic activity of the activated carbon gradually decreases and is deactivated due to impurities contained in the raw material mixed gas, so it is necessary to renew the activated carbon at an appropriate time.

従来、この判断基準としてホスゲンの累積生産量や反応
管の出口側温度が用いられている。しかしながら、原料
ガス中の不純物は該ガスの製造方法、製造原料等によっ
て質、量ともに変化し、また活性、炭の触媒性能も必ず
しも一定しないため、ホスゲンの累積生産量を基準とす
る方法は合理的とは言えず、出口側温度による方法も必
ずしも合理的とは言えない。いずれの方法によるも触媒
の失活状態を正確に把握することが困難なことから、触
媒は未だ触媒能を有する活性炭をも含めて全量を更新す
ることになっていた。
Conventionally, the cumulative production amount of phosgene and the temperature on the outlet side of the reaction tube have been used as criteria for this judgment. However, the quality and quantity of impurities in the raw gas vary depending on the gas production method, production raw materials, etc., and the activation and catalytic performance of charcoal are not necessarily constant, so it is reasonable to use the cumulative production amount of phosgene as the standard. It cannot be said that the method based on the outlet side temperature is necessarily rational. Since it is difficult to accurately grasp the deactivated state of the catalyst using either method, the entire amount of catalyst, including activated carbon that still has catalytic ability, was to be renewed.

発明の目的 本発明者らは、真に失活した活性炭を検出しその部分の
みを更新することの合理性、経済性に肴目し、新しい更
新方法を開発すべく鋭意研究した結果、次の事実を見出
した。
Purpose of the Invention The present inventors were interested in the rationality and economics of detecting truly deactivated activated carbon and renewing only that part, and as a result of intensive research to develop a new renewal method, they discovered the following. I found out the truth.

すなわち、活性炭の更新直後においては活性炭層の温度
は混合ガス供給側から急傾斜で上昇して最高温度に達し
、それから排出側に向かって緩い傾斜で低下する。そし
てホスゲンの累積生産量の増大につれて、活性炭層の温
度分布はその形を殆ど維持したまま全体として排出側に
移動する。また混合ガスの供給速度を増すと、最高温度
の位置は僅かに排出側に移動し、それから排出側に向か
う温度低下の傾斜が緩くなる。かかる現象の生ずる理由
としては、混合ガスの大部分は供給側の有効な活性炭の
薄い層で反応し、その反応熱が排出側に伝えられており
、混合ガスの供給速度を増すと反応熱量が増加するため
に排出側に向かう温度の傾斜が緩くなること、また混合
ガス中の不純物は供給側から順に活性炭を失活すること
、このため最高温度の位置より排出側の活性炭はほとん
ど失活しないことが推定される。
That is, immediately after the activated carbon is renewed, the temperature of the activated carbon layer rises at a steep slope from the mixed gas supply side, reaches the maximum temperature, and then decreases at a gentle slope toward the discharge side. As the cumulative production of phosgene increases, the temperature distribution of the activated carbon layer as a whole moves toward the discharge side while maintaining most of its shape. Furthermore, when the supply speed of the mixed gas is increased, the position of the highest temperature moves slightly toward the discharge side, and the slope of temperature decrease toward the discharge side becomes gentler. The reason for this phenomenon is that most of the mixed gas reacts in a thin layer of effective activated carbon on the supply side, and the heat of reaction is transferred to the discharge side, and as the supply speed of the mixed gas increases, the amount of reaction heat increases. As the temperature increases, the gradient of temperature toward the discharge side becomes gentler, and impurities in the mixed gas deactivate the activated carbon sequentially from the supply side, so activated carbon on the discharge side is hardly deactivated from the position of the highest temperature. It is estimated that

本発明の目的は、真に触媒能の低下乃至失活した活性炭
を検出し、それのみを更新する合理的な更新方法を提供
することにある。
An object of the present invention is to provide a rational renewal method that detects activated carbon whose catalytic ability has truly decreased or has been deactivated, and renews only that activated carbon.

発明の構成 本発明の目的は、本発明によれば、触媒として活性炭を
充填した反応管中での、塩素と一酸化炭素の混合ガスの
接触反応でホスゲンを連続的に製造する方法に使用した
該反応管中の触媒を更新するにあたり、活性炭層の反応
時の温度分布で最高温度を示した位置より混合ガス供給
側の活性炭を更新することを特徴とするホスゲン製造触
媒の更新方法によって達成される。
According to the present invention, an object of the present invention is to provide a method for continuously producing phosgene by a catalytic reaction of a mixed gas of chlorine and carbon monoxide in a reaction tube filled with activated carbon as a catalyst. In renewing the catalyst in the reaction tube, the activated carbon on the mixed gas supply side is renewed from the position where the highest temperature is shown in the temperature distribution during the reaction of the activated carbon layer. Ru.

塩素と一酸化炭素とからホスゲンを生成する反応は可逆
反応であり、平衡は高温では反応系(混合ガス)側に、
低温では生成系(ホスゲン)側にある。このため生成ホ
スゲンは出来るだけ低温に保つことが好ましい。本発明
者らの知見によれば、活性炭層の排出側温度を100℃
以下に保つと、99.5%以上の反応率が得られる。し
かして、触媒更新時期は、活性炭層の排出側温度を測定
しておき、この温度が100℃以下であることを基準に
して判断すると良い。この場合、99.5%以上の反応
率を得ることができる。
The reaction that produces phosgene from chlorine and carbon monoxide is a reversible reaction, and the equilibrium is on the side of the reaction system (mixed gas) at high temperatures.
At low temperatures, it is on the generation system (phosgene) side. For this reason, it is preferable to keep the generated phosgene at as low a temperature as possible. According to the findings of the present inventors, the discharge side temperature of the activated carbon layer is set at 100°C.
If it is kept below, a reaction rate of 99.5% or more can be obtained. Therefore, it is preferable to measure the temperature on the discharge side of the activated carbon layer and determine when to update the catalyst based on the fact that this temperature is 100° C. or less. In this case, a reaction rate of 99.5% or more can be obtained.

活性炭層の温度分布は、反応管の寸法、冷却方法、混合
ガスの供給速度などによって変化するが、例えば混合ガ
スの供給速度を大きくした場合排出側温度が100℃を
超えても最高温度を示す位置が活性炭層全長の中央より
供給側にあることがある。
The temperature distribution of the activated carbon layer changes depending on the dimensions of the reaction tube, the cooling method, the supply rate of the mixed gas, etc., but for example, when the supply rate of the mixed gas is increased, the maximum temperature will be reached even if the discharge side temperature exceeds 100°C. The position may be on the supply side from the center of the entire length of the activated carbon bed.

このような場合、本発明によれば触媒更新の(5)は従
来法に比して、1/2以下で済むようになる。
In such a case, according to the present invention, catalyst renewal (5) can be reduced to 1/2 or less compared to the conventional method.

本発明において用いる活性炭は従来から用いられている
活性炭で良い。またホスゲン製造に供した塩素及び−酸
化炭素も従来から用いられているもので良い。−これら
については特に制限はない。
The activated carbon used in the present invention may be any conventionally used activated carbon. Furthermore, the chlorine and carbon oxide used in the production of phosgene may be those conventionally used. - There are no particular restrictions on these.

本発明における活性炭層の温度分布は反応時の活性炭層
の温度分布であり、これは活性炭層中或はその外側に所
定の間隔で温度検出計を置くことによって求やることが
できる。
The temperature distribution of the activated carbon layer in the present invention is the temperature distribution of the activated carbon layer during the reaction, and can be determined by placing temperature detectors at predetermined intervals in or outside the activated carbon layer.

発明の効果 本発明によれば失活した乃至活性の低下した活性炭の部
分のみを更新することができ、従って触媒の更新量を低
減することができる。ホスゲンの製造条件によっては触
媒の更新量を、従来法に比して、約1/2以下に低減す
ることができる。
Effects of the Invention According to the present invention, it is possible to renew only the portion of the activated carbon that has been deactivated or whose activity has decreased, and therefore the amount of catalyst renewal can be reduced. Depending on the phosgene production conditions, the amount of catalyst renewal can be reduced to about 1/2 or less compared to the conventional method.

実施例 以下に実施例を挙げて本発明を更に説明する。Example The present invention will be further explained with reference to Examples below.

参考例 直径が1000amと1ioo、の同軸二重円筒状の反
応筒の輪状部に温度測定用金属管を挿入し、輪状部に活
性炭を充填し、かつ二重円筒の内側と外側に冷却水を通
した。次に一酸化炭素と塩素の混合ガスを輪状部の上方
から供給した。温度測定用金属管内に熱雷対を挿入し、
ホスゲンの累積生産量に対応して活性炭層の各部の温度
を測定した。また混合ガスの供給速度を変えて同様に温
度を測定した。それらの結果を第1図に示す。
Reference example: A metal tube for temperature measurement is inserted into the annular part of a coaxial double cylindrical reaction cylinder with diameters of 1000 am and 1 ioo, the annular part is filled with activated carbon, and cooling water is poured inside and outside of the double cylinder. I passed it. Next, a mixed gas of carbon monoxide and chlorine was supplied from above the ring. Insert a thermal lightning pair into the metal tube for temperature measurement,
The temperature of each part of the activated carbon layer was measured in accordance with the cumulative production amount of phosgene. Furthermore, the temperature was measured in the same manner while changing the supply rate of the mixed gas. The results are shown in FIG.

曲線Aは累積生産量500Ton、曲線Bは累積生産量
1000T onのときの温度分布であり、曲線B′は
、混合ガスの供給速度を30%増加したときの温度分布
である。
Curve A is the temperature distribution when the cumulative production amount is 500 tons, curve B is the temperature distribution when the cumulative production amount is 1000 tons, and curve B' is the temperature distribution when the mixed gas supply rate is increased by 30%.

上述の反応を行った後の反応筒から活性炭の表面部分(
着色物何着)のみを採取し、直径40mのガラス管に充
填して、−酸化炭素と塩素の混合ガスを通した。温度は
上らず、排出ガスは微量のホスゲンを含むだけであった
After performing the above reaction, remove the surface part of activated carbon from the reaction tube (
The colored material was collected and filled into a glass tube with a diameter of 40 m, and a mixed gas of carbon oxide and chlorine was passed through it. The temperature did not rise and the exhaust gas contained only trace amounts of phosgene.

実施例1 参考例による反応を行った後の反応筒から減圧パイプを
使用して最高温度位置から上部の活性炭を抜き取り、そ
れだけを新しい活性炭で補充した。
Example 1 After carrying out the reaction according to Reference Example, the activated carbon at the top from the highest temperature position was extracted from the reaction tube using a vacuum pipe, and only that part was replenished with fresh activated carbon.

次いで参考例と同じ条件で反応を行なったところ、はぼ
第1図と同じ温度分布の曲線が得られた。
Next, a reaction was carried out under the same conditions as in the reference example, and a curve with the same temperature distribution as in FIG. 1 was obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はホスゲン製造時の触媒活性炭層の温度分布を示
す図である。 特許出願人 帝 人 株 式 会 社 四  −
FIG. 1 is a diagram showing the temperature distribution of a catalytic activated carbon layer during phosgene production. Patent applicant Teijin Ltd. Company 4 -

Claims (1)

【特許請求の範囲】[Claims] 触媒として活性炭を充填した反応管中での、塩素と一酸
化炭素の混合ガスの接触反応でホスゲンを連続的に製造
する方法に使用した該反応管中の触媒を更新するにあた
り、活性炭層の反応時の温度分布で最高温度を示した位
置より混合ガス供給側の活性炭を更新することを特徴と
するホスゲン製造触媒の更新方法。
When renewing the catalyst in a reaction tube used in a method for continuously producing phosgene through a catalytic reaction of a mixed gas of chlorine and carbon monoxide in a reaction tube filled with activated carbon as a catalyst, the reaction of the activated carbon layer was carried out. A method for renewing a phosgene production catalyst characterized by renewing activated carbon on the mixed gas supply side from the position where the highest temperature is shown in the temperature distribution at the time.
JP59161624A 1984-08-02 1984-08-02 Refreshing method of phosgene manufacturing catalyst Pending JPS6140809A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59161624A JPS6140809A (en) 1984-08-02 1984-08-02 Refreshing method of phosgene manufacturing catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59161624A JPS6140809A (en) 1984-08-02 1984-08-02 Refreshing method of phosgene manufacturing catalyst

Publications (1)

Publication Number Publication Date
JPS6140809A true JPS6140809A (en) 1986-02-27

Family

ID=15738716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59161624A Pending JPS6140809A (en) 1984-08-02 1984-08-02 Refreshing method of phosgene manufacturing catalyst

Country Status (1)

Country Link
JP (1) JPS6140809A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020216648A1 (en) * 2019-04-25 2020-10-29 Basf Se Method for producing phosgene

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020216648A1 (en) * 2019-04-25 2020-10-29 Basf Se Method for producing phosgene

Similar Documents

Publication Publication Date Title
KR870000768B1 (en) Process for preparing a diester of oxalic acid
NL192260C (en) Apparatus and method for purifying argon gas.
EP1095906B1 (en) Process for the preparation of ammonia
JP6316194B2 (en) Catalyst and method for producing chlorine by gas phase oxidation
TW201234423A (en) Production of polycrystalline silicon by the thermal decomposition of dichlorosilane in a fluidized bed reactor
JPS6345112A (en) Purification of silicon
TW201221474A (en) Production of polycrystalline silicon by the thermal decomposition of trichlorosilane in a fluidized bed reactor
Bedjai et al. Reaction of nitric oxide with activated carbon and hydrogen
JPH08157206A (en) Production of phosgene
Baker et al. Catalyzed nitric oxide reduction with carbon monoxide
Baker et al. The production and properties of filamentous carbon
JPS6140809A (en) Refreshing method of phosgene manufacturing catalyst
Marwaha et al. Hot zone formation during carbon monoxide oxidation in a radial flow reactor
JPS6055177B2 (en) catalyst diluent
Gora et al. Lower temperature dehydrogenation of methylcyclohexane by membrane-assisted equilibrium shift
CN102791620A (en) Method for producing chlorine using fixed bed reactor
US4065533A (en) Process for the continuous production of silicon rods or tubes by gaseous deposition into a flexible wound band
GB1570131A (en) Manufacture of silicon
US20210275965A1 (en) Apparatus for removing boron
Hughes et al. Intraparticle temperature measurements during catalytic reactions
JP3110838B2 (en) Catalyst regeneration method
JPS6025361B2 (en) Method for hydrogenating acetylene contained in hydrogen chloride gas and method for producing 1,2-dichloroethane
JP2010235407A (en) Method of manufacturing carbon nano structural material and apparatus for manufacturing carbon nano structural material
JP3292251B2 (en) Steam purification method
US2384066A (en) Production of acetaldehyde from ethyl alcohol by partial oxidation