JPS6140552B2 - - Google Patents

Info

Publication number
JPS6140552B2
JPS6140552B2 JP9080978A JP9080978A JPS6140552B2 JP S6140552 B2 JPS6140552 B2 JP S6140552B2 JP 9080978 A JP9080978 A JP 9080978A JP 9080978 A JP9080978 A JP 9080978A JP S6140552 B2 JPS6140552 B2 JP S6140552B2
Authority
JP
Japan
Prior art keywords
weight
content
copolymer
propylene
olefin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9080978A
Other languages
Japanese (ja)
Other versions
JPS5517542A (en
Inventor
Akinobu Shiga
Noryoshi Matsuyama
Masahiro Kakugo
Yukio Naito
Akira Fuse
Masaharu Nishioka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP9080978A priority Critical patent/JPS5517542A/en
Priority to BR7903705A priority patent/BR7903705A/en
Priority to DE2923754A priority patent/DE2923754C3/en
Priority to IT49388/79A priority patent/IT1193760B/en
Priority to BE0/195712A priority patent/BE876947A/en
Priority to GB7920608A priority patent/GB2027720B/en
Priority to CA000329679A priority patent/CA1198355A/en
Priority to FR7915301A priority patent/FR2428651B1/en
Priority to NL7904659A priority patent/NL190783C/en
Publication of JPS5517542A publication Critical patent/JPS5517542A/en
Priority to GB08137613A priority patent/GB2105651B/en
Priority to SG567/83A priority patent/SG56783G/en
Priority to CA000469444A priority patent/CA1215198A/en
Publication of JPS6140552B2 publication Critical patent/JPS6140552B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)

Description

【発明の詳細な説明】 本発明は、低温ヒートシール性、透明性、滑り
性、耐ブロツキング性の改良されたポリプロピレ
ン多層フイルムに関する。 高結晶性ポリプロピレンの二軸延伸フイルム
は、透明性、剛性等においてすぐれた包装材料で
あるが、ヒートシール性に乏しいためそのままで
は自動包装機にかけることができない。すなわ
ち、延伸したポリプロピレンフイルムは通常ヒー
トシール温度が延伸温度以上であるため、ヒート
シール時の熱によつて未延伸状態に戻ろうとして
収縮が起り、外観を損うと共にシール強度の低下
を生じる。 そこで、種々のヒートシール性良好な樹脂をポ
リプロピレンフイルムにコーテイング、あるいは
ラミネートした多層フイルムが広く使用されてい
る。ポリエチレンやエチレン−酢酸ビニル共重合
体を積層したポリプロピレン多層フイルムは、ヒ
ートシール温度は低いが、ポリプロピレン二軸延
伸フイルムの主要な用途であるおかきなどの米菓
類を包装した時、傷がつきやすく、そのため透明
性を損うといういわゆる耐スクラツチ性不良の欠
点を有する。また、フイルム同士が密着しやす
く、袋の開口性が悪くなるといういわゆる耐ブロ
ツキング性不良の欠点をも有している。これに対
して、少量のエチレン、ブテン−1等のコモノマ
ーを共重合させたプロピレン共重合体を使用すれ
ば、耐スクラツチ性も高く、耐ブロツキング性も
比較的良好であるので広く使用されているが、従
来、主として使われてきたプロピレン−エチレン
共重合体はヒートシール温度がポリエチレン等と
比較して20℃以上高いという欠点があつた。 ヒートシール温度が低下すれば、多層フイルム
の製袋速度を上げることができて明らかに経済的
に有利である。従つて、ポリプロピレンフイルム
に積層する樹脂として、ヒートシール温度が低
く、かつ耐スクラツチ性、ブロツキング性、透明
性に優れたものが望まれている。 耐スクラツチ性が良好であるプロピレン共重合
体のヒートシール温度を下げるためには、共重合
体中のコモノマー含有量を増加させて共重合体の
結晶性を低下させればよいことは周知の事実であ
るが、コモノマー含有量が高いプロピレン共重合
体ほど工業的な製造が困難であるため高価格にな
つたり、共重合体中に含有される非晶性重合体が
増大するため、多層フイルムの滑り性やブロツキ
ング性などが悪化する欠点を有し実用化が困難で
あつた。 従来より、ヒートシール温度の低い結晶性プロ
ピレン共重合体層を有する多層フイルムとして、
プロピレン以外の直鎖α−オレフイン1〜10重量
%およびエチレン0.1〜4.0重量%の組成を有する
結晶性プロピレンランダム共重合体の使用が提案
されているが(特開昭52−11281)、これではまだ
ヒートシール温度が十分低下しない。また炭素数
4〜10のα−オレフインを5〜20重量%含有する
プロピレン−α−オレフインランダム共重合体を
使用することも提案されているが(特公昭52−
30434)、単に上記組成の共重合体を使用したので
は、滑り性やブロツキング性が悪いため、滑剤を
多量に添加しなければならず、そのためフイルム
表面に滑剤がブリードして基体フイルムである二
軸延伸ポリプロピレンフイルムの際立つた特徴で
ある高透明性を著るしく損う。 本発明者らは、かかる欠点の原因について鋭意
研究を重ねた結果、20℃のキシレンに可溶な重合
体(以後冷キシレン可溶部と略す)の含有量が支
配的因子であることを見出し、本発明に到つた。 すなわち、本発明は、結晶性ポリプロピレン層
と液相不均一重合法で得られた炭素数4〜18のα
−オレフインの含有量が10〜30重量%、エチレン
の含有量が0〜5重量%、20℃のキシレンに可溶
な重合体の含有量が15重量%以下である結晶性プ
ロピレン−α−オレフインまたは結晶性プロピレ
ン−α−オレフイン−エチレン共重合体層とから
なるポリプロピレン多層フイルムである。 本発明で使用する結晶性プロピレン共重合体中
のα−オレフインは、分子中に炭素原子を4〜18
個有するものであるが、具体例を挙げればブテン
−1、ペンテン−1、ヘキセン−1、4−メチル
ペンテン−1、3−メチルペンテン−1、オクテ
ン−1、デセン−1、ドデセン−1、テトラデセ
ン−1、ヘキサデセン−1、オクタデセン−1等
である。これらは1種または2種以上含有するこ
とができる。α−オレフインとしては特にブテン
−1が好ましい。 共重合体中にα−オレフインは10〜30重量%含
まれる。10重量%以下ではヒートシール温度の低
下が十分でないので好ましくない。また30重量%
以上では共重合体の結晶性が低下しすぎて好まし
くない。更に好ましくはα−オレフインは25重量
%以下含有される。 共重合体中にエチレンは含有されてもされなく
てもよい。エチレンが多く含有されると耐スクラ
ツチ性が悪化するので、エチレン含有量は5重量
%以下好ましくは3重量%以下であることが必要
である。 共重合体中に含有される冷キシレン可溶部は、
下記の理由により15重量%以下、好ましくは10重
量%以下、更に好ましくは5重量%以下である。
例としてプロピレン−ブテン−1共重合体に酸化
防止剤としてスミライザーBHT0.2%とシリカ系
の抗ブロツキング剤を0.5%、滑剤として脂肪酸
アミド0.2%を添加して、Tダイ押出機で製膜し
た30μの単層フイルムのブテン−1含有量、冷キ
シレン可溶部含量とブロツキング性の関係を第1
図に示す。第1図からわかるとおりブロツキング
性はブテン−1含有量によつても若干影響を受け
るが、冷キシレン可溶部含有量の影響の方が顕著
である。 冷キシレン可溶部の多い共重合体に抗ブロツキ
ング剤を増量すると、透明性が著るしく低下して
包装フイルムとして適さない。また、冷キシレン
可溶部がある水準以上多くなると、公知の抗ブロ
ツキング剤を多量に添加しても、望ましい開口性
が得られないようになる。滑り性についてもブロ
ツキング性と同様で冷キシレン可溶部の影響が大
きい。 従つて、単に共重合体層のコモノマー含有量を
増加させただけでは優れた包装フイルムは得られ
ず、更に冷キシレン可溶部含有量の少ない共重合
体を使用する必要がある。 本発明で使用する冷キシレン可溶部の少ない高
モノマー含有量の結晶性プロピレン共重合体は、
先に本発明者らが発明した方法で製造できる(特
願昭53−72436、特願昭53−75113、特願昭53−
75837)、これら特許願の明細書中でも述べたよう
に従来一般的な方法で製造すると、高コモノマー
含有量の結晶性プロピレン共重合体ほど工業的な
製造が困難であり、また冷キシレン可溶部が著し
く増大する。 本発明のポリプロピレン多層フイルムは、基材
となる結晶性ポリプロピレンフイルムの片面、あ
るいは両面に冷キシレン可溶部の少ない結晶性プ
ロピレン−α−オレフインまたは結晶性プロピレ
ン−α−オレフイン−エチレン共重合体を公知の
方法によつて積層することにより得ることができ
る。すなわち、基体層および共重合体層の予め形
成したシートを接着剤を用いて加圧ローラー間に
一緒に通す方法、共重合体をトルエン等の溶媒の
溶液または分散体として基体層上に塗布して積層
する方法、共重合体を基体層に溶融押出コーテイ
ングして積層する方法、または共重合体および基
体ポリマーを別々の押出機で押出し共通のダイの
中または出口で両者がまだ溶融状態のうちに接合
する方法等によつて本発明の多層フイルムが得ら
れる。 本発明の多層フイルムは、好ましくは少くとも
ポリプロピレン層を延伸して一軸あるいは二軸配
合させる。かかるポリプロピレン延伸多層フイル
ムは、次のような公知の方法で製造される。すな
わち、基材となる結晶性ポリプロピレンシートに
冷キシレン可溶部の少ない結晶性プロピレン−α
−オレフイン、または結晶性プロピレン−α−オ
レフイン−エチレン共重合体をラミネートしたの
ち、この両者を同時に延伸することによつて製造
することができる。基材となる結晶性ポリプロピ
レンシートに結晶性プロピレン共重合体をラミネ
ートする方法には、次のような方法などがある。 (1) シートを成形する押出用ダイの中、または出
口付近でまだ溶融状態のうちに両者を複合する
いわゆる同時押出あるいは共押出による方法。 (2) 両者を固体のシート状に成形したのち重ね合
わせる方法。 (3) 基材のポリプロピレンシートをあらかじめ金
属ロールを含むロール群で加熱状態で押出方向
に一軸延伸し、このシート上にプロピレン共重
合体を加熱溶融状態、もしくは固化した状態で
シート状にラミネートする方法。 本発明方法をさらに明確に説明するために以下
に比較例ならびに実施例に記すが本発明はこれら
の実施例によつてのみ限定されるものではない。
なお以下の実施例中の特性値は下記の方法で測定
したものである。 (1) 冷キシレン可溶部 5gのポリマーを500mlの沸騰キシレンに溶
解したのち、室温まで徐冷し、20℃で4時間放
置して析出したポリマーを別したのち液か
らキシレンを蒸発させ、減圧下60℃で乾燥して
冷キシレン可溶ポリマーを回収した。該回収ポ
リマーの試料ポリマーに対する百分率を冷キシ
レン可溶部%とした。 (2) ヒートシール温度 フイルムのラミネート面どうしをヒートシー
ラーを用いて所定の温度で2Kg/cm2の荷重をか
け2秒間圧着して得た幅25mmの試料を剥離速度
200mm/min、剥離角度180で剥離を行なつて得
た剥離抵抗力が300g/25mmのときの温度をヒ
ートシール温度とした。 (3) 透明性(ヘイズ) ASTMD 1003によつた。 (4) 開口性(ブロツキング) 40g/cm2の荷重下で60℃、3時間処理してブ
ロツキングさせた試片を島津製作所製ブロツキ
ングテスターで測定した。 (5) 耐スクラツチ性 長さ13cm、幅11cm、深さ5cmのポリメチルメ
タクリレート樹脂製の箱の底に試料フイルムを
ラミネート面に上側になるように張りつけ、15
〜25メツシユの海砂を100c.c.入れる、この箱を
振動機にとりつけ、振動数毎分300回で水平方
向に15秒間振動する。試験後のフイルムを水
洗、乾燥し、ASTMD−1003に従つて、ヘイズ
を測定し、耐スクラツチ試験前のヘイズとの差
を耐スクラツチ性の尺度とした。 実施例 1 (i) 共重合体の製造 触媒の調整 1 調製法(還元生成物の調製) 200の反応容器をアルゴン置換した
後、乾燥ヘキサン40、四塩化チタン10
を投入し、この溶液を−5℃に保ち乾燥ヘ
キサン30、エチルアルミニウムセスキク
ロライド23.2より成る溶液を反応系の温
度が−3℃以下に保たれる様な条件で滴下
した。ついでそのままの温度で2時間撹拌
を続けた。反応後静置して得られた還元生
成物を0℃で固液分離し、40のヘキサン
で2回洗浄し16Kgの還元生成物を得た。 2 調整法 調製法で得られた還元生成物をn−デ
カリンにスラリー化し、スラリー濃度を
0.2g/c.c.として140℃で2時間熱処理し
た。反応後上澄み液を抜き出し、40のヘ
キサンで2回洗浄し、三塩化チタン組成物
Aを得た。 3 調製法 調製法に従つて調製した三塩化チタン
組成物A11Kgをトルエン55にスラリー化
し、三塩化チタン組成物A/I2/ジイソア
ミルエーテル=1/0.1/1.0モル比になる
様にヨウ素及びイソアミルエーテルを投入
し、80℃で1時間反応させることにより三
塩化チタン固体触媒Bを得た。 プロピレン−αオレフインの共重合 内容積200の撹拌機付重合器を充分にプ
ロピレンで置換した後、液化プロピレン32.3
Kg、液化ブテン−119.1Kgを送入した。次い
で、アルミニウムジエチルモノクロライド50
g、前記の三塩化チタン固体触媒B4gおよ
びメチルメタクリレート8gを重合器に送入
し、60℃に昇温した。 重合中、液相のブテン−1濃度が一定にな
るように、計13Kgのプロピレンを投入した。 4時間重合させた後、あらかじめイソブタ
ノールを投入した60℃のn−ヘプタンにスラ
リーを受け込み、30分間処理した後、非晶性
重合体を含む溶媒を振り切つた。 乾燥後23.3Kgの粉末重合体を得た。 (ii) 評 価 (i)で得た重合体の特性値を次の如く測定、評
価した。 メルトインデツクス2.0のアイソタクチツク
ポリプロピレンシートを縦方向に5倍の倍率で
延伸して、厚さ180μの一軸延伸シートを得
た。このシートの片面に第1表に示すプロピレ
ン−ブテン−1共重合体をTダイ押出機から溶
融押出し、厚さ60μの共重合体層をラミネート
した。 得られた二層ラミネートシートを横方向に実
効倍率が6倍になるよう延伸し、150℃で5秒
間緊張熱処理して二層ラミネートフイルムを得
た。この二層フイルムの特性を第1表に示す。 実施例 2 ブテン−1含有量を20.5wt%となるように重合
させた以外は実施例1と同じ方法で行つた。 得られた結果を第1表に示す。 実施例 3 (i) 共重合体の製造 触媒の調製 1 調製法(還元生成物の調製) 200の反応容器をアルゴン置換した
後、乾燥ヘキサン40、四塩化チタン10
を投入し、この溶液を−5℃に保ち乾燥ヘ
キサン30、エチルアルミニウムセスキク
ロライド23.2より成る溶液を反応系の温
度が−3℃以下に保たれる様な条件で滴下
した。ついでそのままの温度で2時間撹拌
を続けた。反応後静置して得られた還元生
成物を0℃で固液分離し、40のヘキサン
で2回洗浄し16Kgの還元生成物を得た。 2 調製法 調製法で得られた還元生成物をn−デ
カリンにスラリー化し、スラリー濃度を
0.2g/c.c.として140℃で2時間熱処理し
た。反応後上澄み液を抜き出し40のヘキ
サンで2回洗浄し、三塩化チタン組成物A
を得た。 3 調製法 調製法に従つて調製した三塩化チタン
組成物A11Kgをトルエン55にスラリー化
し、三塩化チタン組成物A/I2/ジイソア
ミルエーテル=1/0.1/1.0モル比になる
様にヨウ素及びジイソアミルエーテルを投
入し、80℃で1時間反応させることにより
三塩化チタン固体触媒Bを得た。 触媒系の前処理 内容積5の撹拌機付反応容器をアルゴン
置換した後、乾燥n−ヘプタン1、前記の
三塩化チタン固体触媒Bを16g、アルミニウ
ムジエチルモノクロライド70gを投入した。
次いで反応器内をプロピレンで置換し温度を
50℃まで上昇させ、撹拌しながらプロピレン
を300g供給反応させて触媒系Cを得た。 プロピレン−α−オレフインの共重合 内容積200の撹拌機付重合器を充分にプ
ロピレンで置換した後、工業用ヘプタン68
を送入した。前記触媒系Cを全量投入して工
業用ヘプタンで洗い込み最終的に工業用ヘプ
タンの量は70にした。次いでプロピレンを
6Kg、ブテン−1を3Kg及びエチレンを70g
投入し温度を50℃まで昇温しゲージ圧力4
Kg/cm2にした。そして適当な水素分圧下でブ
テン−1とプロピレンとエチレンの気相組成
を厳密に調節することによつて4Kgのブテン
−1と1Kgのエチレンと25Kgのプロピレンを
連続的に送入した。 重合後のスラリーにイソブタノール10と
工業用ヘプタン70を送入した後、60℃に昇
温し、30分間後処理を行う。この後、スラリ
ーを塩心分離し、水洗し、さらに真空乾燥す
ることによつて31Kgの粉末重合体を得た。 (ii) 評 価 この様にして得た重合体の特性値を実施例1
の(ii)の方法と同様にして評価した。 結果を第1表に併せて示す。 比較例 1 (i) 共重合体の製造 実施例3と同様な触媒を用いて、プロピレ
ン、ブテン−1及び水素濃度を変更し、重合後
のスラリーにイソブタノールを添加した後水洗
浄し、重合体を全量回収する以外は実施例3と
同様な方法で重合を行つた。 (ii) 評 価 この様にして得た重合体の特性値を実施例1
の(ii)の方法と同様にして評価した。 結果を第1表に併せて示す。 比較例 2 (i) 共重合体の製造 実施例3と同様な触媒を用いて、プロピレ
ン、エチレンおよび水素濃度を変更する以外は
実施例3と同様の方法で重合し、後処理を行つ
た。 (ii) 評 価 この様にして得た重合体の特性値を実施例1
の(ii)の方法と同様にして評価した。 結果を第1表に併せて示す。 実施例 4 実施例1で使用したのと同じアイソタクチツク
ポリプロピレンおよびプロピレン−ブテン−1共
重合体をそれぞれ別の押出機から押出し、マンホ
ールド部が別で、ランド部で接合するような構造
のダイを用いて、同時押出法により二層シートを
作り、次いで縦方向に5倍、横方向に6倍逐次延
伸し、ポリプロピレン層30μ、プロピレン−ブテ
ン−1共重合体層10μの二層フイルムを得た。こ
の二層フイルムの特性を第1表に示す。 【表】
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a polypropylene multilayer film with improved low-temperature heat-sealability, transparency, slipperiness, and blocking resistance. A biaxially stretched film made of highly crystalline polypropylene is a packaging material with excellent transparency and rigidity, but it cannot be applied to an automatic packaging machine as it is because of its poor heat-sealability. That is, since the heat-sealing temperature of a stretched polypropylene film is usually higher than the stretching temperature, the heat during heat-sealing causes the film to shrink as it attempts to return to its unstretched state, impairing its appearance and reducing its sealing strength. Therefore, multilayer films in which polypropylene films are coated or laminated with various resins having good heat sealability are widely used. Polypropylene multilayer films laminated with polyethylene or ethylene-vinyl acetate copolymers have a low heat-sealing temperature, but they are easily damaged when packaging rice crackers such as rice crackers, which is the main use for polypropylene biaxially stretched films. Therefore, it has the disadvantage of poor scratch resistance, which impairs transparency. It also has the disadvantage of poor blocking resistance, in that the films tend to stick together, making it difficult to open the bag. On the other hand, propylene copolymers made by copolymerizing small amounts of comonomers such as ethylene and butene-1 are widely used because they have high scratch resistance and relatively good blocking resistance. However, the propylene-ethylene copolymer that has been mainly used in the past has had the disadvantage that the heat sealing temperature is 20°C or more higher than that of polyethylene or the like. If the heat-sealing temperature is lowered, the speed at which multilayer films can be made into bags can be increased, which is clearly economically advantageous. Therefore, a resin to be laminated to a polypropylene film is desired to have a low heat-sealing temperature and excellent scratch resistance, blocking properties, and transparency. It is a well-known fact that in order to lower the heat-sealing temperature of propylene copolymers, which have good scratch resistance, it is possible to reduce the crystallinity of the copolymer by increasing the comonomer content in the copolymer. However, propylene copolymers with higher comonomer content are more difficult to produce industrially and therefore more expensive, and the amount of amorphous polymer contained in the copolymer increases, making it difficult to make multilayer films. It had the disadvantage of poor slipperiness and blocking properties, making it difficult to put it into practical use. Conventionally, as a multilayer film with a crystalline propylene copolymer layer with a low heat sealing temperature,
The use of a crystalline propylene random copolymer having a composition of 1 to 10% by weight of a linear α-olefin other than propylene and 0.1 to 4.0% by weight of ethylene has been proposed (Japanese Patent Application Laid-Open No. 11281-1981); The heat seal temperature has not yet decreased sufficiently. It has also been proposed to use a propylene-α-olefin random copolymer containing 5 to 20% by weight of α-olefin having 4 to 10 carbon atoms (Japanese Patent Publication No. 1983-
30434), simply using a copolymer with the above composition would result in poor slipping and blocking properties, so a large amount of lubricant would have to be added, and as a result, the lubricant would bleed onto the film surface and damage the base film. The high transparency, which is a distinguishing feature of axially oriented polypropylene films, is significantly impaired. As a result of extensive research into the causes of such defects, the present inventors discovered that the content of a polymer soluble in xylene at 20°C (hereinafter referred to as cold xylene soluble portion) is the dominant factor. , arrived at the present invention. That is, the present invention provides a crystalline polypropylene layer and a carbon atom having 4 to 18 carbon atoms obtained by a liquid phase heterogeneous polymerization method.
-Crystalline propylene with an olefin content of 10 to 30% by weight, an ethylene content of 0 to 5% by weight, and a content of a polymer soluble in xylene at 20°C of not more than 15% by weight -α-olefin Alternatively, it is a polypropylene multilayer film comprising a crystalline propylene-α-olefin-ethylene copolymer layer. The α-olefin in the crystalline propylene copolymer used in the present invention has 4 to 18 carbon atoms in the molecule.
Specific examples include butene-1, pentene-1, hexene-1, 4-methylpentene-1, 3-methylpentene-1, octene-1, decene-1, dodecene-1, These include tetradecene-1, hexadecene-1, octadecene-1, and the like. One or more types of these may be contained. Butene-1 is particularly preferred as the α-olefin. The α-olefin is contained in the copolymer in an amount of 10 to 30% by weight. If it is less than 10% by weight, the heat sealing temperature will not be lowered sufficiently, which is not preferable. Also 30% by weight
Above this amount, the crystallinity of the copolymer is undesirably reduced. More preferably, the α-olefin content is 25% by weight or less. Ethylene may or may not be contained in the copolymer. If a large amount of ethylene is contained, the scratch resistance deteriorates, so the ethylene content must be 5% by weight or less, preferably 3% by weight or less. The cold xylene soluble portion contained in the copolymer is
For the following reasons, the content is 15% by weight or less, preferably 10% by weight or less, and more preferably 5% by weight or less.
As an example, 0.2% of Sumilizer BHT as an antioxidant, 0.5% of a silica-based anti-blocking agent, and 0.2% of fatty acid amide as a lubricant were added to a propylene-butene-1 copolymer, and a film was formed using a T-die extruder. First, the relationship between the butene-1 content, cold xylene soluble content, and blocking property of a 30μ single-layer film is
As shown in the figure. As can be seen from FIG. 1, the blocking property is slightly affected by the butene-1 content, but the effect of the cold xylene soluble content is more significant. If the amount of anti-blocking agent is increased in a copolymer with a large amount of cold xylene soluble portion, the transparency will be significantly reduced and the film will not be suitable as a packaging film. Furthermore, if the amount of cold xylene soluble portion exceeds a certain level, desired opening properties cannot be obtained even if a large amount of a known anti-blocking agent is added. Similar to the blocking property, the sliding property is greatly influenced by the cold xylene soluble portion. Therefore, it is not possible to obtain an excellent packaging film simply by increasing the comonomer content of the copolymer layer, and it is necessary to use a copolymer with a low content of cold xylene soluble parts. The crystalline propylene copolymer with a high monomer content and a small amount of cold xylene soluble portion used in the present invention is
It can be manufactured by the method previously invented by the present inventors (Japanese Patent Application No. 53-72436, Japanese Patent Application No. 75113-1983, Japanese Patent Application No. 1983-1983)
75837), as mentioned in the specifications of these patent applications, when manufactured by conventional methods, the higher the comonomer content, the more difficult it is to industrially manufacture the crystalline propylene copolymer, and the lower the cold xylene soluble portion. increases significantly. The polypropylene multilayer film of the present invention has crystalline propylene-α-olefin or crystalline propylene-α-olefin-ethylene copolymer with a small amount of cold xylene soluble portion on one or both sides of a crystalline polypropylene film as a base material. It can be obtained by laminating layers by a known method. That is, preformed sheets of the substrate layer and copolymer layer are passed together between pressure rollers using an adhesive, or the copolymer is applied as a solution or dispersion in a solvent such as toluene onto the substrate layer. by melt-extrusion coating the copolymer onto the substrate layer, or by extruding the copolymer and the substrate polymer in separate extruders and extruding them in a common die or exit while both are still molten. The multilayer film of the present invention can be obtained by a method such as bonding. In the multilayer film of the present invention, at least the polypropylene layer is preferably stretched uniaxially or biaxially. Such a polypropylene stretched multilayer film is manufactured by the following known method. In other words, crystalline propylene-α with a small amount of cold xylene soluble portion is added to the crystalline polypropylene sheet serving as the base material.
It can be produced by laminating -olefin or a crystalline propylene-α-olefin-ethylene copolymer and then stretching both at the same time. Methods for laminating a crystalline propylene copolymer onto a crystalline polypropylene sheet serving as a base material include the following methods. (1) A method using so-called simultaneous extrusion or coextrusion, in which both are combined while they are still in a molten state in the extrusion die for forming the sheet or near the exit. (2) A method in which both are formed into a solid sheet and then stacked on top of each other. (3) A base polypropylene sheet is uniaxially stretched in advance in the extrusion direction while being heated with a group of rolls including metal rolls, and the propylene copolymer is laminated onto this sheet in a heated molten state or in a solidified state in the form of a sheet. Method. In order to explain the method of the present invention more clearly, comparative examples and examples are described below, but the present invention is not limited only by these examples.
Note that the characteristic values in the following examples were measured by the following method. (1) Cold xylene soluble part After dissolving 5 g of polymer in 500 ml of boiling xylene, it was slowly cooled to room temperature, left to stand at 20°C for 4 hours to separate the precipitated polymer, and the xylene was evaporated from the liquid, followed by reducing the pressure. The cold xylene soluble polymer was recovered by drying at 60°C. The percentage of the recovered polymer to the sample polymer was defined as cold xylene soluble portion %. (2) Heat sealing temperature The peeling speed of a 25 mm wide sample obtained by pressing the laminated surfaces of the film together using a heat sealer at a specified temperature for 2 seconds under a load of 2 kg/cm 2
The temperature at which the peeling resistance obtained by peeling at 200 mm/min and a peeling angle of 180 was 300 g/25 mm was defined as the heat sealing temperature. (3) Transparency (haze) According to ASTMD 1003. (4) Opening properties (blocking) Test pieces were blocked by treatment at 60° C. for 3 hours under a load of 40 g/cm 2 and measured using a blocking tester manufactured by Shimadzu Corporation. (5) Scratch resistance A sample film was pasted on the bottom of a box made of polymethyl methacrylate resin with a length of 13 cm, a width of 11 cm, and a depth of 5 cm, with the laminate surface facing upward.
Fill the box with 100 c.c. of ~25 mesh sea sand, attach this box to a vibrator, and vibrate horizontally for 15 seconds at a frequency of 300 vibrations per minute. The film after the test was washed with water and dried, and the haze was measured according to ASTMD-1003, and the difference from the haze before the scratch resistance test was used as a measure of scratch resistance. Example 1 (i) Production of copolymer Preparation of catalyst 1 Preparation method (preparation of reduction product) After purging a 200-volume reaction vessel with argon, 40% of dry hexane and 10% of titanium tetrachloride were added.
This solution was kept at -5°C, and a solution consisting of 30% of dry hexane and 23.2% of ethylaluminum sesquichloride was added dropwise under such conditions that the temperature of the reaction system was maintained at -3°C or below. Stirring was then continued at the same temperature for 2 hours. After the reaction, the resulting reduced product was allowed to stand still and was subjected to solid-liquid separation at 0°C, and washed twice with 40 kg of hexane to obtain 16 kg of reduced product. 2. Adjustment method The reduction product obtained by the preparation method is slurried in n-decalin, and the slurry concentration is adjusted to
Heat treatment was carried out at 140° C. for 2 hours at a concentration of 0.2 g/cc. After the reaction, the supernatant liquid was extracted and washed twice with 40% hexane to obtain titanium trichloride composition A. 3 Preparation method 11 kg of titanium trichloride composition A prepared according to the preparation method was slurried in 55 toluene, and iodine and Titanium trichloride solid catalyst B was obtained by adding isoamyl ether and reacting at 80° C. for 1 hour. Copolymerization of propylene-α-olefin After replacing the polymerization vessel with an internal volume of 200 with a stirrer sufficiently with propylene, liquefied propylene 32.3
Kg, liquefied butene - 119.1Kg was delivered. Then aluminum diethyl monochloride 50
g, 4 g of the titanium trichloride solid catalyst B and 8 g of methyl methacrylate were introduced into a polymerization vessel, and the temperature was raised to 60°C. During the polymerization, a total of 13 kg of propylene was added to keep the butene-1 concentration in the liquid phase constant. After polymerization for 4 hours, the slurry was placed in n-heptane at 60° C. into which isobutanol had been added in advance, and after treatment for 30 minutes, the solvent containing the amorphous polymer was shaken off. After drying, 23.3 kg of powdered polymer was obtained. (ii) Evaluation The characteristic values of the polymer obtained in (i) were measured and evaluated as follows. An isotactic polypropylene sheet having a melt index of 2.0 was stretched in the longitudinal direction at a ratio of 5 times to obtain a uniaxially stretched sheet having a thickness of 180 μm. On one side of this sheet, a propylene-butene-1 copolymer shown in Table 1 was melt-extruded from a T-die extruder and a 60 μm thick copolymer layer was laminated thereon. The obtained two-layer laminate sheet was stretched in the transverse direction to an effective magnification of 6 times, and subjected to tension heat treatment at 150° C. for 5 seconds to obtain a two-layer laminate film. The properties of this two-layer film are shown in Table 1. Example 2 The same method as Example 1 was carried out except that the polymerization was carried out so that the butene-1 content was 20.5 wt%. The results obtained are shown in Table 1. Example 3 (i) Production of copolymer Preparation of catalyst 1 Preparation method (preparation of reduction product) After purging a 200-volume reaction vessel with argon, 40% of dry hexane, 10% of titanium tetrachloride
This solution was kept at -5°C, and a solution consisting of 30% of dry hexane and 23.2% of ethylaluminum sesquichloride was added dropwise under such conditions that the temperature of the reaction system was maintained at -3°C or lower. Stirring was then continued at the same temperature for 2 hours. After the reaction, the resulting reduced product was allowed to stand still and was subjected to solid-liquid separation at 0°C, and washed twice with 40 kg of hexane to obtain 16 kg of reduced product. 2 Preparation method The reduction product obtained by the preparation method is slurried in n-decalin, and the slurry concentration is adjusted to
Heat treatment was carried out at 140° C. for 2 hours at a concentration of 0.2 g/cc. After the reaction, the supernatant liquid was extracted and washed twice with 40% hexane, and titanium trichloride composition A was extracted.
I got it. 3 Preparation method 11 kg of titanium trichloride composition A prepared according to the preparation method was slurried in 55 toluene, and iodine and Titanium trichloride solid catalyst B was obtained by adding diisoamyl ether and reacting at 80°C for 1 hour. Pretreatment of Catalyst System After purging a reaction vessel with an internal volume of 5 with a stirrer with argon, 11 g of dry n-heptane, 16 g of the above-mentioned titanium trichloride solid catalyst B, and 70 g of aluminum diethyl monochloride were charged.
Next, the inside of the reactor was replaced with propylene and the temperature was lowered.
The temperature was raised to 50°C, and 300g of propylene was fed and reacted with stirring to obtain catalyst system C. Copolymerization of propylene-α-olefin After fully replacing a polymerization vessel with a stirrer with an internal volume of 200 mL with propylene, industrial heptane 68
was sent. The entire amount of the catalyst system C was added and washed with industrial heptane, so that the final amount of industrial heptane was 70. Next, 6 kg of propylene, 3 kg of butene-1, and 70 g of ethylene
The temperature was raised to 50℃ and the gauge pressure was 4.
Kg/ cm2 . By strictly controlling the gas phase composition of butene-1, propylene, and ethylene under an appropriate hydrogen partial pressure, 4 kg of butene-1, 1 kg of ethylene, and 25 kg of propylene were continuously fed. After introducing 10% of isobutanol and 70% of industrial heptane into the slurry after polymerization, the temperature is raised to 60°C and post-treatment is performed for 30 minutes. Thereafter, the slurry was separated into a salt core, washed with water, and further vacuum-dried to obtain 31 kg of powdered polymer. (ii) Evaluation The characteristic values of the polymer obtained in this way are shown in Example 1.
Evaluation was made in the same manner as method (ii). The results are also shown in Table 1. Comparative Example 1 (i) Production of copolymer Using the same catalyst as in Example 3, the concentrations of propylene, butene-1 and hydrogen were changed, and isobutanol was added to the slurry after polymerization, followed by washing with water and polymerization. Polymerization was carried out in the same manner as in Example 3 except that the entire amount of the combined product was recovered. (ii) Evaluation The characteristic values of the polymer obtained in this way are shown in Example 1.
Evaluation was made in the same manner as method (ii). The results are also shown in Table 1. Comparative Example 2 (i) Production of copolymer Using the same catalyst as in Example 3, polymerization was carried out in the same manner as in Example 3 except that the propylene, ethylene and hydrogen concentrations were changed, and post-treatment was performed. (ii) Evaluation The characteristic values of the polymer obtained in this way are shown in Example 1.
Evaluation was made in the same manner as method (ii). The results are also shown in Table 1. Example 4 The same isotactic polypropylene and propylene-butene-1 copolymer used in Example 1 were extruded from separate extruders, and a structure was prepared in which the manfold part was separate and joined at the land part. A two-layer sheet is made by co-extrusion using a die, and then sequentially stretched 5 times in the machine direction and 6 times in the transverse direction to form a two-layer film with a polypropylene layer of 30μ and a propylene-butene-1 copolymer layer of 10μ. Obtained. The properties of this two-layer film are shown in Table 1. 【table】

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、結晶性プロピレン−ブテン−1共重
合体について横軸の冷キシレン可溶部含有量(重
量%)と縦軸の単層フイルムのブロツキング
(g/100cm2)の関係を示したものである。図中白
丸(〇)はブテン−1含有量が12±0.5重量%、
白四角(□)は15±重量%、黒丸(●)は20±1
重量%、白三角(△)は25±1重量%の共重合体
についての結果を示す。
Figure 1 shows the relationship between the cold xylene soluble content (wt%) on the horizontal axis and the blocking (g/100cm 2 ) of a single layer film on the vertical axis for a crystalline propylene-butene-1 copolymer. It is something. In the figure, white circles (○) indicate butene-1 content of 12±0.5% by weight.
White squares (□) are 15±% by weight, black circles (●) are 20±1
Weight %, open triangles (△) indicate results for 25±1 weight % copolymer.

Claims (1)

【特許請求の範囲】 1 結晶性ポリプロピレン層と液相不均一重合法
で得られた炭素数4〜18のα−オレフインの含有
量が10〜30重量%、エチレンの含有量が0〜5重
量%、20℃のキシレンに可溶な重合体の含有量が
15重量%以下である結晶性プロピレン−α−オレ
フイン、または結晶性プロピレン−α−オレフイ
ン−エチレン共重合体層からなるポリプロピレン
多層フイルム。 2 α−オレフインがブテン−1である特許請求
の範囲第1項記載の多層フイルム。 3 α−オレフインの含有量が10〜25重量%であ
る特許請求の範囲第1項または第2項記載の多層
フイルム。 4 エチレンの含有量が0〜3重量%である特許
請求の範囲第1項記載の多層フイルム。 5 20℃のキシレンに可溶な重合体の含有量が10
重量%以下である特許請求の範囲第1項記載の多
層フイルム。 6 20℃のキシレンに可溶な重合体の含有量が5
重量%以下である特許請求の範囲第1項の多層フ
イルム。
[Claims] 1. A crystalline polypropylene layer, the content of α-olefin having 4 to 18 carbon atoms obtained by a liquid phase heterogeneous polymerization method is 10 to 30% by weight, and the content of ethylene is 0 to 5% by weight. %, content of xylene soluble polymer at 20℃
A polypropylene multilayer film comprising a crystalline propylene-α-olefin or crystalline propylene-α-olefin-ethylene copolymer layer containing 15% by weight or less. 2. The multilayer film according to claim 1, wherein the α-olefin is butene-1. 3. The multilayer film according to claim 1 or 2, wherein the content of α-olefin is 10 to 25% by weight. 4. The multilayer film according to claim 1, wherein the ethylene content is 0 to 3% by weight. 5 The content of polymer soluble in xylene at 20℃ is 10
% or less by weight of the multilayer film according to claim 1. 6 The content of polymer soluble in xylene at 20℃ is 5
% or less by weight.
JP9080978A 1978-06-14 1978-07-24 Polypropylene multilayer film Granted JPS5517542A (en)

Priority Applications (12)

Application Number Priority Date Filing Date Title
JP9080978A JPS5517542A (en) 1978-07-24 1978-07-24 Polypropylene multilayer film
BR7903705A BR7903705A (en) 1978-06-14 1979-06-12 PROCESS FOR THE PRODUCTION OF A PROPYLENE COPOLYMER, THE COPOLIMER FOR THE PRODUCTION OF A PROPYLENE COPOLYMER, PROPYLENE COPOLYMER AND LAYER POLYPROPYLENE LAYER PROPYLENE IMER AND MULTIPLE LAYER POLYPROPYLENE FILM
DE2923754A DE2923754C3 (en) 1978-06-14 1979-06-12 Process for producing a propylene copolymer and its use in a multi-layer polypropylene-propylene copolymer film
IT49388/79A IT1193760B (en) 1978-06-14 1979-06-12 PROCEDURE FOR PRODUCING MULTI-LAYER PROPYLENE COPOLYMERS AND POLYPROPYLENE FILM WITH IT OBTAINED
BE0/195712A BE876947A (en) 1978-06-14 1979-06-13 PROCESS FOR THE PRODUCTION OF COPOLYMERS OF PROPYLENE AND MULTI-LAYER POLYPROPYLENE FILM
GB7920608A GB2027720B (en) 1978-06-14 1979-06-13 Process for producing a propylene copolymer and a multilayer polypropylene film
CA000329679A CA1198355A (en) 1978-06-14 1979-06-13 Multilayer polypropylene film
FR7915301A FR2428651B1 (en) 1978-06-14 1979-06-14 PROCESS FOR PRODUCING PROPYLENE COPOLYMERS AND A MULTI-LAYERED POLYPROPYLENE FILM
NL7904659A NL190783C (en) 1978-06-14 1979-06-14 Process for the preparation of a propylene copolymer and multilayer polypropylene film.
GB08137613A GB2105651B (en) 1978-06-14 1981-12-14 Multi-layer polypropylene film
SG567/83A SG56783G (en) 1978-06-14 1983-09-07 Process for producing propylene copolymers
CA000469444A CA1215198A (en) 1978-06-14 1984-12-05 Process for producing propylene copolymers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9080978A JPS5517542A (en) 1978-07-24 1978-07-24 Polypropylene multilayer film

Publications (2)

Publication Number Publication Date
JPS5517542A JPS5517542A (en) 1980-02-07
JPS6140552B2 true JPS6140552B2 (en) 1986-09-10

Family

ID=14008917

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9080978A Granted JPS5517542A (en) 1978-06-14 1978-07-24 Polypropylene multilayer film

Country Status (1)

Country Link
JP (1) JPS5517542A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09156052A (en) * 1995-12-11 1997-06-17 Tokuyama Corp Laminated film

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60166455A (en) * 1983-12-29 1985-08-29 住友化学工業株式会社 Polypropylene laminated film
JPS6242843A (en) * 1985-08-20 1987-02-24 住友化学工業株式会社 Oriented multilayer polypropylene film
JPH0745601B2 (en) * 1986-08-04 1995-05-17 住友化学工業株式会社 Polypropylene composition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09156052A (en) * 1995-12-11 1997-06-17 Tokuyama Corp Laminated film

Also Published As

Publication number Publication date
JPS5517542A (en) 1980-02-07

Similar Documents

Publication Publication Date Title
US5527608A (en) Oriented multilayer heat sealable packaging film capable of withstanding high altitude effects
US4256784A (en) Heat-sealable plastic film
US6503635B1 (en) Metallized multi-layer film
EP0351189B1 (en) Ethylene-alpha-olefin copolymer and films obtained therefrom
CA1337856C (en) Process for manufacturing a metallized polyolefin film and resulting film
US4740421A (en) Polypropylene composite stretched film
GB2029762A (en) Multilayer bag structure
WO1995006556A1 (en) Biaxially-oriented polypropylene film with improved gas barrier
US6703134B1 (en) Multi-layer film with grafted syndiotactic polypropylene adhesion promoting layer
HU202897B (en) Process for producing copolymere from propylene, an alpha-olefine and ocassionally ethylene, and wrapping sintered foil and laminated foil
US5030506A (en) Polyolefin type resin laminate
US5077123A (en) Laminated film having poly(4-methyl-1-penetene) base layer
JPH01304937A (en) Laminated film
US4481336A (en) Olefinic block copolymers of ethylene propylene and 1-butene
JPS6150974B2 (en)
JPS6140552B2 (en)
JPS63132050A (en) Vertical tear laminated film
JP2920656B2 (en) Metallized laminated polypropylene film
JP4381722B2 (en) Propylene polymer multilayer film for vapor deposition and multilayer vapor deposition film
GB2105651A (en) Multi-layer polypropylene film
JP2005059464A (en) Propylene polymer laminated film for vapor deposition and vapor deposition laminated film
JPH0481507B2 (en)
JP2794302B2 (en) Metallized laminated film
JPS62785B2 (en)
JPH0448345B2 (en)