JPS6140315B2 - - Google Patents

Info

Publication number
JPS6140315B2
JPS6140315B2 JP58013627A JP1362783A JPS6140315B2 JP S6140315 B2 JPS6140315 B2 JP S6140315B2 JP 58013627 A JP58013627 A JP 58013627A JP 1362783 A JP1362783 A JP 1362783A JP S6140315 B2 JPS6140315 B2 JP S6140315B2
Authority
JP
Japan
Prior art keywords
component
zinc
bath
plating
cobalt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58013627A
Other languages
Japanese (ja)
Other versions
JPS58171592A (en
Inventor
Jei Shii Berubaan Uimu
Esu Hadorii Jon
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Occidental Chemical Corp
Original Assignee
Occidental Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Occidental Chemical Corp filed Critical Occidental Chemical Corp
Publication of JPS58171592A publication Critical patent/JPS58171592A/en
Priority to AU32128/84A priority Critical patent/AU3212884A/en
Publication of JPS6140315B2 publication Critical patent/JPS6140315B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/56Electroplating: Baths therefor from solutions of alloys
    • C25D3/565Electroplating: Baths therefor from solutions of alloys containing more than 50% by weight of zinc

Description

【発明の詳现な説明】[Detailed description of the invention]

本発明は新芏な組成を有する耇合亜鉛め぀き皮
膜に関し、曎には非平坊玠地䞊ぞ亜鉛コバルト合
金め぀き皮膜を生成せしめるために有甚な新芏な
電気め぀き济及び方法に関する。 英囜特蚱出願第2070063号においおはカ゜ヌド
ずしおの鋌现片の動きずは逆方向に電解質が高速
にお流れるような、亜鉛、コバルト、クロム济か
らの鋌现片の連続電気ガルバナむゞング方法が開
瀺されおいる。この明现曞においおは、この組み
合わせにおいおは、他の因子が或る制限範囲内で
倉動する際には皮膜内のコバルトの含有量が倧巟
に倉化しないようにすれば䞍動態化以前の所謂
“裞”の耐食性及び䞍動態化凊理埌の耐食性を改
良せられた氎玔に維持するこずができるこずが教
瀺されおいる。したが぀お枩床範囲35〜60℃にお
いおはコバルトの含有量は0.7ず0.8の間に䜍眮
しおいる30℃では玄1.1、70℃では3.2であ
るが。 枩床50℃においおは電流密床5ASD及び40ASD
間でのコバルト含有量の倉動は僅か玄0.5ず0.8
の間である。 流速が0.5m秒であ぀お济䞭のコバルトが
〜35g/で倉動する堎合の皮膜䞭のコバルト含
有量の倉動は玄0.05〜玄0.9であるが、流速が
僅かに0.1m秒である堎合のコバルト含有量の
倉動は玄0.5ず5.2ずの間である。 济䞭のコバルト含有量がg/であ぀お30〜
40ASDの電流密床济枩50℃の堎合では
0.5m秒以䞊の流速では皮膜䞭のコバルト含有
量は玄0.2であり、济䞭のコバルト含有量の20
g/の堎合では流速玄0.5m秒においお皮膜䞭
のコバルト含有量は玄0.8重量である。 前蚘した英囜特蚱出願によれば、少なくずも
0.3のコバルトを含有するクロムコバルト皮
膜は裞の耐食性が改善されるが1.0以䞊のコバ
ルトを含む堎合には皮膜が黒味を垯びるこずが瀺
されおいる。 この特蚱出願による教瀺は酢酞塩を含む硫酞塩
济が基瀎にな぀おいお、塩化亜鉛の䜿甚の可胜性
は蚘茉されおはいるが実斜䟋はすべお硫酞塩济で
ある。そのうえ、前蚘英囜出願の方法は皮膜䞭に
クロムが存圚する必芁がある蚱りでなく、実斜䟋
はすべお0.7又は0.8のコバルト含有量のめ぀
き膜に関するものである。この英囜特蚱出願明现
曞䞭には比范䟋もしくは参考䟋がいくらか蚘茉さ
れおはいるがこれらは玔亜鉛の堎合であるか又は
コバルトずクロムの双方が含たれおいお、しかも
0.08以䞋のコバルト含有量の堎合に限られおい
る。 たたこの英囜特蚱出願明现曞における耐食詊隓
はクロメヌト凊理枈みのものに぀いおであ぀お、
このクロメヌト凊理条件に぀いおは詳现が明らか
ではない。 同じ型の济を甚いたこれず同じ方法が日本鋌管
(æ ª)海倖技術レポヌトNo.261979p.10〜16及び
Sheet Mental Industries International
Dec.1978p.73〜79及び82誌䞊に叀く発衚され、
ここではりん酞塩凊理を斜した電気ガルバナむゞ
ング鋌现片であ぀お玄0.5のコバルト及び玄
0.05のクロムを含むものに぀いおの蚀及がみら
れる。 本発明者らはワツシダヌ、スクリナり、クリツ
プ及び他の郚品のような非連続性のシヌト郚品で
あ぀お切り取り瞁もしくはブロフむヌル瞁を有す
る平らな圢状のものか、凹所を有するか、平らで
ないものか又はハりゞング、䟋えば防颚ガラスワ
むパヌ自動車ハりゞングの劂き品物であ぀おいず
れも連続シヌト圢をなさずその衚面䞊に亘぀お堎
所によ぀お電流密床条件に著しい差異が生ずるよ
うな郚品類の耐食性の改善を達成する問題に぀い
お関心を有しおきた。 これらの品物かそれらの瞁郚もしくはプロゞ゚
クシペンの端郚では高電流密床HCDずな
り、切り取り郚分、凹所もしくはしゆう曲郚では
䜎電流密床LCDであり、同時にたた䞭電流
密床郚分も存圚する。 本発明者らは耐食性の改善だけでなく、たた半
光沢性もしくは光沢性倖芳の仕䞊りが同時にでき
るようにするこずや関心があり、耐食性を維持し
乍ら良奜な倖芳を有する郚品を消費者に提䟛する
こずに関心を有しおいる。 本発明らによれば、前蚘した英囜特蚱出願に蚘
茉のような硫酞塩型济は本発明者らが関心を有す
る型の郚品類に半光沢性もしくは光沢性の連続皮
膜を䞎える䞍適圓であるこずが分぀た。 そのうえ、垂販の亜鉛酞性塩化物济はたたそれ
らにコバルトが添加されおいたずしおも本発明に
よる新芏な添加システムの発明以前においおは適
圓な济ではなか぀た。圓時発明者らがなし埗た唯
䞀のこずは以䞋のコバルトを含む亜鉛コバル
ト合金を析出させお汎甚的な10ニツケル含有の
亜鉛ニツケル合金ず経枈的に察抗させ埗たのであ
るが、それでもただ工業的に実斜可胜なシステム
を構成しなか぀たように考えられる。かかる亜鉛
コバルト皮膜はたたぜい化し易いずいう延性に぀
いおの諞問題を内蔵しおいる。 酢酞塩を含む硫酞塩济から济枩50℃、PH4.2、
電流密床30ASDにおいお玄0.1〜玄1.5のコバ
ルトを含む亜鉛コバルト合金皮膜を鋌補シヌト䞊
に析出せしめる報告がJ.Electrochem.Soc.
Vol.128 No.10 p.2081〜2085Oct.1981に蚘茉
されおいる。䜆しクロメヌト凊理もしくはこれら
皮膜の䞍動態化凊理に぀いおは蚀及されおいな
い。 本発明者らはこの型の济を远詊しおみたが、衚
面に亘぀お堎所毎に電流密床に著しい差異がある
ような凹所を有する郚品のような型の物品に察し
おはやはり䞍適圓であ぀た。 亜鉛コバルトの分光分析に぀いおはJ.
Electrochem.Soc.Vol.128 No. p.1456〜1459
July.1981に報告されおいる。この実隓ではコ
バルト57でドヌプしたコバルト及び僅少のクロム
ず酢酞塩ずを含有しおいる硫酞塩济を䜿぀おい
る。 この報告䞭には0.68〜9.90のコバルト0.12
〜0.24のコバルト0.08〜0.12のコバルト
及び0.03〜0.1のコバルトならびに0.008〜0.014
のコバルトの堎合玄0.5、玄0.75及び玄
のコバルトを含むめ぀き皮膜に぀いおの蚘茉
がある。いずれの皮膜に぀いおもクロメヌト凊理
もしくは䞍動態化凊理に぀いおの蚀及はなされお
いない。 本発明者らは非連続なシヌト状玠地から成る各
皮の郚品䞊に本発明による新芏な酞性の塩化物亜
鉛コバルトめ぀き济を甚いれば亜鉛コバルト皮膜
を圢成させるこずができ、その皮膜は広い電流密
床範囲に亘぀お半光沢ないし光沢性を有するこず
を芋い出した。 本発明者らは玄0.10、殊に0.21、特に0.25
のコバルトないし0.8、殊に0.7、さらに奜
たしくは0.67、最も奜たしくは0.65のコバル
ト含有量の堎合においお䞍動態化凊理に先だ぀お
の耐食性が著しく改善されるこず、ならびに加え
お圓該範囲のコバルト含有量、殊に0.1〜0.4、
特に0.15〜0.35のコバルト含有量においお、䟋
えば垂販のゞクロメヌト䞍動態化凊理液によ぀お
䞍動態化するず党面に亘぀お改良された耐食性が
䞎えられるこずを芋い出した。 かくしお本発明によれば、非平坊衚面を有し、
圓該衚面は玄重量以䞋のコバルト、通垞玄コ
バルト以䞋、䞀般的には0.1〜0.8のコバ
ルト、特に0.1〜0.7のコバルト、奜たしくは
0.15〜0.65、さらに奜たしくは0.21〜0.35、
最も奜たしくは0.22〜0.30のコバルトを含有す
る連続した密着性の良奜な半光沢もしくは光沢性
の亜鉛コバルト合金電気め぀き皮膜を有する郚品
が提䟛できる。この際の膜厚は少なくずもミク
ロン、䟋えば少なくずもミクロン、殊に〜20
ミクロン、曎に奜たしくは〜15ミクロン䟋えば
〜10ミクロンのものである。 “平坊”なる甚語はフラツトで割れ目、切り
口、凹郚、波圢がない衚面を意味する。“非平
坊”なる甚語は䞊蚘した“平坊”ならざる堎合を
意味する。 亜鉛コバルト皮膜䞭のコバルト含有量はこの皮
膜を垌塩化氎玠酞に溶解し、誘発共圹プラズマ原
子発光分光分析I.C.P.分析によ぀お垞法通り
に枬定する。 本発明による皮膜がも぀利点は、これらの皮膜
はたた公知のゞクロメヌト浞挬䞍動態化溶液を甚
いお䞍動態化が達成しうるこずにある。この発明
の他の態様によれば非平坊導電性倖衚面を有する
玠地から成る物品であ぀お、その衚面䞊に塩氎噎
霧詊隓ASTM−117準拠に十分に耐えうるよ
うにせしめるのに効果的な量のコバルトを含む亜
鉛コバルトめ぀き局ず、密着性で連続的な亜鉛䞍
動態皮膜に転化しうるような厚さの亜鉛フラツシ
ナ薄局め぀きずを有するような物品の提䟛が可胜
になる。 本発明においおはコバルト含有量が0.1〜0.4重
量、特に0.15〜0.35重量の範囲の堎合が党耐
食性に関しお最も優れた結果が埗られるこずが分
぀た。 本発明の利点はたた、コバルト0.1〜0.4重量
、奜たしくは0.15〜0.35重量を含む連続した
密着性の良奜な䞍動態化亜鉛コバルト合金め぀き
であ぀お、このめ぀き皮膜が奜たしくは少なくず
のミクロン、䟋えば少なくずもミクロン厚、
殊に〜20ミクロン、さらに奜たしくは〜15ミ
クロン、䟋えば〜10ミクロン厚のものであ぀
お、該衚面が奜たしくは半光沢ないし光沢性であ
るような合金め぀きで被芆せられた衚面を有する
物品にたで拡倧できるこずである。 この発明のこの提案における物品は、非平坊衚
面を有する郚品もしくは平坊であるような堎合で
もありうる。 本発明の他の提案によれば、コバルト0.1〜0.8
重量、殊に0.15〜0.65重量を含む光沢性亜鉛
−コバルト電気め぀き膜を生成させるためのめ぀
き济であ぀お、該め぀き济が亜鉛むオン源ずしお
の成分コバルトむオン源ずしおの成分塩
玠むオン源もしくはず同じか又は異぀おも
よいずしおの成分任意成分ずしおのホり酞
である成分ずから成り、さらに安息銙酞、サル
チル酞、ニコチン酞又は济盞溶性のこれらのアル
カリ金属もしくはアンモニりム塩である成分
ベンゞリデンアセトンである成分−アリル
チオ尿玠又は次の䞀般匏 ここでR1は炭玠数〜のアルキル基又は
炭玠数〜であ぀お少なくずもその䞀぀が氎
酞基で眮換せられおいるようなアルキル基を瀺
しか぀R2もしくはR3又は双方が氎玠原子又
は炭玠数〜のアルキル基又は炭玠数〜
であ぀お少なくずもその䞀぀が氎酞基もしくは
アミノ基で眮換せられおいるようなアルキル基
であ぀おR2ずR3は同䞀かもしくは異な぀おお
りか぀R2ずR3はR1ず同䞀かもしくは異な぀お
おり、は〜の敎数、奜たしくはも
しくはであり、か぀奜たしくはR1R2及び
R3の少なくずも䞀぀は氎酞基によ぀お眮換せ
られたアルキル基である で瀺される化合物である成分及びポリオキシ
゚チレン長鎖アセチレン系アルコヌルもしくはア
ルキルアミン゚トキシレヌトもしくはポリ゚チレ
ングリコヌルであ぀お奜たしくは粒子緻密化効力
を有する化合物である成分から成る矀から遞択
された少なくずも䞀぀、奜たしくは少なくずも二
぀、特には少なくずも䞉぀、最も奜たしくはこれ
ら党郚を含有するような济、䟋えばずも
しくはずもしくはず、又は
ずもしくはず又は
ずもしくはずずを含有するよ
うな济であ぀お济のPHが〜、䟋えば〜で
あるような亜鉛−コバルトめ぀き甚め぀き济が提
䟛せられる。 広矩においお成分は分子量玄100ないし玄
1000000の範囲のポリ゚ヌテルポリ゚チレング
リコヌルもしくはポリプロピレングリコヌルのよ
うなポリアルキレングリコヌルポリグリシドヌ
ルポリオキシ゚チレンプノヌル、ポリオキシ
゚チレンナフトヌルアセチレン性グリコヌル゚
トキシレヌトオレフむングリコヌル゚トキシレ
ヌトポリオキシ゚チレンアルキルアミン又はこ
れらの混合物から成る。 成分はR1R2R3−CH2CH2OHであるよ
うなトリ゚タノヌルアミン又は−アリルチオ尿
玠である。 成分はバレルめ぀きのような䜎電流密床のめ
぀きにおいおは省略しうるが、ラツクめ぀きのよ
うな高電流密床め぀きの堎合には存圚せしめるこ
ずが匷く望たれる。 成分は40〜120g/、䟋えば60〜100g/、
特に70〜90g/、䟋えば33〜43g/の亜鉛むオ
ン濃床における塩化亜鉛によ぀お䟛絊するのが奜
たしい。 成分は硫酞コバルトもしくは塩化コバルト、
䟋えば20〜60g/すなわち30〜50g/、特に35
〜45g/䟋えば〜10g/のコバルトむオ
ンの硫酞塩ずしお䟛絊するのが奜たしい。 成分はアルカリ金属塩化物もしくはアンモニ
りム塩化物、䟋えば塩化ナトリりムを80〜245g/
、殊に100〜200g/、特に150〜180g/、䟋
えば90〜100g/濃床の塩玠むオンずしお䟛絊す
るか又は成分が塩化亜鉛のように奜たしい成分
の堎合には125〜165g/の塩玠むオンZnC
270〜90g/及びNaC150〜180g/基準濃床
ずしお䟛絊するのが奜たしい。 塩化ナトリりムの代りに塩化カリりムも䜿甚可
胜であり、この堎合にはアニオン性及び非むオン
性湿最剀の曇り点の面から利益がある。 成分であるホり酞は任意成分ではあるが15〜
45g/䟋えば20〜40g/、特に25〜35g/の濃
床で存圚せしめるのが奜たしい。 成分はサルチル酞ナトリりムもしくはニコチ
ン酞ナトリりムもしくは安息銙酞ナトリりムであ
぀お〜12g/䟋えば〜10g/、特に〜
g/の範囲の濃床で存圚させるのが奜たしい。 成分のベンゞリデンアセトンは0.05〜05g/
䟋えば0.07〜0.2g/の濃床が奜たしい。 成分はトリ゚タノヌルアミンの堎合では0.5
〜ml/䟋えば0.7〜ml/の量を甚いるが、
0.01〜g/䟋えば0.05〜0.5g/の量の−ア
リルチオ尿玠であるこずが奜たしい。 成分は䞀぀もしくはそれ以䞊、䟋えば〜
、特に䟋えばメチルの劂き四぀の偎鎖で眮換さ
れおいるような炭玠数〜15䟋えば〜12、特に
炭玠数10の長鎖アセチレン系アルコヌル゚トキシ
ル化物であ぀お、䟋えばアセチレン系アルコヌル
の䞀モル圓り20〜40モル䟋えば25〜35モル、特に
30モルの゚チレンオキサむドの反応生成物である
のが奜たしく、特にポリオキシ゚チレンテトラメ
チルデシンゞオヌルEO 30、゚チレンオキ
サむド30モル付加物を〜10g/䟋えば〜
g/、特に玄〜g/の濃床で䜿甚するの
が奜たしく又はアルキル基が奜たしくは炭玠数
10〜30䟋えば16〜20、特に18の炭玠数のポリオキ
シ゚チレン長鎖アルキルアミンであ぀お、アルキ
ルアミンモル圓り10〜100モル䟋えば40〜60モ
ル、特に50モルの゚チレンオキサむドの反応生成
物であり、特にポリオキシ゚チレンC18アルキ
ルアミンEO 50を0.1〜10g/䟋えば
0.5〜g/、特にg/の濃床で甚いるのがよ
く又は分子量1000〜6000䟋えば1250〜4500、特
に玄1500〜4000のポリ゚チレングリコヌルを0.1
〜10g/䟋えば〜g/、特にg/の量で
䜿甚するのがよい。 本発明の奜たしい実斜態様ずしお、奜たしく
は0.1〜1.0コバルトを含有する光沢亜鉛コバル
トめ぀き甚の济であ぀お、成分ずしおのZnC
を40〜120g/䟋えば60〜100、特に70〜90g/
ず成分ずしおのCoSO4・7H2Oを20〜60g/
䟋えば30〜50g/、特に35〜45g/ず成分
ずしおの塩化ナトリりムを60〜245g/䟋えば
100〜200g/、特に150〜180g/ず成分ず
しおのホり酞を15〜45g/䟋えば20〜40g/、
特に25〜35g/ず成分ずしおの安息銙酞ナ
トリりムを〜12g/䟋えば〜10g/、特に
〜g/ず成分ずしおのベンゞリデンア
セトンを0.05〜0.5g/䟋えば0.07〜0.2g/ず
成分のトリ゚タノヌルアミンを0.5〜ml/䟋
えば0.7〜ml/ず成分ずしおのポリオキシ
゚チレンテトラメチルデシンゞオヌルEO 25−
35を〜10g/、特に〜g/の量で
含みPHが〜䟋えば〜のめ぀き济が提䟛さ
れる。 本発明による他の奜たしい態様ずしお、奜たし
くは0.21以䞊のコバルトを含む光沢亜鉛−コバ
ルトめ぀き生成甚のめ぀き济であ぀お、該济が成
分ずしおのZnCを40〜120g/䟋えば60〜
100g/、特に70〜90g/ず成分ずしおの
CoC・7H2Oを20〜60g/䟋えば25〜45g/
、特に30〜40g/ず成分ずしお塩化カリ
りムを85〜245g/䟋えば100〜200g/、特に
150〜180g/ず成分ずしおのホり酞を15〜
45g/䟋えば20〜40g/、特に25〜35g/ず
成分ずしおの安息銙酞ナトリりムを〜12g/
䟋えば〜g/、特に〜g/ず成分
ずしおのベンゞリデンアセトンを0.05〜0.5g/
䟋えば0.07〜0.2g/ず任意成分ずしおの
−アリルチオ尿玠を0.1〜g/䟋えば0.05〜
0.5g/の量成分ずしおのポリオキシ゚チレ
ンテトラメチルデシンゞオヌル−EO 25−35
、を〜10g/特にg/、又はポリオキシ
゚チレンC16〜20アルキルアミンEO40〜
60を0.1〜10g/䟋えば0.5〜g/の量又
は分子量2500〜4500のポリ゚チレングリコヌルを
0.1〜10g/䟋えば〜g/又はこれらの混合
物を含有するPH〜䟋えば〜のめ぀き济が
提䟛される。 この発明の提案にしたがうめ぀き济は、奜たし
くはPH〜、济枩15〜30℃及び電流密床〜
5ASDアンペア平方デシメヌトルの条件䞋
にお䜿甚される。機械かくはんするのが奜たし
い。たた玔亜鉛アノヌドが甚いられる。 亜鉛䞍動態膜は䟋えば浞挬䞍動態化济を甚いお
クロメヌトもしくはゞクロメヌト䞍動態化凊理に
よ぀おほどこされる。 被芆された郚品又は玠地は次いでそれ以䞊の凊
理なしに䜿甚でき、優れた光沢又は半光沢の倖芳
を有しおおり、必芁に応じお有機塗装䟋えばラツ
カヌ、ワツクスもしくはペむント塗装を斜す。 前蚘したようにこの亜鉛コバルトめ぀き皮膜は
䟋えば通垞の䞍動態化凊理を行な぀お密着性の良
奜な䞍動態皮膜を斜すのが奜たしい。奜たしい䞍
動態化はゞクロメヌト䞍動態化凊理であ぀お、こ
のものは非垞に効果的な耐食性を䞎える。他の䞍
動態化技術の䜿甚もたた本発明の範囲内で考慮し
うるこずは圓然である。 この発明はたた倚段方匏にも拡倧でき、この際
にはこの亜鉛コバルトめ぀き皮膜はその䞊に実質
的に玔粋な亜鉛フラツシナ電気め぀き局が斜さ
れ、次いでこの亜鉛フラツシナ膜は亜鉛䞍動態皮
膜に転化される。 この亜鉛フラツシナは実質的に玔亜鉛䟋えば
99.90もしくは99.95もしくはこれ以䞊の玔床
であ぀お実質的にコバルトを含たないものが奜た
しく、あ぀おも亜鉛コバルト局䞭の量の10以
䞋、䟋えば以䞋、特に以䞋であるのが奜
たしい。この亜鉛フラツシナの厚さはフラツシナ
を斜す以前の亜鉛コバルト局皋の光沢ではないに
しおも䟝然ずしおなお亜鉛コバルト局が呈する光
沢性の倖芳が残される皋床の厚さである。通垞は
この亜鉛フラツシナ局はミクロン以䞋、䟋えば
0.7ミクロン以䞋、堎合によ぀おは0.5ミクロン以
䞋の厚さである。厚さの䞋限は䞍動態化凊理に際
しお密着性の良い亜鉛䞍動態皮膜が十分に斜され
るような厚さであるこずから算出される。奜たし
い䞍動態化凊理はゞクロメヌト䞍動態化凊理、特
に浞挬ゞクロメヌト䞍動態化であ぀お、これによ
るず著しく耐食性の良奜な結果が埗られる。この
䞍動態化は玔亜鉛フラツシナの倧半を溶解しお代
りに亜鉛䞍動態膜を圢成する。この䞍動態膜の膜
厚は初期の亜鉛フラツシナめ぀きの膜厚より倧き
い。 この亜鉛フラツシナめ぀きは、40〜120g/䟋
えば60〜100g/、特に70〜90g/の抌化亜鉛、
80〜245g/䟋えば100〜200g/、特に150〜180
g/の塩化ナトリりム及び15〜45g/䟋えば20
〜40g/、特に25〜35g/のホり酞を含む玔亜
鉛電気め぀き济䞭に亜鉛コバルトめ぀き济に察す
るのず同䞀の条件䞋で〜40秒、䟋えば20〜30秒
間電気的に短時間接觊させるこずによ぀お生成さ
せるこずができる。 次いでこの亜鉛フラツシナは䟋えば浞挬䞍動態
化济を甚いるクロメヌトもしくはゞクロメヌト䞍
動態化凊理を济枩22℃で、党郚の亜鉛フラツシナ
が溶解するには䞍十分な時間、䟋えば20〜30秒間
行な぀お亜鉛䞍動態皮膜に転化するのが奜たし
い。 かくしお被芆した郚品もしくは玠地は優れた光
沢性倖芳があり、それ以䞊の凊理氎掗い、也燥
は別を斜さずに䜿甚に䟛され、必芁に応じお有
機塗装が行なわれる。 かくの劂く、この発明によれば電流密床が広範
囲、䟋えば0.1〜もしくは9ASDのような高電流
密床ないし䜎電流密床に亘぀お著しく倉動しおい
るような非平坊玠地䞊に耐食性の耇合め぀き構造
を䞎えるこずが可胜である。 この発明は皮々の方法によ぀お実斜するこずが
できるものではあるが、次に実斜䟋で詳述する。
すべおの郚及びパヌセントは特に蚀及しない限り
重量衚瀺である。 実斜䟋  亜鉛コバルト電気め぀きの生成 次の組成を有する济を調補した。 成分 塩化亜鉛ZnC 80g/ 40/亜鉛 成分 硫酞コバルトCoSO4・7H2O 38.4g/ g/ 成分 塩化ナトリりム 165g/ 100g/塩玠むオン 党塩玠むオン 142g/ 成分 ホり酞 30g/ 成分 安息銙酞ナトリりム 4.75g/ 成分 ベンゞリデンアセトン C6H5CHCHCOCH3 0.1g/ 成分 トリ゚タノヌルアミン ml/ 成分 −テトラメチル−−デシン−
−ヂオヌル ゚トキシレヌト EO 30 4.8g/ PH 4.5 枚の軟鋌補平板詊隓片を掗浄し、通垞の亜鉛
め぀き鋌に察する手法を甚いお公知のように掻性
化した。次いで䞊蚘の济䞭に浞挬しお機械かくは
ん䞋で電流密床2ASD、济枩23℃においお10分間
め぀きし、10ミクロンのめ぀き膜を埗た。皮膜は
光沢があり、コバルト0.6〜0.8重量を含有しお
おり、ASTM−117による䞭性塩氎噎霧詊隓を実
斜したずころ優れた耐食性を瀺した。 実斜䟋  亜鉛コバルト電気め぀きの生成 次の組成を有する济を調補した。 成分 塩化亜鉛ZnC 80g/ 成分 塩化コバルトCoC・6H2O 32.5g/ 成分 塩化ナトリりム 165g/ 78.6g/塩玠むオン 党塩玠むオン 128g/ 成分 ホり酞 30g/ 成分 安息銙酞ナトリりム 3.0g/ 成分 ベンゞリデンアセトン C6H5CHCHCOCH3 0.1g/ 成分 −アリルチオ尿玠 0.1ml/ 成分 −テトラメチル−−デシン−
−ゞオヌル ゚トキシレヌトEO 30
 1.0g/ ポリオキシ゚チレンC18アルキル アミンEO 50 g/ ポリ゚チレングリコヌル M.W.4000 g/ PH 4.5 枚の軟鋌補平板詊隓片を掗浄し、通垞の亜鉛
め぀き鋌に察する手法を甚いお公知のように掻性
化し、次いで䞊蚘の济䞭に浞挬しお機械かくはん
䞋で電流密床2ASD、济枩23℃においお10分間め
぀きし、10ミクロンの膜厚を付䞎した。皮膜は光
沢があり、コバルト0.2〜0.4重量を含有しおお
り、ASTM−117による䞭性塩氎噎霧詊隓を実斜
したずころ優れた耐食性を瀺した。 実斜䟋  亜鉛コバルト電気め぀きの生成 次の組成を有する济を調補した。 成分 塩化亜鉛ZnC 80g/ 成分 塩化コバルトCoC・6H2O 32.5g/ 成分 塩化カリりム 165g/ 78.6g/塩玠むオン 党塩玠むオン 128g/ 成分 ホり酞 30g/ 成分 安息銙酞ナトリりム 3.0g/ 成分 ベンゞリデンアセトン C6H5CHCHCOCH3 0.1g/ 成分 なし 成分 −テトラメチル−−デシン−
−ゞオヌル ゚トキシレヌトEO 30
 1.0g/ ポリオキシ゚チレンC18アルキル アミンEO 50 g/ ポリ゚チレングリコヌル M.W.4000 g/ PH 4.5 この济はバレルめ぀きの劂き䜎電流密床におい
お満足な結果が埗られるこずが分り、成分は高
電流密床め぀きに際しおのみ必芁である。䞊蚘の
济を甚いお鋌補スクリナヌをバレルめ぀きした
が、め぀き条件は济枩27〜29℃、平均電流密床
0.5〜1.0ASD䟋えば100平方デシメヌトルの衚
面積を有する負荷に察しお100アンペアの電流、
バレル回転速床6R.P.Mであ぀た。膜厚玄10ミク
ロンの皮膜は光沢があり0.2〜0.4重量のコバル
トを含み、ASTM−117の䞭性塩氎噎霧詊隓では
優れた耐食性を瀺した。 実斜䟋  䞍動態膜の生成 垂販の黄色ゞクロメヌト䞍動態化济を甚いた
が、このものはクロム酞g/、硫酞ナトリり
ムg/、濃硝酞〜ml/を含み、PHは1.4〜
1.8であ぀た。浞挬時間は25℃においお20〜30秒
であ぀た。 実斜䟋の生成物は冷氎すすぎしたのち䞍動態
化のためにこの䞍動態化济䞭に22℃、35秒間浞挬
した。この䞍動態化した電気め぀きは冷氎ですす
ぎ次いで枩氎ですすいだのち也燥したが䟝然ずし
お優れた光沢の倖芳を有しおいた。 実斜䟋  実斜䟋に甚いたず同様の詊隓片䞊に次の組成
の公知のめ぀き济を甚いお玔亜鉛め぀きを斜し
た。 ZnSO4・7H2O 500g/ Na2SO4・7H2O 50g/ 酢酞ナトリりム 12g/ PH 4.0 め぀き条件は電流密床15ASD、济枩50℃、め぀
き時間分であ぀た。 実斜䟋  実斜䟋の生成物を冷氎ですすいだのちに実斜
䟋ず同様に20秒間䞍動態化した。 実斜䟋及びの生成物をASTM−
117の䞭性塩氎噎霧詊隓にかけた結果を衚に瀺
す。 ホり酞以倖の緩衝剀の䜿甚もできるがホり酞が
奜たしい。成分の存圚は奜たしいがすべおの堎
合においお必芁ずしないかもしれない。
The present invention relates to composite galvanized coatings having novel compositions, and more particularly to novel electroplating baths and methods useful for producing zinc-cobalt alloy galvanized coatings on non-flat substrates. British Patent Application No. 2070063 discloses a method for the continuous electrogalvanizing of steel strips from a zinc, cobalt and chromium bath in which the electrolyte flows at high speed in the direction opposite to the movement of the steel strip as a cathode. has been done. In this specification, in this combination, the so-called " It is taught that "bare" corrosion resistance and corrosion resistance after passivation treatment can be maintained with improved water purity. Therefore, in the temperature range 35-60°C, the cobalt content lies between 0.7 and 0.8% (although at 30°C it is about 1.1% and at 70°C it is 3.2%). Current density 5ASD and 40ASD at temperature 50℃
The variation in cobalt content between is only about 0.5% and 0.8
It is between %. If the flow velocity is 0.5 m/s and the cobalt in the bath is 5
The variation in cobalt content in the film when varying from ~35 g/s is about 0.05 to about 0.9%, while the variation in cobalt content when the flow rate is only 0.1 m/s is about 0.5% and 5.2 %. Cobalt content in the bath is 5g/30~
In the case of a current density of 40ASD (bath temperature 50℃)
At flow rates above 0.5 m/s, the cobalt content in the film is approximately 0.2%, which is 20% of the cobalt content in the bath.
g/, the cobalt content in the film is about 0.8% by weight at a flow rate of about 0.5 m/sec. According to the UK patent application mentioned above, at least
It has been shown that chromium/cobalt coatings containing 0.3% cobalt have improved bare corrosion resistance, but when containing 1.0% or more cobalt, the coating becomes blackish. The teachings of this patent application are based on sulfate baths containing acetate, and the examples are all sulfate baths, although the possibility of using zinc chloride is mentioned. Moreover, the method of the UK application does not require the presence of chromium in the coating, and the examples all relate to plated coatings with a cobalt content of 0.7% or 0.8%. Although there are some comparative or reference examples described in the specification of this British patent application, these are cases of pure zinc or contain both cobalt and chromium, and
Limited to cobalt content below 0.08%. In addition, the corrosion resistance test in this British patent application specification is for a chromate-treated product,
The details of the chromate treatment conditions are not clear. This same method using the same type of bath is used by Nippon Kokan.
Kaigai Technical Report No. 26 (1979, p. 10-16) and
Sheet Mental Industries International
Dec.1978, p.73-79 and old published in 82 magazines,
Here, phosphate-treated electrogalvanized steel strips containing approximately 0.5% cobalt and approximately
There is mention of something containing 0.05% chromium. The inventors have identified discontinuous sheet parts, such as washers, screws, clips, and other parts, that are flat in shape with cut-out or brochure edges, recessed, or non-flat. or to improve the corrosion resistance of parts such as housings, such as windshield wiper automobile housings, which are not in the form of a continuous sheet and which have significant differences in current density conditions from place to place over their surface. I have been interested in the problem of achievement. These items have a high current density (HCD) at their edges or projection edges, a low current density (LCD) at the cutouts, recesses or bends, and at the same time also medium current density areas. also exists. The present inventors are interested in not only improving corrosion resistance, but also being able to simultaneously achieve a finish with a semi-gloss or glossy appearance, and provide consumers with parts that have a good appearance while maintaining corrosion resistance. interested in providing. According to the inventors, sulfate-type baths such as those described in the above-mentioned British patent application are unsuitable for providing semi-gloss or gloss continuous coatings on parts of the type of interest to the inventors. I found out. Moreover, commercially available zinc acid chloride baths, even if they were doped with cobalt, were not suitable prior to the invention of the novel dosing system according to the present invention. The only thing the inventors were able to do at the time was to deposit a zinc-cobalt alloy containing less than 1% cobalt to compete economically with the commonly used 10% nickel-containing zinc-nickel alloy, but still. It seems that an industrially viable system has not yet been constructed. Such zinc cobalt coatings also have built-in ductility problems such as susceptibility to embrittlement. From a sulfate bath containing acetate, the bath temperature is 50℃, PH4.2,
J.Electrochem.Soc. reported that a zinc-cobalt alloy film containing about 0.1% to about 1.5% cobalt was deposited on steel sheets at a current density of 30 ASD.
Described in Vol. 128 No. 10 p. 2081-2085 (Oct. 1981). However, there is no mention of chromate treatment or passivation treatment of these films. We have experimented with this type of bath, but it remains unsuitable for types of articles such as parts with recesses where there are significant differences in current density across the surface. It was hot. For spectroscopic analysis of zinc cobalt, see J.
Electrochem.Soc.Vol.128 No.7 p.1456-1459
(July.1981). This experiment uses a sulfate bath containing cobalt doped with cobalt-57 and traces of chromium and acetate. In this report 0.68-9.90% cobalt; 0.12
~0.24% cobalt; 0.08-0.12% cobalt;
and 0.03-0.1% cobalt and 0.008-0.014
% cobalt; there are descriptions of plating films containing about 0.5%, about 0.75% and about 2% cobalt. There is no mention of chromate treatment or passivation treatment for any of the coatings. The present inventors have found that the novel acidic chloride zinc cobalt plating bath of the present invention can be used to form zinc-cobalt films on various parts made of discontinuous sheet-like substrates, and that the film can be applied over a wide range of currents. It has been found that it has semi-gloss to gloss properties over a range of densities. The inventors found that about 0.10%, especially 0.21%, especially 0.25%
% cobalt to 0.8%, in particular 0.7%, more preferably 0.67% and most preferably 0.65%, the corrosion resistance prior to passivation treatment is significantly improved; Cobalt content in the range, especially 0.1-0.4%,
It has been found that, especially at cobalt contents of 0.15 to 0.35%, passivation, for example by commercially available dichromate passivating solutions, provides improved corrosion resistance over the entire surface. Thus, according to the invention, having a non-flat surface,
The surface contains up to about 5% cobalt, usually up to about 1% cobalt, typically between 0.1% and 0.8% cobalt, particularly between 0.1% and 0.7% cobalt, preferably
0.15-0.65%, more preferably 0.21-0.35%,
Parts can be provided having a continuous semi-gloss or glossy zinc-cobalt alloy electroplated film with good adhesion, most preferably containing 0.22 to 0.30% cobalt. The film thickness in this case is at least 1 micron, for example at least 2 micron, in particular from 2 to 20
microns, more preferably 3 to 15 microns, such as 5 to 10 microns. The term "flat" refers to a surface that is flat and free of crevices, cuts, depressions, or corrugations. The term "non-flat" refers to cases other than the above-mentioned "flat". The cobalt content in the zinc-cobalt film is routinely determined by dissolving the film in dilute hydrochloric acid and using induced conjugated plasma atomic emission spectroscopy (ICP analysis). An advantage of the coatings according to the invention is that they can also be passivated using known dichromate dip passivation solutions. According to another aspect of the invention, there is provided an article comprising a substrate having a non-planar electrically conductive outer surface, the surface of which is effective for providing sufficient resistance to salt spray testing (as per ASTM-117). It is possible to provide an article having a zinc-cobalt plating layer containing a sufficient amount of cobalt and a thin zinc flash plating having a thickness such that it can be converted into an adherent, continuous zinc passivation film. . In the present invention, it has been found that the best results in terms of total corrosion resistance are obtained when the cobalt content is in the range of 0.1 to 0.4% by weight, particularly 0.15 to 0.35% by weight. An advantage of the present invention is also a continuous, well-adhered passivated zinc-cobalt alloy plating containing 0.1 to 0.4% by weight, preferably 0.15 to 0.35% by weight of cobalt, the plating film preferably having a low 1 micron, such as at least 2 micron thick, with
In particular, a surface coated with an alloy plating of 2 to 20 microns, more preferably 3 to 15 microns, such as 5 to 10 microns thick, such that the surface is preferably semi-gloss to glossy. This can be extended to products that have The article in this proposal of the invention may be a part with a non-flat surface or may even be flat. According to another proposal of the invention, cobalt 0.1-0.8
% by weight, in particular from 0.15 to 0.65% by weight, the plating bath comprises component A as a source of zinc ions; component A as a source of cobalt ions; Component B as a chloride ion source (which may be the same as or different from A or B); Component D, which is an optional boric acid, and further comprises benzoic acid, salicylic acid, nicotinic acid or component E which is a compatible alkali metal or ammonium salt of these;
Component F which is benzylidene acetone; N-allylthiourea or the following general formula Here, R 1 represents an alkyl group having 1 to Y carbon atoms, or an alkyl group having 1 to Y carbon atoms, at least one of which is substituted with a hydroxyl group; and R 2 or R 3 or both are hydrogen. Atom or alkyl group having 1 to Y carbon atoms or 1 to Y carbon atoms
is an alkyl group, at least one of which is substituted with a hydroxyl group or an amino group, and R 2 and R 3 are the same or different, and R 2 and R 3 are the same or different from R 1 . and Y is an integer from 2 to 6, preferably 2, 3 or 4, and preferably R 1 , R 2 and
At least one of R 3 is an alkyl group substituted with a hydroxyl group, component G; and polyoxyethylene long-chain acetylenic alcohol or alkylamine ethoxylate or polyethylene glycol, preferably Such baths contain at least one, preferably at least two, especially at least three, most preferably all, selected from the group consisting of component H, which is a compound with particle densification effect, e.g. H) or (G and F) or (G and E), or (G, H and F) or (G, H and E); or (F and H) or (E, F and H) A plating bath for zinc-cobalt plating is provided, the bath having a pH of 3 to 6, for example 4 to 5. In a broad sense, component H has a molecular weight of about 100 to about
polyethers in the range of 1,000,000; polyalkylene glycols such as polyethylene glycol or polypropylene glycol; polyglycidols; polyoxyethylene phenols, polyoxyethylene naphthols; acetylenic glycol ethoxylates; olefin glycol ethoxylates; polyoxyethylene alkyl amines or these consisting of a mixture of Component G is triethanolamine or N- allylthiourea such that R1 = R2 = R3 = -CH2CH2OH . Although component G can be omitted in low current density plating such as barrel plating, it is strongly desired to be present in high current density plating such as easy plating. Component A is 40-120g/, for example 60-100g/,
It is particularly preferred to supply it with zinc chloride at a zinc ion concentration of 70 to 90 g/, for example 33 to 43 g/. Component B is cobalt sulfate or cobalt chloride,
For example 20-60g/i.e. 30-50g/, especially 35
Preferably, it is supplied as a sulfate salt of ~45 g/(e.g. 7-10 g/cobalt ion). Component C is an alkali metal chloride or ammonium chloride, such as sodium chloride, in an amount of 80 to 245 g/
, in particular in a concentration of 100 to 200 g/, in particular 150 to 180 g/, for example 90 to 100 g/, or in the case of component A being a preferred component such as zinc chloride, 125 to 165 g/ of chloride ions ( ZnC
2 70-90 g/and NaC 150-180 g/reference) concentration. Potassium chloride can also be used in place of sodium chloride, in which case there are benefits from the cloud point aspects of anionic and nonionic wetting agents. Component D, boric acid, is an optional component, but it is 15~
Preferably it is present in a concentration of 45g/eg 20-40g/, especially 25-35g/. Component E is sodium salicylate or sodium nicotinate or sodium benzoate in an amount of 2 to 12 g/e.g. 3 to 10 g/, especially 4 to 6
Preferably it is present at a concentration in the range of g/g/g/g/g/g/g/g/g/g/g/g/g/g/g/g/g/g/g/g/g/g/g/g/g/g/g/g/g/g/g/g/g/g/g/g/g/g/g/g/g/g/g/g/g/g/g/g/g/g/g/g/g/g/g/g/g/g/g/g/g/g/g of the Component F benzylidene acetone is 0.05~05g/
For example, a concentration of 0.07 to 0.2 g/g is preferred. Component G is 0.5 in the case of triethanolamine
~5ml/e.g. 0.7~3ml/ amount is used,
Preference is given to an amount of N-allylthiourea of 0.01 to 1 g/eg 0.05 to 0.5 g/. Component H is one or more, e.g.
6, especially ethoxylated long-chain acetylenic alcohols having 6 to 15 carbon atoms, such as 8 to 12 carbon atoms, especially 10 carbon atoms, substituted with four side chains, such as methyl, and 20 to 40 moles per mole, such as 25 to 35 moles, especially
Preferably it is a reaction product of 30 mol of ethylene oxide, especially polyoxyethylenetetramethyldecynediol (EO 30:1, 30 mol of ethylene oxide adduct) in an amount of 1 to 10 g/e.g.
It is preferably used in a concentration of 8 g/, especially about 4 to 6 g/; or the alkyl group preferably has a carbon number of
10 to 30 polyoxyethylene long-chain alkylamines having a carbon number of, for example, 16 to 20, in particular 18, the reaction product of 10 to 100 mol, such as 40 to 60 mol, in particular 50 mol, of ethylene oxide per mol of alkylamine. and especially polyoxyethylene ( C18 alkyl)amine (EO 50:1) at 0.1 to 10 g/e.g.
It is preferred to use a concentration of 0.5 to 5 g/, especially 1 g/; or polyethylene glycol with a molecular weight of 1000 to 6000, e.g.
It is advisable to use amounts of ~10g/eg 1-5g/, especially 4g/. A preferred embodiment of the invention is a bath for bright zinc cobalt plating, preferably containing 0.1 to 1.0% cobalt, wherein ZnC as component A
2 40-120g/e.g. 60-100, especially 70-90g/
and; 20 to 60 g/CoSO 4 7H 2 O as component B.
e.g. 30-50 g/, especially 35-45 g/; sodium chloride as component C 60-245 g/e.g.
100-200 g/, in particular 150-180 g/; 15-45 g/e.g. 20-40 g/ of boric acid as component D;
in particular from 25 to 35 g/; sodium benzoate as component E from 2 to 12 g/e.g. 3 to 10 g/, in particular from 4 to 6 g/; benzylideneacetone as component F from 0.05 to 0.5 g/e.g. and;
0.5-5 ml/for example 0.7-3 ml/of triethanolamine as component G; polyoxyethylenetetramethyldecynediol (EO 25-
35:1) in an amount of 1 to 10 g/, in particular 4 to 6 g/, and a pH of 3 to 6, for example 4 to 5, is provided. Another preferred embodiment according to the invention is a plating bath for producing bright zinc-cobalt plating, preferably containing 0.21% or more of cobalt, the bath containing 40 to 120 g/e.g. ~
100g/, especially 70-90g/; as component B
CoC 2.7H 2 O 20-60g/e.g. 25-45g/
85 to 245 g/e.g. 100 to 200 g/, especially 30 to 40 g/ of potassium chloride as component C;
150~180g/; boric acid as component D: 15~
45g/e.g. 20-40g/, especially 25-35g/;
1 to 12 g of sodium benzoate as component E/
For example, 2 to 8 g/, especially 2 to 4 g/; benzylidene acetone as component F, 0.05 to 0.5 g/
For example, 0.07 to 0.2 g/; N-allylthiourea as optional component G: 0.1 to 1 g/for example, 0.05 to
Amount of 0.5 g/polyoxyethylenetetramethyldecynediol-EO 25-35 as component H:
1 to 10g/particularly 6g/or polyoxyethylene ( C16-20 alkyl)amine EO (40 to
60:1) in an amount of 0.1 to 10 g/for example 0.5 to 5 g/or polyethylene glycol with a molecular weight of 2500 to 4500.
A plating bath with a pH of 3 to 6, such as 4 to 5, containing 0.1 to 10 g/eg 1 to 5 g/or mixtures thereof is provided. The filling bath according to the proposal of this invention preferably has a pH of 4 to 5, a bath temperature of 15 to 30°C, and a current density of 1 to 30°C.
Used under the condition of 5ASD (ampere/square decimeter). Mechanical stirring is preferred. Also, pure zinc anodes are used. Zinc passivation films are applied, for example, by chromate or dichromate passivation using an immersion passivation bath. The coated parts or substrates can then be used without further treatment and have an excellent gloss or semi-gloss appearance and are optionally coated with organic coatings such as lacquers, waxes or paints. As mentioned above, it is preferable that this zinc-cobalt plating film be subjected to a conventional passivation treatment to form a passivation film with good adhesion. A preferred passivation is a dichromate passivation treatment, which provides very effective corrosion resistance. Of course, the use of other passivation techniques may also be considered within the scope of the present invention. The invention can also be extended to a multi-stage system in which the zinc cobalt plating film is overlaid with a substantially pure zinc flash electroplated layer, and the zinc flash film is then applied with a zinc passivation film. converted into. This zinc flash is essentially pure zinc, e.g.
Preferably, the zinc cobalt has a purity of 99.90% or 99.95% or higher and is substantially cobalt-free, but at least 10% of the amount in the zinc-cobalt layer, such as 5% or less, especially 1% or less. is preferred. The thickness of the zinc flash is such that, although not as bright as the zinc cobalt layer prior to flashing, it still retains the shiny appearance of the zinc cobalt layer. Usually this zinc flash layer is less than 1 micron, e.g.
The thickness is less than 0.7 microns, and in some cases less than 0.5 microns. The lower limit of the thickness is calculated from the fact that it is a thickness that allows a sufficient zinc passivation film with good adhesion to be applied during the passivation treatment. A preferred passivation treatment is dichromate passivation, especially immersion dichromate passivation, which gives significantly better corrosion resistance results. This passivation dissolves most of the pure zinc flash and forms a zinc passivation film in its place. The thickness of this passive film is greater than the thickness of the initial zinc flash plating. This zinc flat plating requires 40 to 120 g/e.g. 60 to 100 g/, especially 70 to 90 g/of extruded zinc,
80-245g/e.g. 100-200g/, especially 150-180
g/ of sodium chloride and 15-45 g/e.g. 20
Electrolytically briefly for 5 to 40 seconds, e.g. It can be generated by contacting. The zinc flash is then subjected to a chromate or dichromate passivation treatment using, for example, an immersion passivation bath at a bath temperature of 22° C. for a time insufficient to dissolve all the zinc flash, e.g. 20 to 30 seconds. Preferably, it is converted to a zinc passive film. The parts or substrates coated in this way have an excellent glossy appearance and are ready for use without further treatment (aside from washing and drying) and, if necessary, an organic coating. Thus, according to the present invention, a corrosion-resistant composite plating can be applied to a non-flat substrate where the current density varies significantly over a wide range, for example, from high current density such as 0.1 to 8 or 9 ASD to low current density. It is possible to give structure. Although this invention can be carried out in various ways, it will be explained in detail in the following examples.
All parts and percentages are by weight unless otherwise stated. Example 1 Production of Zinc Cobalt Electroplating A bath with the following composition was prepared. Component A Zinc chloride (ZnC 2 ) 80g/ 40g/(zinc) Component B Cobalt sulfate (CoSO 4 7H 2 O) 38.4g/ 8g/ Component C Sodium chloride 165g/ 100g/(chlorine ion) Total chlorine ion 142g/ component D Boric acid 30g/ Component E Sodium benzoate 4.75g/ Component F Benzylideneacetone (C 6 H 5 CH=CHC=OCH 3 ) 0.1g/ Component G Triethanolamine 1ml/ Component H 2,3,7,9-tetra Methyl-5-decyne-
4,7-diol ethoxylate (EO 30:1) 4.8g/PH 4.5 A mild steel flat specimen was cleaned and activated as known using conventional galvanized steel procedures. Next, it was immersed in the above bath and plated for 10 minutes at a current density of 2 ASD and a bath temperature of 23° C. under mechanical stirring to obtain a plated film of 10 microns. The coating is glossy, contains 0.6-0.8% by weight of cobalt, and exhibits excellent corrosion resistance when subjected to a neutral salt spray test according to ASTM-117. Example 2 Production of Zinc Cobalt Electroplating A bath with the following composition was prepared. Component A Zinc chloride (ZnC 2 ) 80g/ Component B Cobalt chloride (CoC 2.6H 2 O) 32.5g/ Component C Sodium chloride 165g/ 78.6g/ (chlorine ions) Total chlorine ions 128g/ Component D Boric acid 30g/ Component E Sodium benzoate 3.0g/ Component F Benzylideneacetone (C 6 H 5 CH=CHC=OCH 3 ) 0.1g/ Component G N-allylthiourea 0.1ml/ Component H 2,3,7,9-tetramethyl-5- Decine
4,7-diol ethoxylate (EO 30:
1) 1.0g/ polyoxyethylene (C 18 alkyl) amine (EO 50:1) 1g/ polyethylene glycol (MW4000) 4g/ PH 4.5 One mild steel flat plate specimen was cleaned and compared to normal galvanized steel. Activation was performed as known in the art using a known technique, followed by immersion in the bath described above and plating under mechanical stirring for 10 minutes at a current density of 2 ASD and a bath temperature of 23°C to give a film thickness of 10 microns. The coating is glossy, contains 0.2-0.4 weight cobalt, and exhibits excellent corrosion resistance when subjected to a neutral salt spray test according to ASTM-117. Example 3 Production of Zinc Cobalt Electroplating A bath with the following composition was prepared. Component A Zinc chloride (ZnC 2 ) 80g/ Component B Cobalt chloride (CoC 2.6H 2 O) 32.5g/ Component C Potassium chloride 165g/ 78.6g/ (chlorine ions) Total chlorine ions 128g/ Component D Boric acid 30g/ Component E Sodium benzoate 3.0g/ Component F Benzylideneacetone (C 6 H 5 CH=CHC=OCH 3 ) 0.1g/ Component G None Component H 2,3,7,9-tetramethyl-5-decyne-
4,7-diol ethoxylate (EO 30:
1) 1.0g/polyoxyethylene ( C18 alkyl) amine (EO 50:1) 1g/polyethylene glycol (MW4000) 4g/PH 4.5 This bath has been shown to give satisfactory results at low current densities such as barrel plating. As it turns out, component G is only needed for high current density plating. A steel screw was barrel plated using the above bath, and the plating conditions were a bath temperature of 27 to 29℃ and an average current density.
0.5-1.0 ASD (e.g. 100 ampere current for a load with a surface area of 100 square decimeters),
The barrel rotation speed was 6R.PM. The film, approximately 10 microns thick, is shiny and contains 0.2-0.4% by weight of cobalt, and showed excellent corrosion resistance in the ASTM-117 neutral salt spray test. Example 4 Formation of Passive Film A commercially available yellow dichromate passivation bath was used, which contained 4 g of chromic acid, 1 g of sodium sulfate, and 3 to 4 ml of concentrated nitric acid, and had a pH of 1.4 to 1.4.
It was 1.8. The soaking time was 20-30 seconds at 25°C. The product of Example 1 was rinsed with cold water and then immersed in this passivation bath for 35 seconds at 22°C for passivation. The passivated electroplating was rinsed with cold water, rinsed with hot water, and dried and still had an excellent gloss appearance. Example 5 A test piece similar to that used in Example 1 was plated with pure zinc using a known plating bath having the following composition. ZnSO 4・7H 2 O 500g/ Na 2 SO 4・7H 2 O 50g/ Sodium acetate 12g/ PH 4.0 The plating conditions were a current density of 15 ASD, a bath temperature of 50° C., and a plating time of 2 minutes. Example 6 The product of Example 5 was rinsed with cold water and then passivated as in Example 4 for 20 seconds. The products of Examples 1, 4, 5 and 6 were subjected to ASTM-
Table 1 shows the results of the 117 neutral salt spray test. Buffers other than boric acid can also be used, but boric acid is preferred. The presence of component D is preferred but may not be necessary in all cases.

【衚】 実斜䟋 〜23 有袋亜鉛陜極、ろ過、電流密床2ASD、タンク
底郚からの空気かくはんの条件䞋で鋌補ハルセル
詊隓片め぀き面積1dm2を30の四角いタン
ク䞭でめ぀きした。 甚いため぀き济䞭のコバルト含有量は次のよう
な範囲で倉動したが、各実斜䟋における正確な倀
は衚に瀺した。 溶液組成 成分 ZnC 78.0g/ 成分 CoC 3.25−32.5g/ 0.8 to 8.0g/Coずしお 成分 塩化カリりム 165g/ 成分 ホり酞 30g/ 成分 安息銙酞ナトリりム g/ 成分 ベンゞリデンアセトン 0.05g/ アルキルナフタレンスルホネヌト 0.2g/ ゞ゚チレングリコヌルモノ゚チル゚ヌテル
0.2g/ 成分 −テトラメチル−−デシン−
−ゞオヌル ゚トキシレヌトEO 30
 1.2g/ ポリオキシ゚チレンC18アルキルアミン
EO 50 1.2g/ ポリ゚チレングリコヌルMW 4000 3.6g/
[Table] Examples 7 to 23 Steel Hull Cell specimens (plated area 1 dm 2 ) were plated in 30 square tanks under the conditions of marsupial zinc anode, filtration, current density 2ASD, and air agitation from the bottom of the tank. did. The cobalt content in the soaking bath used varied within the following range, and the exact values for each example are shown in Table 2. Solution composition Component A ZnC 2 78.0g/ Component B CoC 2 3.25-32.5g/ (as 0.8 to 8.0g/Co) Component C Potassium chloride 165g/ Component D Boric acid 30g/ Component E Sodium benzoate 4g/ Component F Benzylidene acetone 0.05g/ Alkylnaphthalene sulfonate 0.2g/ Diethylene glycol monoethyl ether
0.2g/Component H 2,3,7,9-tetramethyl-5-decyne-
4,7-diol ethoxylate (EO 30:
1) 1.2g/ Polyoxyethylene ( C18 alkyl)amine (EO 50:1) 1.2g/ Polyethylene glycol (MW 4000) 3.6g/

【衚】 衚ではコバルト含有量はg/Co(B)で瀺さ
れ、济のPH及び济枩、かくはん、皮膜のコバルト
含有量埌に論議するように図で瀺した区域で
枬定及び同䜍眮における膜厚ミクロンが衚
瀺されおいる。 コバルト含有量は図においおLCD及びHCD
それぞれcm×cmで瀺した詊料郚分を切り
取぀お垌塩化氎玠酞に溶解しおI.C.P.によ぀おコ
バルト及び亜鉛を分析した。 実斜䟋 24及び25 実斜䟋24では次の济組成を甚いお実斜䟋〜23
の方法を繰返した。 成分 ZnC 80g/ 成分 CoC 32.5g/ 成分 NaC 165g/ 成分 ホり酞 30g/ 成分 安息銙酞ナトリりム g/ 成分 ベンゞリデンアセトン 0.05g/ アルキルナフタレンスルホネヌト 0.2g/ ゞ゚チレングリコヌルモノ゚チル゚ヌテル
0.2g/ 成分 −テトラメチル−−デシン−
−ゞオヌル ゚トキシレヌト30
0.48g/ 実斜䟋25の济はml/のトリ゚タノヌルアミ
ンIngredient を添加した以倖は実斜䟋24
ず同じであ぀た。 衚には実斜䟋〜22にお埗られた衚ず同じ
デヌタを瀺した。
[Table] In Table 2, the cobalt content is given in g/Co(B) and is determined by the bath PH and bath temperature, agitation, the cobalt content of the coating (measured in the area shown in Figure 1 as discussed later) and The film thickness (microns) at the same position is displayed. Cobalt content is shown in LCD and HCD in Figure 1.
Sample portions (1 cm x 2 cm each) were cut out, dissolved in dilute hydrochloric acid, and analyzed for cobalt and zinc by ICP. Examples 24 and 25 In Example 24, Examples 7 to 23 were prepared using the following bath composition.
The method was repeated. Component A ZnC 2 80g/ Component B CoC 2 32.5g/ Component C NaC 165g/ Component D Boric acid 30g/ Component E Sodium benzoate 5g/ Component F Benzylidene acetone 0.05g/ Alkylnaphthalene sulfonate 0.2g/ Diethylene glycol monoethyl ether
0.2g/Component H 2,3,7,9-tetramethyl-5-decyne-
4,7-diol ethoxylate (30:1)
0.48 g/ bath of Example 25 was the same as Example 24 except that 1 ml/ of triethanolamine (Ingredient G) was added.
It was the same. Table 3 shows the same data as Table 2 obtained in Examples 7-22.

【衚】 実斜䟋〜25の生成物を次いでASTM−B117
に準拠しお䞭性塩氎噎霧詊隓にかけた。皮々
の詊隓時間における赀サビのを衚に瀺す。衚
䞭には比范のために同皋床の膜厚ミクロ
ンを有する暙準100亜鉛め぀き詊隓片にお埗
られた結果を䜵蚘した実斜䟋26。
[Table] The products of Examples 7 to 25 were then subjected to ASTM-B117
A 5% neutral salt spray test was conducted in accordance with the following. The percentage of red rust at various test times is shown in Table 4. For comparison, Table 4 also includes the results obtained using a standard 100% galvanized test piece having a similar film thickness (8 microns) (Example 26).

【衚】【table】

【衚】 実斜䟋 27〜39 これらの実斜䟋では本発明方法のバレルめ぀き
ぞの䜿甚䟋を瀺す。バレル負荷は150の鋌補ナツ
トであ぀お単䜍負荷圓りの平均衚面積は10dm2で
あ぀た。 め぀き操䜜の手順は次の通りであ぀た 冷氎すすぎ通垞の酞掻性化冷氎すすぎ実
斜䟋の济を甚いお亜鉛コバルトめ぀き冷氎す
すぎ䞍動態化前の酞凊理10秒、0.5〜
硝酞氎溶液冷氎すすぎ実斜䟋に蚘
茉の济を甚いお通垞の黄色ゞクロメヌト䞍動態化
宀枩、空気かくはん無し、浞挬時間40秒、トラ
ンスフアヌ時間15秒冷氎すすぎ也燥 济容量30、ろ過し、陜極は有袋亜鉛、济枩30
℃、PH4.4〜5.0でありバレル回転は10〜30RPM、
電流〜10アンペア、め぀き時間は実斜䟋27〜34
では20〜40分、実斜䟋35〜37では济枩37℃、PH
4.4〜5.10、同じバレル回転条件、電流〜10ア
ンペアでめ぀き時間は20〜40分であ぀た。 衚䞭に、PH、め぀き電流アンペア、バレ
ルかくはんボルト、め぀き時間分、平均め
぀き膜厚ミクロン、皮膜䞭のコバルト重量
の倚数のナツトの平均倀及び最終段階における倖
芳に察する所芋を瀺した。コバルト倀はめ぀き生
成物を垌塩化氎玠酞に溶解しおI.C.Pによ぀お分
析した倀の平均倀である。
[Table] Examples 27-39 These examples illustrate the use of the method of the present invention in barrel plating. The barrel load was 150 steel nuts and the average surface area per unit load was 10 dm 2 . The procedure for the plating operation was as follows: cold water rinse/normal acid activation/cold water rinse/zinc cobalt plating using the bath of Example 3/cold water rinse/acid treatment before passivation (10 seconds, 0.5-1%
v/v aqueous nitric acid solution) / Cold water rinse / Conventional yellow dichromate passivation using the bath described in Example 4 (room temperature, no air agitation, immersion time 40 seconds, transfer time 15 seconds) / Cold water rinse / Drying Bath capacity 30, filtered, anode Marsupial zinc, bath temperature 30
℃, PH4.4~5.0, barrel rotation 10~30RPM,
Current: 5-10 amperes, plating time: Examples 27-34
In Examples 35 to 37, the bath temperature was 37℃ and the pH was 20 to 40 minutes.
4.4 to 5.10, the plating time was 20 to 40 minutes under the same barrel rotation conditions and a current of 5 to 10 amperes. Table 5 shows PH, plating current (ampere), barrel agitation (volts), plating time (minutes), average plating film thickness (microns), and weight percent of cobalt in the film.
The average value of a large number of nuts and the appearance at the final stage are shown. The cobalt value is the average value of the values obtained by dissolving the plating product in dilute hydrochloric acid and analyzing it by ICP.

【衚】【table】

【衚】 衚からも明らかな通り、め぀き電流0.5A/d
m2、30℃及びPH4.4〜5.0においおは光沢性のめ぀
きが埗られ、䜎電流密床郚分にわずかの曇りが認
められただけであ぀た。コバルト含有量は0.22〜
0.25の範囲内にあり、か぀䞍動態化に䌎う問題は
認められなか぀た。 0.3以䞊のコバルト含有量実斜䟋35〜37
は济枩を高め、電流密床を増加するか又はかくは
んをゆるめるこずによ぀お達成できる。玄0.4
のコバルト含有量では、初期には黄色䞍動䜓化郚
分に暗い青色斑点が生じ、匕き続いお重い暗青色
の“しみ”にな぀た。 実斜䟋32及び37は通垞の青色ゞクロメヌト䞍動
態化凊理液を甚いお実斜䟋38及び実斜䟋39ず同様
の操䜜を繰返えした。 実斜䟋38及び実斜䟋39の耐食性結果を衚に瀺
す。 この青色の䞍動態皮膜は亜鉛コバルトめ぀きの
欠陥個所を匷調する傟向が認められ、䞀方黄色の
䞍動態皮膜は欠陥を少なくしおマスキング効果を
有するこずが分぀た。 次いで実斜䟋〜25ず同様に䞭性塩氎噎霧詊隓
を実斜し、青色䞍動態皮膜によ぀お䞍動態化した
材料に察する定性詊隓結果を衚に瀺した。衚
には黄色ゞクロメヌト䞍動態皮膜で䞍動態化した
材料の䞀定暎露期間埌の黒サビ又は癜サビ発生面
積を定量的に瀺した。
[Table] As is clear from Table 5, plating current 0.5A/d
m 2 , 30° C., and pH 4.4 to 5.0, a glossy plating was obtained, and only slight haze was observed in the low current density area. Cobalt content is from 0.22
It was within the range of 0.25, and no problems associated with passivation were observed. Cobalt content of 0.3% or more (Examples 35-37)
can be achieved by raising the bath temperature, increasing the current density or loosening the agitation. Approximately 0.4%
At a cobalt content of , dark blue spots initially appeared in the yellow passivated areas, followed by heavy dark blue "blots". In Examples 32 and 37, the same operations as in Examples 38 and 39 were repeated using a conventional blue dichromate passivating solution. The corrosion resistance results of Example 38 and Example 39 are shown in Table 6. It was found that this blue passive film tends to emphasize the defective areas of the zinc-cobalt plating, while the yellow passive film reduces defects and has a masking effect. Next, a neutral salt spray test was carried out in the same manner as in Examples 7 to 25, and the qualitative test results for the materials passivated by the blue passive film are shown in Table 6. Table 7
Quantitatively shows the percentage of area where black rust or white rust occurs after a certain exposure period of a material passivated with a yellow dichromate passivation film.

【衚】【table】

【衚】 実斜䟋 40 亜鉛コバルト電気め぀きの生成 次の組成を有する济を調補した。 成分 塩化亜鉛ZnC 78g/ 成分 塩化コバルトCoC・6H2O 33g/ 成分 塩化ナトリりム 170g/ 103.2g/塩玠むオン 党塩玠むオン 153.7g/ 成分 ホり酞 30g/ 成分 安息銙酞ナトリりム 4.0g/ 成分 ベンゞリデンアセトン 25ml/ 成分 ナシ 成分 −テトラメチル−−デシン−
−ゞオヌル ゚トキシレヌトEO 30
 2.0g/ ポリ゚チレングリコヌルM.W.1500 g/ PH 5.0 枚の軟鋌補平板詊隓片を掗浄し、通垞の亜鉛
め぀き鋌に察する手法を甚いお公知のように掻性
化した。次いで䞊蚘の济を甚いお機械かくはん䞋
で電流密床2ASDにおいお济枩50℃、10分間め぀
きしお10ミクロン厚のめ぀き膜を埗た。皮膜は光
沢性であ぀お玄1.5重量のコバルトを含み、
ASTM−117準拠する䞭性塩氎詊隓にかけたずこ
ろ優れた耐食性を瀺した。䞀方、玄重量以䞊
のコバルトを含有する合金皮膜でも䜿甚ができる
が、かかる合金はある堎合には䞍動態化济組成物
を受け぀けにくいこずがあり、たた経枈的芋地か
らも望たしいものではない。 実斜䟋 41 亜鉛コバルト電気め぀きの生成 次の組成を有する济を調補した。 成分 塩化亜鉛ZnC 80g/ 38.3g/ 亜鉛 成分 硫酞コバルトCoSO4・7H2O 38.4g/ g/ コバルト 成分 塩化ナトリりムNaC 165g/ 100g/ 塩玠むオン 党塩玠むオン 142g/ 成分 ホり酞 30g/ 成分 安息銙酞ナトリりム 4.75g/ 成分 ベンゞリデンアセトン C6H5CHCHCOCH3 0.1g/ 成分 トリ゚タノヌルアミン ml/ 成分 −テトラメチル−−デシン−
−ゞオヌル ゚トキシレヌトEO 30
 4.8g/ PH 4.5 枚の軟鋌補平板詊隓片を掗浄し、通垞の亜鉛
め぀き鋌に察する手法を甚いお公知のように掻性
化した。次いで䞊蚘の济䞭に浞挬しお機械かくは
ん䞋で電流密床2ASD、济枩23℃においお10分間
め぀きし、10ミクロン厚さのめ぀き膜ずした。皮
膜は光沢があり、か぀0.6〜0.8重量のコバルト
を含み、ASTM−117に準拠する䞭性塩氎噎霧詊
隓においお優れた耐食性を瀺した。 実斜䟋 42 亜鉛フラツシナ膜の生成 80g/の塩化亜鉛ZnC、165g/の塩化
ナトリりム、及び30g/のホり酞を含みPH4.5の
济を調補した。実斜䟋41の生成物を冷氎すすぎに
かけ、次いでこの济䞭にカ゜ヌドずしお30秒間浞
挬しお玄0.1〜0.5ミクロン厚さの亜鉛フラツシナ
局を析出させた。実斜䟋41ず同䞀め぀き条件であ
぀た。 このめ぀きの倖芳は䟝然ずしお光沢性のもので
あ぀た。 実斜䟋 43 亜鉛フラツシナの䞍動態化 垂販の黄色ゞクロメヌト䞍動態化济を甚いた。
実斜䟋42の生成物を冷氎すすぎし、この䞍動態化
济䞭に22℃、20〜30秒間浞挬しお亜鉛フラツシナ
が完党に溶解しないようにしお䞍動態化した。こ
の䞍動態電気め぀き膜を冷氎すすぎしたのち、次
いで枩氎すすぎ、也燥したずころ、䟝然ずしお良
奜な光沢のある倖芳を保぀おいた。
[Table] Example 40 Production of Zinc Cobalt Electroplating A bath having the following composition was prepared. Component A Zinc chloride (ZnC 2 ) 78g/ Component B Cobalt chloride (CoC 2.6H 2 O) 33g/ Component C Sodium chloride 170g/ 103.2g/ (chlorine ion) Total chlorine ion 153.7g/ Component D Boric acid 30g/ Component E Sodium benzoate 4.0g/ Component F Benzylidene acetone 25ml/ Component G Pear Component H 2,3,7,9-tetramethyl-5-decyne-
4,7-diol ethoxylate (EO 30:
1) 2.0g/Polyethylene Glycol (MW1500) 5g/PH 5.0 A mild steel flat specimen was cleaned and activated as known using techniques for conventional galvanized steel. Next, using the above bath, plating was carried out for 10 minutes at a bath temperature of 50° C. under mechanical stirring at a current density of 2ASD to obtain a plated film with a thickness of 10 microns. The film is glossy and contains approximately 1.5% by weight of cobalt.
It showed excellent corrosion resistance when subjected to a neutral salt water test in accordance with ASTM-117. On the other hand, alloy coatings containing more than about 1% cobalt can be used, but such alloys may be less amenable to passivating bath compositions in some cases and are also less desirable from an economic standpoint. . Example 41 Production of Zinc Cobalt Electroplating A bath with the following composition was prepared. Component A Zinc chloride (ZnC 2 ) 80g/ 38.3g/ (zinc) Component B Cobalt sulfate (CoSO 4 7H 2 O) 38.4g/ 8g/ (cobalt) Component C Sodium chloride (NaC) 165g/ 100g/ (chlorine ion ) Total chlorine ions 142g/ Component D Boric acid 30g/ Component E Sodium benzoate 4.75g/ Component F Benzylideneacetone (C 6 H 5 CH=CHC=OCH 3 ) 0.1g/ Component G Triethanolamine 1ml/ Component H 2, 3,7,9-tetramethyl-5-decyne-
4,7-diol ethoxylate (EO 30:
1) 4.8g/PH 4.5 A mild steel flat specimen was cleaned and activated as known using conventional galvanized steel procedures. Next, it was immersed in the above bath and plated for 10 minutes at a current density of 2 ASD and a bath temperature of 23° C. under mechanical stirring to obtain a plated film with a thickness of 10 microns. The coating was glossy, contained 0.6-0.8% by weight of cobalt, and showed excellent corrosion resistance in a neutral salt spray test according to ASTM-117. Example 42 Production of Zinc Flash Film A bath containing 80 g/zinc chloride (ZnC 2 ), 165 g/sodium chloride, and 30 g/boric acid at a pH of 4.5 was prepared. The product of Example 41 was subjected to a cold water rinse and then cathodically immersed in this bath for 30 seconds to deposit a zinc flash layer approximately 0.1-0.5 microns thick. The plating conditions were the same as in Example 41. The appearance of this plating was still glossy. Example 43 Passivation of Zinc Flash A commercially available yellow dichromate passivation bath was used.
The product of Example 42 was passivated by rinsing in cold water and immersing in the passivating bath at 22° C. for 20-30 seconds to avoid complete dissolution of the zinc flash. The passive electroplated film was rinsed with cold water, then rinsed with hot water, and dried, still retaining a good glossy appearance.

【図面の簡単な説明】[Brief explanation of the drawing]

図は実斜䟋〜23及び実斜䟋24ず実斜䟋
25においお甚いたハルセル詊隓片の平面図であ
る。
Figure 1 shows Examples 7 to 23 (and Example 24 and Example
25) is a plan view of the Hull cell test piece used in 25).

Claims (1)

【特蚱請求の範囲】  亜鉛−コバルト合金電気め぀きを生成せしめ
るための氎性酞性電気め぀き济であ぀お、成分
が亜鉛むオン成分がコバルトむオン成分
が塩玠むオン成分が安息銙酞、サルチル酞も
しくはニコチン酞又はこれらの济盞溶性アルカリ
金属塩もしくはアンモニりム塩成分がベンゞ
リデンアセトン成分が−アリルチオ尿玠及
び䞀般匏 ここでR1は炭玠数〜のアルキル基又は
炭玠数〜であ぀お少なくずもその䞀぀が氎
酞基によ぀お眮換せられおいるようなアルキル
基を瀺しか぀R2もしくはR3又は双方が氎玠
原子又は炭玠数〜のアルキル基又は炭玠数
〜であ぀お少なくずもその䞀぀が氎酞基も
しくはアミノ基で眮換せられおいるようなアル
キル基であ぀おR2ずR3は同䞀かもしくは異な
぀おおりか぀R2ずR3はR1ず同䞀かもしくは異
な぀おおり、は〜の敎数である で瀺される化合物及び成分がポリオキシ゚チ
レン長鎖アセチレン系アルコヌルもしくはポリオ
キシ゚チレンアルキルアミンもしくは分子量100
〜1000000のポリ゚ヌテルもしくはポリアルキレ
ングリコヌルもしくはポリグリシドヌルもしくは
ポリオキシ゚チレンプノヌルもしくはポリオキ
シ゚チレンナフトヌルもしくはポリオキシ゚チレ
ンオレフむングリコヌルもしくはポリオキシ゚チ
レンアセチレン系グリコヌルもしくはこれらの混
合物であ぀お奜たしくは粒子緻密化効力を有する
化合物から成る堎合においお、該め぀き济が塩化
亜鉛ずしお蚈算しお40〜120g/の量の成分、
硫酞コバルトもしくは塩化コバルトず蚈算しお20
〜60g/の量の成分及びを含有し、さらに
成分及び䞭の少なくずも䞀皮を含有
するようなめ぀き济。  さらに成分ずしお緩衝剀を含有するこずを
特城ずする特蚱請求の範囲第項に蚘茉のめ぀き
济。  成分及びのうちの少なくずも二
぀を含有するこずを特城ずする特蚱請求の範囲第
項に蚘茉のめ぀き济。  成分及びのうちの少なくずも䞉
぀を含有するこずを特城ずする特蚱請求の範囲第
項に蚘茉のめ぀き济。  成分及びを含有するこずを特城
ずする特蚱請求の範囲第項に蚘茉のめ぀き济。  PHが〜であるこずを特城ずする特蚱請求
の範囲第項に蚘茉のめ぀き济。  成分が85〜245g/のアルカリ金属塩化物
又は塩化アンモニりムによ぀お䟛絊せられるこず
を特城ずする特蚱請求の範囲第項に蚘茉のめ぀
き济。  成分が15〜45g/で存圚するホり酞及び
その济可溶性で济盞溶性の塩であるこずを特城ず
する特蚱請求の範囲第項に蚘茉のめ぀き济。  成分が〜12g/の量で含有されるこず
を特城ずする特蚱請求の範囲第項に蚘茉のめ぀
き济。  成分が0.05〜0.5g/の量で含有される
こずを特城ずする特蚱請求の範囲第項に蚘茉の
め぀き济。  成分が−アルキルチオ尿玠から成り、
0.01〜g/の量で含有せられるこずを特城ずす
る特蚱請求の範囲第項に蚘茉のめ぀き济。  成分がトリ゚タノヌルアミンから成り、
0.5〜ml/の量で含有せられるこずを特城ずす
る特蚱請求の範囲第項に蚘茉のめ぀き济。  成分が該ポリオキシ゚チレン長鎖アセチ
レン系アルコヌルから成り、〜10g/の量で
含有せられるこずを特城ずする特蚱請求の範囲第
項に蚘茉のめ぀き济。  成分が該ポリオキシ゚チレンアルキルア
ミンから成り、0.1〜10g/の量で含有されるこ
ずを特城ずする特蚱請求の範囲第項に蚘茉のめ
぀き济。  亜鉛−コバルト合金電気め぀きを生成せし
めるための氎性酞性電気め぀き济であ぀お、成分
が亜鉛むオン成分がコバルトむオン成分
が塩玠むオン成分が安息銙酞、サルチル酞
もしくはニコチン酞又はこれらの济盞溶性アルカ
リ金属塩もしくはアンモニりム塩成分がベン
ゞリデンアセトン成分が−アリルチオ尿玠
及び䞀般匏 ここでR1は炭玠数〜のアルキル基又は
炭玠数〜であ぀お少なくずもその䞀぀が氎
酞基によ぀お眮換せられおいるようなアルキル
基を瀺しか぀R2もしくはR3又は双方が氎玠
原子又は炭玠数〜のアルキル基又は炭玠数
〜であ぀お少なくずもその䞀぀が氎酞基も
しくはアミノ基で眮換せられおいるようなアル
キル基であ぀おR2ずR3は同䞀かもしくは異な
぀おおりか぀R2ずR3はR1ず同䞀かもしくは異
な぀おおり、は〜の敎数である で瀺される化合物及び成分がポリオキシ゚チ
レン長鎖アセチレン系アルコヌルもしくはポリオ
キシ゚チレンアルキルアミンもしくは分子量100
〜1000000のポリ゚ヌテルもしくはポリアルキレ
ングリコヌルもしくはポリグリシドヌルもしくは
ポリオキシ゚チレンプノヌルもしくはポリオキ
シ゚チレンナフトヌルもしくはポリオキシ゚チレ
ンオレフむングリコヌルもしくはポリオキシ゚チ
レンアセチレン系グリコヌルもしくはこれらの混
合物であ぀お奜たしくは粒子緻密化効力を有する
化合物から成る堎合においお、該め぀き济が塩化
亜鉛ずしお蚈算しお40〜120g/の量の成分、
硫酞コバルトもしくは塩化コバルトず蚈算しお20
〜60g/の量の成分及びを含有し、さらに
成分及び䞭の少なくずも䞀皮を含有
するようなめ぀き济䞭に玠地を浞挬し、該玠地を
カ゜ヌドずし、玠地䞊に亜鉛−コバルト合金め぀
き膜の所望厚さが圢成されるのに十分な時間垯に
亘぀おアノヌドず玠地間に通電する工皋を包含す
る導電性玠地䞊ぞの半光沢性もしくは光沢性亜鉛
−コバルトめ぀き膜の生成方法。  曎に济のPHを〜の範囲以内に制埡する
工皋を包含するこずを特城ずする特蚱請求の範囲
第項に蚘茉の方法。  曎に济枩を15℃〜30℃以内に制埡する工皋
を包含するこずを特城ずする特蚱請求の範囲第
項に蚘茉の方法。  導電性玠地が非平坊であるこずを特城ずす
る特蚱請求の範囲第項に蚘茉の方法。  曎に、亜鉛−コバルト合金め぀きを有する
玠地を济から匕き揚げ、次いで亜鉛−コバルト合
金め぀き䞊に䞍動態皮膜を斜す工皋を包含するこ
ずを特城ずする特蚱請求の範囲第項に蚘茉の
方法。  曎に、亜鉛−コバルト合金め぀きを有する
玠地を济から匕き揚げ、第の济䞭に該玠地を浞
挬しお亜鉛−コバルト合金め぀きの衚面䞊に実質
的に玔粋な亜鉛フラツシナめ぀きを斜す工皋を包
含するこずを特城ずする特蚱請求の範囲第項
に蚘茉の方法。  曎に、この亜鉛フラツシナが密着性で実質
的に連続した亜鉛䞍動態皮膜に転化するのに十分
であるように亜鉛フラツシナめ぀きの膜厚を制埡
する工皋を包含するこずを特城ずする特蚱請求の
範囲第項に蚘茉の方法。  曎に、衚面に亜鉛フラツシナめ぀きを有す
る玠地を第の济䞭から匕き揚げ、次いでこの亜
鉛フラツシナ䞊に䞍動態皮膜を斜すこずを特城ず
する特蚱請求の範囲第項に蚘茉の方法。
[Scope of Claims] 1. An aqueous acidic electroplating bath for producing zinc-cobalt alloy electroplating, comprising component A.
is zinc ion; component B is cobalt ion; component C
is a chloride ion; component E is benzoic acid, salicylic acid, or nicotinic acid, or a bath-compatible alkali metal salt or ammonium salt thereof; component F is benzylidene acetone; component G is N-allylthiourea; and the general formula Here, R 1 represents an alkyl group having 1 to Y carbon atoms or an alkyl group having 1 to Y carbon atoms, at least one of which is substituted with a hydroxyl group; and R 2 or R 3 or both is a hydrogen atom, an alkyl group having 1 to Y carbon atoms, or an alkyl group having 1 to Y carbon atoms, at least one of which is substituted with a hydroxyl group or an amino group, and are R 2 and R 3 the same? or different, and R 2 and R 3 are the same as or different from R 1 , and Y is an integer from 2 to 6; and component H is a polyoxyethylene long-chain acetylenic alcohol or a polyoxy Ethylene alkylamine or molecular weight 100
~1000000 polyether or polyalkylene glycol or polyglycidol or polyoxyethylene phenol or polyoxyethylene naphthol or polyoxyethylene olefin glycol or polyoxyethylene acetylene glycol or a mixture thereof, preferably having particle densification effect when the plating bath consists of a component A in an amount of 40 to 120 g/calculated as zinc chloride;
20 calculated as cobalt sulfate or cobalt chloride
A plating bath containing components B and C in an amount of ~60 g/m and further comprising at least one of components E, F, G and H. 2. The plating bath according to claim 1, further comprising a buffer as component D. 3. The plating bath according to claim 1, which contains at least two of components E, F, G, and H. 4. The plating bath according to claim 1, which contains at least three of components E, F, G, and H. 5. The plating bath according to claim 1, which contains components E, F, G, and H. 6. The plating bath according to claim 1, wherein the plating bath has a pH of 3 to 6. 7. Plating bath according to claim 1, characterized in that component C is supplied by 85 to 245 g/alkali metal chloride or ammonium chloride. 8. The plating bath according to claim 2, wherein component D is boric acid and its bath-soluble and bath-compatible salts present in an amount of 15 to 45 g. 9. The plating bath according to claim 1, characterized in that component E is contained in an amount of 2 to 12 g/l. 10. The plating bath according to claim 1, characterized in that component F is contained in an amount of 0.05 to 0.5 g/. 11 Component G consists of N-alkylthiourea,
The plating bath according to claim 1, characterized in that the plating bath is contained in an amount of 0.01 to 1 g/. 12 Component G consists of triethanolamine,
The plating bath according to claim 1, wherein the plating bath is contained in an amount of 0.5 to 5 ml. 13. The plating bath according to claim 1, characterized in that component H consists of the polyoxyethylene long-chain acetylenic alcohol and is contained in an amount of 1 to 10 g/l. 14. The plating bath according to claim 1, wherein component H consists of the polyoxyethylene alkylamine and is contained in an amount of 0.1 to 10 g/l. 15 An aqueous acidic electroplating bath for producing a zinc-cobalt alloy electroplating bath, in which component A is zinc ion; component B is cobalt ion; component C is chlorine ion; component E is benzoic acid, salicylic acid or Nicotinic acid or a bath-compatible alkali metal salt or ammonium salt thereof; Component F is benzylidene acetone; Component G is N-allylthiourea and the general formula Here, R 1 represents an alkyl group having 1 to Y carbon atoms or an alkyl group having 1 to Y carbon atoms, at least one of which is substituted with a hydroxyl group; and R 2 or R 3 or both is a hydrogen atom, an alkyl group having 1 to Y carbon atoms, or an alkyl group having 1 to Y carbon atoms, at least one of which is substituted with a hydroxyl group or an amino group, and are R 2 and R 3 the same? or different, and R 2 and R 3 are the same as or different from R 1 , and Y is an integer from 2 to 6; and component H is a polyoxyethylene long-chain acetylenic alcohol or a polyoxy Ethylene alkylamine or molecular weight 100
~1000000 polyether or polyalkylene glycol or polyglycidol or polyoxyethylene phenol or polyoxyethylene naphthol or polyoxyethylene olefin glycol or polyoxyethylene acetylene glycol or a mixture thereof, preferably having particle densification effect when the plating bath consists of a component A in an amount of 40 to 120 g/calculated as zinc chloride;
20 calculated as cobalt sulfate or cobalt chloride
A substrate is immersed in a plating bath containing components B and C in an amount of ~60 g/, and further contains at least one of components E, F, G, and H, and the substrate is used as a cathode. Semi-bright or bright zinc-cobalt on a conductive substrate comprising the step of passing an electric current between the anode and the substrate for a period of time sufficient to form the desired thickness of the zinc-cobalt alloy plating film. Method for producing plating film. 16. The method according to claim 15, further comprising the step of controlling the pH of the bath within the range of 3 to 6. 17 Claim 1 further includes a step of controlling the bath temperature within 15°C to 30°C
The method described in Section 5. 18. The method of claim 15, wherein the conductive substrate is non-flat. 19. The process according to claim 15, further comprising the step of withdrawing the substrate having the zinc-cobalt alloy plating from the bath and then applying a passive film on the zinc-cobalt alloy plating. Method. 20 Further, removing the substrate having the zinc-cobalt alloy plating from the bath and immersing the substrate in a second bath to provide a substantially pure zinc flash plating on the surface of the zinc-cobalt alloy plating. 16. A method according to claim 15, characterized in that it comprises: 21 The claimed invention further comprises the step of controlling the thickness of the zinc flash plating to be sufficient to convert the zinc flash into a cohesive and substantially continuous zinc passivation film. The method according to scope item 20. 22. The method of claim 20, further comprising withdrawing the substrate having a zinc flash plating on the surface from the second bath and then applying a passive film on the zinc flash.
JP58013627A 1982-01-29 1983-01-29 Cobalt zinc alloy plating Granted JPS58171592A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU32128/84A AU3212884A (en) 1983-01-29 1984-07-26 Deoxidant

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
GB8202580 1982-01-29
GB8202581 1982-01-29
GB8202580 1982-01-29
GB8216049 1982-06-02
GB8233238 1982-11-22

Publications (2)

Publication Number Publication Date
JPS58171592A JPS58171592A (en) 1983-10-08
JPS6140315B2 true JPS6140315B2 (en) 1986-09-08

Family

ID=10527969

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58013627A Granted JPS58171592A (en) 1982-01-29 1983-01-29 Cobalt zinc alloy plating

Country Status (3)

Country Link
JP (1) JPS58171592A (en)
BE (1) BE895746A (en)
ZA (1) ZA83580B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08218193A (en) * 1995-02-14 1996-08-27 Sumitomo Metal Ind Ltd Organic film compositely coated steel sheet

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008184659A (en) * 2007-01-30 2008-08-14 Nippon Steel Corp Surface treated metallic material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08218193A (en) * 1995-02-14 1996-08-27 Sumitomo Metal Ind Ltd Organic film compositely coated steel sheet

Also Published As

Publication number Publication date
ZA83580B (en) 1984-03-28
BE895746A (en) 1983-07-28
JPS58171592A (en) 1983-10-08

Similar Documents

Publication Publication Date Title
US4388160A (en) Zinc-nickel alloy electroplating process
EP0285931B1 (en) Corrosion resistant plated steel strip and method for producing same
EP0182964A1 (en) High corrosion resistance composite plated steel strip and method for making
US4765871A (en) Zinc-nickel electroplated article and method for producing the same
JPH0312157B2 (en)
JPS60169588A (en) Acidic zinc plating bath, acidic zinc alloy plating bath and process
US20170029971A1 (en) Process to deposit zinc-iron alloy layer material
KR880001584B1 (en) Zinc-nickel alloy electro plating solution
US4251329A (en) Process for producing a highly corrosion resistant electroplated steel sheet
KR101046301B1 (en) Nickel flash plating solution, electric zinc steel sheet and manufacturing method thereof
US4439283A (en) Zinc cobalt alloy plating
EP2096193B1 (en) Process for the preparation of corrosion resistant zinc and zinc-nickel plated linear or complex shaped parts
KR960001036B1 (en) Method for making zine-chromium alloy plated steel sheet
JPS6140315B2 (en)
KR20100121399A (en) Nickel flash plating solution, zinc-electroplated steel sheet and manufacturing method thereof
JPS5867886A (en) Steel article coated with iron-zinc alloy plating layer having concentration gradient and manufacture thereof
GB2160223A (en) Zinc cobalt alloy plating
US5273643A (en) Method of producing zinc-chromium alloy plated steel sheet with excellent plating adhesiveness
JP2833477B2 (en) Brightly tinted zinc phosphate treated plated metal sheet and method for producing the same
JPS58104194A (en) Highly corrosion resistant electrogalvanized steel plate and its production
JP2636589B2 (en) Zinc-nickel-chromium alloy electroplated steel sheet with excellent corrosion resistance, plating adhesion and chemical conversion treatment
KR920010776B1 (en) High corrosion resistant steel sheets with two layer being of alloy metal and process for making
JPS59211587A (en) Plating bath and metal electrodeposition
JP2010209431A (en) Method of forming colored coating film using metallic material excellent in corrosion resistance, and colored metallic material
JPS6134194A (en) Galvanized and zinc alloy electroplated steel sheet and its manufacture