JPS6140227A - Production of isobutylbenzene - Google Patents

Production of isobutylbenzene

Info

Publication number
JPS6140227A
JPS6140227A JP59162742A JP16274284A JPS6140227A JP S6140227 A JPS6140227 A JP S6140227A JP 59162742 A JP59162742 A JP 59162742A JP 16274284 A JP16274284 A JP 16274284A JP S6140227 A JPS6140227 A JP S6140227A
Authority
JP
Japan
Prior art keywords
methyl
phenylacrolein
catalyst
hydrogen
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59162742A
Other languages
Japanese (ja)
Inventor
Haruhisa Harada
治久 原田
Hiroshi Maki
真木 洋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP59162742A priority Critical patent/JPS6140227A/en
Publication of JPS6140227A publication Critical patent/JPS6140227A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To obtain the titled substance which is a raw material for medicines, etc. easily in high yield, by subjecting 1-methyl-2-phenylacrolein which is an inexpensive easily available raw material and/or a hydrogen reduction product thereof to hydrogenolysis with hydrogen in the presence of a reduction and acid catalyst. CONSTITUTION:1-Methyl-2-phenylacrolein or 2-methyl-3-phenylpropanol obtained by reducing the 1-methyl-2-phenylacrolein with hydrogen or both are subjected to hydrogenolysis with hydrogen in contact therewith in the presence of a reduction catalyst and acid catalyst at 80-500 deg.C, preferably 120-450 deg.C to give the aimed compound. The above-mentioned hydrogenolysis reaction is preferably carried out by the fixed bed flowing method in the liquid phase and/or vapor phase from the viewpoint of easy separation of the catalyst and reaction control. The above-mentioned 1-methyl-2-phenylacrolein is synthesized by a method for reacting benzaldehyde with propionaldehyde in the presence of a catalyst.

Description

【発明の詳細な説明】 本発明は、イソブチルベンゼンの製造方法に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing isobutylbenzene.

イソブチルベンゼンは、医薬などの原料として有用な化
合物であり、特に消炎鎮痛作用を有する2−(4−イン
ブチルフェニル)−プロピオン酸の出発原料である。従
来、イソブチルベンゼンの製造方法としては、 (1)  5ec−ブチルクロライドとベンゼンと2塩
化アルミニウムを触媒として縮合させる方法(J、Am
er、Chan、Soc、、82782 (1960)
)(11)イソブチルアルデヒドまたはメタアリルクロ
リドにブロムベンゼンのグリニヤ試薬を反応させ、つい
で脱水あるいは二重結合の転位反応させた后、水素で還
元する方法(Ind、Eng、Chem、 41 、6
09 (1949) )(Zh、Pr1k1.Khim
、50(9)、 2182(19T7 ) )IV) 
 )ルエンとプロピレンとを金属ナトリウム又は金属カ
リウムと炭素を触媒として反応スル方法(J 、Ame
r 、Chem、Soc 、70 、2265(v) 
 ベンゼンに無水イソ酪酸を反応させてイソプロピルフ
ェニルケトンを生成せしめ、ついで水素で還元する方法
(特開昭51−141817号) ■ フェニルジクロルブタン、及び/又はフェニルクロ
ルブテンを水素で還元する方法J(特開昭59−866
27号) が知られている。しかしながら上記(1)の方法は、イ
ソブチルベンゼンの他に、 5ec−ブチルベンゼン、
tert−ブチルベンゼン等;6(生成し高純度のイソ
ブチルベンゼンを得難イことは周知である。又、上記(
11)及び011)の方法は原料が高価であり、ま・た
工業的規模での実施には問題があワた。又、上記lv)
の方法は、反応は高温高圧を要し、発火性の金属ナトリ
ウム、金属カリウムの使用は危険性がありさらに、n−
ブチルベンゼン、その他の副生成物を多く伴なうという
欠点を有している。又、上記(Vlの方法は高価な無水
イソ酪酸を使用するものであり、工業的規模での実施に
は問題があった。さらに、上記■の方法は、原料として
(7)1 、3−シクロルー2−メチルプロペンが容易
に得られないという欠点を有していた。
Isobutylbenzene is a compound useful as a raw material for medicines, and in particular is a starting material for 2-(4-inbutylphenyl)-propionic acid, which has anti-inflammatory and analgesic effects. Conventionally, methods for producing isobutylbenzene include (1) a method of condensing 5ec-butyl chloride, benzene, and aluminum dichloride as a catalyst (J, Am
er, Chan, Soc, 82782 (1960)
) (11) A method in which isobutyraldehyde or methallyl chloride is reacted with a Grignard reagent of bromobenzene, followed by dehydration or double bond rearrangement reaction, followed by reduction with hydrogen (Ind, Eng, Chem, 41, 6
09 (1949) ) (Zh, Pr1k1.Khim
, 50(9), 2182(19T7) ) IV)
) Reaction method of toluene and propylene using metallic sodium or metallic potassium and carbon as a catalyst (J, Ame
r, Chem, Soc, 70, 2265(v)
A method in which benzene is reacted with isobutyric anhydride to produce isopropylphenyl ketone, and then reduced with hydrogen (JP-A-51-141817) ■ Method J in which phenyldichlorobutane and/or phenylchlorobutene is reduced with hydrogen ( Japanese Patent Publication No. 59-866
No. 27) is known. However, in the method (1) above, in addition to isobutylbenzene, 5ec-butylbenzene,
tert-butylbenzene, etc.; 6 (it is well known that it is difficult to obtain high-purity isobutylbenzene.
Methods 11) and 011) require expensive raw materials and have problems in implementation on an industrial scale. Also, above lv)
In this method, the reaction requires high temperature and pressure, and the use of flammable metal sodium and metal potassium is dangerous.
It has the disadvantage of producing a large amount of butylbenzene and other by-products. In addition, the above method (Vl) uses expensive isobutyric anhydride, which poses a problem in implementation on an industrial scale.Furthermore, the above method (2) uses (7) 1,3- as a raw material. It had the disadvantage that cyclo-2-methylpropene was not easily obtained.

本発明者らは、イソブチルベンゼンと実質的に分離の困
難な異性体の副生を伴わず、高純度のイソブチルベンゼ
ンを、工業的に、安価な原料を用い、しかも容易に、好
収率で得る方法について検討した結果本発明に至った。
The present inventors have discovered that high-purity isobutylbenzene can be produced industrially from isobutylbenzene using inexpensive raw materials, easily, and in good yields without the by-product of isomers that are substantially difficult to separate from isobutylbenzene. As a result of studying the method for obtaining this, the present invention was achieved.

即ち、本発明はl−メチル−2−フェニルアクロレイン
及び/又は、1−メチル−2−フェニルアクロレインの
水素還元で得られる2−メチル−七−7工ニルプロパノ
ールヲ還元触媒及び酸触媒の共存下水素で加水素分解反
応することを特徴とするインブチルベンゼンの製造方法
である。
That is, the present invention provides 2-methyl-7-7-enylpropanol obtained by hydrogen reduction of 1-methyl-2-phenylacrolein and/or 1-methyl-2-phenylacrolein in the coexistence of a reduction catalyst and an acid catalyst. This is a method for producing inbutylbenzene, which is characterized by carrying out a hydrolysis reaction with hydrogen.

本発明における1−メチル−2−フェニルアクロレイン
の合成は、ベンズアルデヒドにプロピオンアルデヒドを
、触媒の存在下に反応せしめることによって容易に行な
われる。
The synthesis of 1-methyl-2-phenylacrolein in the present invention is easily carried out by reacting benzaldehyde with propionaldehyde in the presence of a catalyst.

、れる。1、合成工程は、通常、無溶媒下に行なわれる
が、通常は原料の−っであるベンズアルデヒドを過剰1
こ用いることが好ましい。又、必要によってアルカリを
、溶かすべく、水を共存させてもよい。ベンズアルデヒ
ドの使用量はプロピオンアルデヒドに対して、1倍モル
以上望ましくは、2〜8倍モルがよい。反応温度は、0
〜60℃、好ましくは10〜40℃である。反応液を少
量の硫酸等によって中和し、油層を分液し、これを水洗
し、油層かし過剰のベンズアルデヒドを回収s−mix
留することによって、■−メチルー2−フェニルアクロ
レインが得られる。収率はプロピオンアルデヒドに対し
て86〜94%又はそれ以上である。
, will be. 1. The synthesis process is usually carried out without a solvent, but the raw material benzaldehyde is usually mixed with an excess of 1.
It is preferable to use this. Furthermore, if necessary, water may be present in order to dissolve the alkali. The amount of benzaldehyde to be used is preferably at least 1 mole, preferably 2 to 8 times the mole of propionaldehyde. The reaction temperature is 0
-60°C, preferably 10-40°C. Neutralize the reaction solution with a small amount of sulfuric acid, etc., separate the oil layer, wash it with water, and collect excess benzaldehyde from the oil layer s-mix
By distilling, ■-methyl-2-phenylacrolein is obtained. The yield is 86-94% or more based on propionaldehyde.

本発明の方法では、ベンズアルデヒドを回収した未蒸留
の1−メチル2−フェニルアクロレイン含有の油分をそ
のまま、次工程の反応に使用することもできる。
In the method of the present invention, the undistilled 1-methyl-2-phenylacrolein-containing oil from which benzaldehyde has been recovered can also be used as it is in the next reaction step.

本発明に於けるイソブチルベンゼンの合成は、1−メチ
ル−2−フェニルアクロレインの水素還元で得られる2
−メチル−8−フェニルプロパツールを酸触媒の存在下
に脱水し、次いで水素還元触媒の存在下に水素還元反応
しても行なうことができるが、l−メチル−2−フェニ
ルアクロレイン及び/又は、l−メチル−2−フェニル
アクロレインの水素還元で得られる2−メチル−3−フ
ェニルプロパノールの加水素分解反応によって容易にか
つ工業的に有利に行なうことができる。この加水素分解
反応は、還元触媒と酸触媒の共存下、水素との接触によ
って行なわれるが、この方法によりて工程が短縮でき、
設備費が安価となり著るしく有利となφ。
In the present invention, isobutylbenzene is synthesized by hydrogen reduction of 1-methyl-2-phenylacrolein.
-Methyl-8-phenylpropatool can be dehydrated in the presence of an acid catalyst and then subjected to a hydrogen reduction reaction in the presence of a hydrogen reduction catalyst, but l-methyl-2-phenylacrolein and/or This can be easily and industrially advantageously carried out by the hydrolysis reaction of 2-methyl-3-phenylpropanol obtained by hydrogen reduction of l-methyl-2-phenylacrolein. This hydrolysis reaction is carried out by contact with hydrogen in the coexistence of a reduction catalyst and an acid catalyst, but this method can shorten the process.
The equipment cost is low and it is extremely advantageous.

この加水素分解反応は、還元触媒と酸触媒に共存下、水
素との接触によって、容易に行なわれるが、還元触媒と
しては白金、パラジウム、ロジウム、ルテニウム、ニッ
ケル、コバルト、銅−クロム等通常の触媒が用いられ、
通常担体として、活性炭、アルミナ、シリカアルミナ、
ケイソー土、ゼオライト、セライトなどが用いられる。
This hydrolysis reaction is easily carried out by contact with hydrogen in the coexistence of a reduction catalyst and an acid catalyst. A catalyst is used,
Usual carriers include activated carbon, alumina, silica alumina,
Diatomaceous earth, zeolite, celite, etc. are used.

又、酸触媒としては、いわゆる鉱酸、有機スルホン酸、
ヘテロポリ酸、固体酸等が用いられるが、触媒分離が容
易なこと、腐食がほとんどないことなどより好ましくは
固体酸が用いられる。固体酸としては、アルミナ、シリ
カ−アルミナ、ボリア−アルミナ、マグネシア−アルミ
ナ、トリア−アルミナ、チタニア−アルミナ、ジルコニ
ア−アルミナ、ボリア−シリカ、マグネシア−シリカ、
ドリア−シリカ、トリアチタニア、ジルコニア、酸性白
土等が例示される。
In addition, as acid catalysts, so-called mineral acids, organic sulfonic acids,
Although heteropolyacids, solid acids, etc. are used, solid acids are preferably used because they are easy to separate from the catalyst and cause almost no corrosion. Examples of solid acids include alumina, silica-alumina, boria-alumina, magnesia-alumina, tria-alumina, titania-alumina, zirconia-alumina, boria-silica, magnesia-silica,
Examples include doria-silica, triatitania, zirconia, and acid clay.

!−メチルー2−フェニルアクロレーイン及び/又は2
−メチル−3−フェニルプロパノールの加水素分解反応
は、液相でも、気相でも可能であり、又オートクレーブ
による回分式、連続式及び固定床流通法による連続式で
も可能であるが、触媒の分離、及び反応の制御の容易さ
から、液相及び/又は気相の固定床流通反応方法がより
好ましい。
! -methyl-2-phenylacrolein and/or 2
- Hydrolysis reaction of methyl-3-phenylpropanol can be carried out in liquid phase or gas phase, and can also be carried out batchwise using an autoclave, continuously, or continuously using a fixed bed flow method, but separation of the catalyst is possible. A liquid phase and/or gas phase fixed bed flow reaction method is more preferable because of the ease of control of the reaction and the ease of controlling the reaction.

反応温度は通常80〜500℃好ましくは120〜45
0℃である。
The reaction temperature is usually 80-500°C, preferably 120-45°C.
It is 0°C.

反応終了後、触媒と分離した反応液の減圧蒸留で、目的
物のインブチルベンゼンが好収率で得られる。
After the reaction is completed, the reaction solution separated from the catalyst is distilled under reduced pressure to obtain the target product, inbutylbenzene, in a good yield.

以下に、実施例を挙げて本発明を具体的に説明するが本
発明はこれによって限定されるものではない。
The present invention will be specifically described below with reference to Examples, but the present invention is not limited thereto.

実施例−1 1aのガラス製反応器に8重量%の苛性ソーダ水溶液2
70tを仕込み、室温下にベンズアルデヒド212.8
f(2,0モル)と、プロピオンアルデヒド58.1f
(1,0モル)の混合液を、8時間かけて除々に供給し
、1−メチル−2−フェニルアクロレインの合成を行な
った。供給終了後、さらに2時間反応を継続した。この
間の反応温度は25〜80℃であつた。
Example-1 8% by weight caustic soda aqueous solution 2 in the glass reactor 1a
Charge 70 tons of benzaldehyde at room temperature.
f (2.0 mol) and propionaldehyde 58.1f
(1.0 mol) was gradually fed over 8 hours to synthesize 1-methyl-2-phenylacrolein. After the supply was completed, the reaction was continued for an additional 2 hours. The reaction temperature during this period was 25-80°C.

反応終了後、水層除去及び中和処理を行ない、2561
の油層を得た。ガスクロマトグラフィー分析の結果、1
−メチル−2−フェニルアクロレインの収率はプロピオ
ンアルデヒドに対し、89%でありた。
After the reaction is completed, the aqueous layer is removed and neutralized, and 2561
A layer of oil was obtained. As a result of gas chromatography analysis, 1
The yield of -methyl-2-phenylacrolein was 89% based on propionaldehyde.

次に、得られた油層を5 mHr減圧下に蒸留し、沸点
104〜108℃の留分129.21を回収した。l−
メチル−2−フェニルアクロレインの純度は97.2重
量%であった。
Next, the obtained oil layer was distilled under reduced pressure for 5 mHr, and a fraction 129.21 having a boiling point of 104 to 108°C was collected. l-
The purity of methyl-2-phenylacrolein was 97.2% by weight.

引続いて1−メチル−2−フェニルアクロレインの水素
還元により2−メチル−8−フェニルプロパツールの合
成を行なった。
Subsequently, 2-methyl-8-phenylpropanol was synthesized by hydrogen reduction of 1-methyl-2-phenylacrolein.

2 Q Q ccのステンレス製オートクレーブに純度
97.2重量%のl−メチル−2−フェニルアクロレイ
ン50fと市販のCu−Cr触媒粉末2f□を仕込み2
00℃20Kt/dG圧力下、1時間水素還元反応を行
ない−1がスクロマトグラフィー分析の結果2−メチル
−8−フェニル−プロパツールの収率はほぼ100%で
ありた。
2 Into a Q Q cc stainless steel autoclave, 50 f of l-methyl-2-phenylacrolein with a purity of 97.2% by weight and 2 f of commercially available Cu-Cr catalyst powder were charged.
A hydrogen reduction reaction was carried out at 00 DEG C. under a pressure of 20 Kt/dG for 1 hour, and as a result of chromatographic analysis of -1, the yield of 2-methyl-8-phenyl-propatol was approximately 100%.

次に水素還元で得られた2−メチル−3−フェニルプロ
パノールの加水素分解反応によりイソブチルベンゼンの
合成を行なった。
Next, isobutylbenzene was synthesized by a hydrolysis reaction of 2-methyl-3-phenylpropanol obtained by hydrogen reduction.

水素還元用触媒として市販の0.1%Pd/A#*Os
、固体酸として市販(7) r−AlxOsを各々10
 cc づつ混合して、電気炉材、ステンレス製反応管
に充填した。触媒層温度820℃、圧力5 b/c4 
GSL HS V  2 Hr−t 。
Commercially available 0.1% Pd/A#*Os as a hydrogen reduction catalyst
, commercially available as solid acids (7) r-AlxOs at 10% each
cc of the mixture was mixed and filled into an electric furnace material and a stainless steel reaction tube. Catalyst layer temperature 820℃, pressure 5 b/c4
GSL HS V 2 Hr-t.

Ht流1は対2−メチル−8−フエニルプロパツール当
たり2倍モル量で流通反応し、キャピラリーカラムによ
るがスクロマトグラフィー分析の結果流通開始、10時
間の時点で2−メチル−8−フェニルプロパツールの転
化率81%、イソブチルベンゼン選択率95%、異性体
としてn−ブチル−ベンゼンの選択率1.8%の成績が
得られ、tert−ブチルベンゼン、及び88C−ブチ
ル−ベンゼンの生成は認められなかうた。
Ht stream 1 was reacted at twice the molar amount per 2-methyl-8-phenylpropanol, and as a result of chromatographic analysis, 2-methyl-8-phenylpropanol was started flowing through the capillary column and 10 hours later, 2-methyl-8-phenylpropanol was detected. The conversion rate of the tool was 81%, the selectivity of isobutylbenzene was 95%, and the selectivity of n-butyl-benzene as an isomer was 1.8%, and the formation of tert-butylbenzene and 88C-butyl-benzene was observed. A song that can't be done.

この様にしてベンズアルデヒドとプロピオンアルデヒド
から、実質的に分離の困難な異性体の生成を伴なわずに
、イソブチルベンゼンを高収率で得ることができた。
In this way, isobutylbenzene could be obtained in high yield from benzaldehyde and propionaldehyde without substantially producing isomers that are difficult to separate.

ネ (LH5V+液基準空量基準空 間速度−2 実施例−■と同様にして得た純度96.9重量%のl−
メチル−2−フェニル−アクロレインを用いて、加水素
分解反応を行なった。
Ne(LH5V+Liquid based space velocity -2 L-2 with a purity of 96.9% by weight obtained in the same manner as in Example-■
Hydrolysis reaction was carried out using methyl-2-phenyl-acrolein.

電気炉付ステンレス製反応管に水素還元用触媒として市
販のCu−Cr 触媒成型品をl Q CC充填した第
■塔及び電気炉付ステンレス製反応管に水素還元用触媒
として市販の0.1%Pd/Alρ3 固体酸として市
販のSiQ、−AI、Q  (AI、へ含量28%)を
各々1OCC・づつ混合して充填した第■塔を連結して
固定床流通反応を行なった。
A stainless steel reaction tube with an electric furnace was filled with a commercially available Cu-Cr catalyst molded product as a hydrogen reduction catalyst. Pd/Alρ3 A fixed bed flow reaction was carried out by connecting a second column filled with a mixture of 1 OCC of commercially available SiQ, -AI, and Q (AI content: 28%) as solid acids.

第1塔は、触媒層の温度220℃、圧力5 Kf/dG
 、 LH3V=2Hr−” 、 H,流量は量論量の
2倍モル量、第■塔は触媒層の温度250 C,圧力5
 Kf/dG、LH5V=2Hr−”H! 流量は同じ
く量論量の2倍モルとなる様に設定して反応したところ
、流通開始12時間の時点で1−メチル−2−フェニル
アクロレインの転化率100%、2−メチル−8−フェ
ニルプロパツールは検出セス、イソブチルベンゼン選択
率85%、異性体としてn−ブチルベンゼンの選択率1
2%の成績が得られ、tert−ブチルベンゼン、及び
5ec−ブチルベンゼンの生成は認められなか9た。
The first column has a catalyst layer temperature of 220°C and a pressure of 5 Kf/dG.
, LH3V=2Hr-", H, flow rate is twice the stoichiometric molar amount, the temperature of the catalyst layer in the second column is 250 C, the pressure is 5
Kf/dG, LH5V=2Hr-"H! When the reaction was carried out by setting the flow rate to twice the stoichiometric amount, the conversion rate of 1-methyl-2-phenylacrolein increased 12 hours after the start of the flow. 100%, 2-methyl-8-phenylpropanol is detected, isobutylbenzene selectivity is 85%, isomer n-butylbenzene selectivity is 1
A result of 2% was obtained, and no formation of tert-butylbenzene or 5ec-butylbenzene was observed9.

実施例−8 実施例−1と同様にして得た純度96.9重量%のl−
メチル−2−フェニルアクロレインを用いて加水素分解
反応を行なった。
Example-8 L- with a purity of 96.9% by weight obtained in the same manner as in Example-1
Hydrolysis reaction was carried out using methyl-2-phenylacrolein.

電気炉付ステンレス製反応管に水素還元用触媒として市
販のCu−Cr  触媒成型品、固体酸として市販のS
in!−Al2O,l(AI、0.含量18%)を各々
i o cc づつ混合して充填した。
A commercially available Cu-Cr catalyst molded product as a hydrogen reduction catalyst in a stainless steel reaction tube with an electric furnace, and a commercially available S as a solid acid.
In! -Al2O,l (AI, 0.18% content) was mixed and filled in an amount of iocc.

触媒層の温度250℃、圧力10VdG。The temperature of the catalyst layer was 250°C, and the pressure was 10VdG.

LH5V=8Hr ’  H,流量は対l−メチル−2
−フエニルアクロレイン当たり6倍モル量で流通反応し
、流通開始10時間の時点で1−メチル−2−フェニル
アクロレインの転化率100%、2−メチル−8−フェ
ニルプロパツールは検出せず、イソブチルベンゼン選択
率は78%であった。な$異性体としてn−ブチルベン
ゼンが選択率IB%と検出されたほかは認められなか9
た。
LH5V=8Hr'H, flow rate is vs. l-methyl-2
- Flow reaction was carried out at 6 times the molar amount per phenylacrolein, and at 10 hours after the start of flow, the conversion rate of 1-methyl-2-phenylacrolein was 100%, 2-methyl-8-phenylpropatol was not detected, and isobutyl Benzene selectivity was 78%. n-butylbenzene was detected as a $isomer with a selectivity of IB%, but no other isomers were detected.9
Ta.

Claims (1)

【特許請求の範囲】 1)1−メチル−2−フェニルアクロレイン及び/又は
2−メチル−3−フェニルプロパノールを還元触媒及び
酸触媒の共存下、水素で加水素分解反応することを特徴
とするイソブチルベンゼンの製造方法。 2)1−メチル−2−フェニルアクロレインはベンズア
ルデヒドにプロピオンアルデヒドを反応させてえ、2−
メチル−8−フェニルプロパノールは該1−メチル−2
−フェニルアクロレインを水素還元してえることを特徴
とする特許請求の範囲第1項記載のイソブチルベンゼン
の製造方法。 3)1−メチル−2−フェニルアクロレイン及び/又は
2−メチル−3−フェニルプロパノールを固定床流通下
、水素で加水素分解することを特徴とする特許請求の範
囲第1項又は第2項記載のイソブチルベンゼンの製造方
法。 4)酸触媒が固体酸であることを特徴とする特許請求の
範囲第1項又は第2項記載のイソブチルベンゼンの製造
方法。
[Claims] 1) Isobutyl characterized by subjecting 1-methyl-2-phenylacrolein and/or 2-methyl-3-phenylpropanol to a hydrogenolysis reaction with hydrogen in the coexistence of a reduction catalyst and an acid catalyst. Benzene manufacturing method. 2) 1-Methyl-2-phenylacrolein is obtained by reacting benzaldehyde with propionaldehyde, and
Methyl-8-phenylpropanol is the 1-methyl-2
- The method for producing isobutylbenzene according to claim 1, which is obtained by reducing phenylacrolein with hydrogen. 3) Claim 1 or 2, characterized in that 1-methyl-2-phenylacrolein and/or 2-methyl-3-phenylpropanol is hydrolyzed with hydrogen under fixed bed flow. A method for producing isobutylbenzene. 4) The method for producing isobutylbenzene according to claim 1 or 2, wherein the acid catalyst is a solid acid.
JP59162742A 1984-07-31 1984-07-31 Production of isobutylbenzene Pending JPS6140227A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59162742A JPS6140227A (en) 1984-07-31 1984-07-31 Production of isobutylbenzene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59162742A JPS6140227A (en) 1984-07-31 1984-07-31 Production of isobutylbenzene

Publications (1)

Publication Number Publication Date
JPS6140227A true JPS6140227A (en) 1986-02-26

Family

ID=15760392

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59162742A Pending JPS6140227A (en) 1984-07-31 1984-07-31 Production of isobutylbenzene

Country Status (1)

Country Link
JP (1) JPS6140227A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63280033A (en) * 1987-05-13 1988-11-17 Central Glass Co Ltd Production of trifluoromethyltoluene
US5856531A (en) * 1996-10-21 1999-01-05 Eastman Chemical Company Preparation of 3-methytetra-hydrofuran from 2,3-dihydrofuran
US5912364A (en) * 1996-10-21 1999-06-15 Eastman Chemical Company Process for the preparation of 3-methyltetrahydrofuran
CN114042460A (en) * 2021-11-16 2022-02-15 万华化学集团股份有限公司 Catalyst for hydrogenolysis of alpha, alpha-dimethyl benzyl alcohol
CN114192162A (en) * 2021-12-13 2022-03-18 万华化学集团股份有限公司 Dimethyl benzyl alcohol hydrogenolysis catalyst and preparation method and application thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63280033A (en) * 1987-05-13 1988-11-17 Central Glass Co Ltd Production of trifluoromethyltoluene
US5856531A (en) * 1996-10-21 1999-01-05 Eastman Chemical Company Preparation of 3-methytetra-hydrofuran from 2,3-dihydrofuran
US5912364A (en) * 1996-10-21 1999-06-15 Eastman Chemical Company Process for the preparation of 3-methyltetrahydrofuran
CN114042460A (en) * 2021-11-16 2022-02-15 万华化学集团股份有限公司 Catalyst for hydrogenolysis of alpha, alpha-dimethyl benzyl alcohol
CN114042460B (en) * 2021-11-16 2023-06-02 万华化学集团股份有限公司 Catalyst for hydrogenolysis of alpha, alpha-dimethylbenzyl alcohol
CN114192162A (en) * 2021-12-13 2022-03-18 万华化学集团股份有限公司 Dimethyl benzyl alcohol hydrogenolysis catalyst and preparation method and application thereof
CN114192162B (en) * 2021-12-13 2023-06-16 万华化学集团股份有限公司 Dimethylbenzyl alcohol hydrogenolysis catalyst and preparation method and application thereof

Similar Documents

Publication Publication Date Title
US4579992A (en) Production of 3,3- and 2,3-dimethylbutenes, 2,3-dimethylbutadiene and/or glycol or polyglycol N-alkyl-3,3- and -2,3-dimethylbutyl ether
JP2996727B2 (en) Method for producing tertiary butylamine
JPS6140227A (en) Production of isobutylbenzene
US4036899A (en) Synthesis of prenyl chloride
JPH069483A (en) Production of substituted indanones
US4311854A (en) Process for the production of di-n-propyl-acetic acid
JPH0296540A (en) Production of 2,6-dimethylnaphthalene
JPH06234689A (en) Continuous industrial production of dimethoxyethanal
US6093857A (en) Preparation of cyclopentanols
US4350825A (en) Process for the manufacture of styrene
JPS582210B2 (en) Method for producing 2,3-dimethyl-2,3-butanediol
JPS5832838A (en) Continuous preparation of methyl vinyl ether
US4250344A (en) Cracking process for styrene
JP4489534B2 (en) Method for producing high-purity olefin compound
JPH04225933A (en) Process for producing canthaxanthin and astaxanthin
JP4418048B2 (en) Process for producing 13-cis-retinoic acid
JPH0273033A (en) Production of 4, 4-dimethyl-1-(p-chlorophenyl) pentane-3-one
JPH03167155A (en) Production of unsaturated carboxylic ester
JPH0925251A (en) Production of cyclopentyl bromide
RU2238261C1 (en) Tert-butylacetylene production process
JPS5929170B2 (en) Method for producing β-phenylethyl alcohol and β-phenylethyl acetate
JP2820501B2 (en) Method for producing cyclopentanone
JP4749638B2 (en) Production of tetrafluorohalogenbenzene
HU200582B (en) New process for producing dihydroxyacyl benzenes as intermediate products of leukotriene antagonists
JPH0572897B2 (en)