JPS6139952A - Method for measuring width of pit of optical disc master disc - Google Patents

Method for measuring width of pit of optical disc master disc

Info

Publication number
JPS6139952A
JPS6139952A JP16066384A JP16066384A JPS6139952A JP S6139952 A JPS6139952 A JP S6139952A JP 16066384 A JP16066384 A JP 16066384A JP 16066384 A JP16066384 A JP 16066384A JP S6139952 A JPS6139952 A JP S6139952A
Authority
JP
Japan
Prior art keywords
light
laser light
irradiated
master disc
master
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16066384A
Other languages
Japanese (ja)
Inventor
Hideki Segawa
秀樹 瀬川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP16066384A priority Critical patent/JPS6139952A/en
Publication of JPS6139952A publication Critical patent/JPS6139952A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacturing Optical Record Carriers (AREA)

Abstract

PURPOSE:To measure contactlessly a pit width of an optical master disc with high accuracy by irradiating obliquely laser light on the optical master disc, reflecting the light and detecting the difference of the polarized state between the incident light and the reflected laser light. CONSTITUTION:The laser light irradiated from a laser light source 22 is subjected to straight line polarization, and when the light is transmitted through a 1/4 wavelength plate 24, the light is subjected to elliptic polarized light, is irradiated obliquely from a photo-resist layer of the master disc 20 and reflected therein. The reflected laser light is detected by a detector 28 via an analyzer 26. The difference in the polarized state between the incident light and the reflected laser light is detected by the detector 28 and converted into the layer thickness. Since lots of pits are irradiated once by the irradiated light, the layer thickness obtained is not the thickness of the photo-resist layer itself and is a value changing depending on the quantity of pit width A. The pit width is specified by the layer thickness measured by an ellipsometer depending on the relation. Thus, the pit width of an optical master disc is measured contactlessly with high accuracy.

Description

【発明の詳細な説明】 (技術分野) この発明は、光ディスク原盤の溝幅測定方法に関する。[Detailed description of the invention] (Technical field) The present invention relates to a method for measuring groove width of an optical disk master.

(従来技術) 光ディスク原盤は、光ディスク作製の基準となるべきも
のであるから、設計どおりに正確に作製する必要がある
(Prior Art) Since an optical disc master should serve as a standard for optical disc production, it is necessary to produce it accurately as designed.

光ディスク原盤は、一般に、第2図に示す如く、ガラス
板等の基板10上に、透明なフォトレジスト12を設け
てなり、フォトレジスト12の表面には、第2図に示す
如き断面形状の溝が形成されている。
As shown in FIG. 2, an optical disc master generally has a transparent photoresist 12 provided on a substrate 10 such as a glass plate, and the surface of the photoresist 12 has grooves with a cross-sectional shape as shown in FIG. is formed.

第2図において、符号Pで示す長さを溝のピッチ、□符
号りで示す長さを溝の深さ、符号Aで示す長さを溝幅と
いう。
In FIG. 2, the length indicated by the symbol P is called the pitch of the groove, the length indicated by the symbol □ is called the depth of the groove, and the length indicated by the symbol A is called the groove width.

ところで、近時の原盤作製技術では、ピッチP、溝りに
ついては、比較的容易に高精度を得られるが、溝幅Aは
、製造上比較的ばらつきが大きい。
By the way, with recent master disk manufacturing techniques, high precision can be obtained relatively easily with respect to the pitch P and the groove, but the groove width A has relatively large variations due to manufacturing reasons.

従って、試作された光ディスク原盤の良否を調べるため
には、上記溝幅Aを正確に測定する必要がある。
Therefore, in order to check the quality of a prototype optical disc master, it is necessary to accurately measure the groove width A.

溝幅Aを正確に測定するため、従来は、走査電子顕微鏡
を用いて断面形状を観察する方法と、接触式表面あらさ
計を用いる方法とが知られているが、前者は、断面形状
を観察するため破壊検査となるし、後者は触針子が原盤
に接触するため、原盤に傷がつく。従って、これらの測
定方法で測定された原盤は、以後つがいものにならない
In order to accurately measure the groove width A, conventionally known methods include observing the cross-sectional shape using a scanning electron microscope and using a contact type surface roughness meter. This requires a destructive inspection, and in the latter case, the stylus comes into contact with the master disc, causing damage to the master disc. Therefore, masters measured using these measurement methods will no longer be paired.

(目  的) そこで、本発明は、光ディスク原盤における溝幅を、原
盤に非接触で、しかも精度よく測定しうる、溝幅測定方
法の提供を目的とする。
(Objective) Therefore, an object of the present invention is to provide a groove width measuring method that can accurately measure the groove width in an optical disc master without contacting the master.

(構  成) 以下1本発明を説明する。(composition) One aspect of the present invention will be explained below.

本発明の特徴とするところは、以下に述べる点にある。The features of the present invention are as follows.

すなわち、光ディスク原盤にレーザー光を斜め方向から
照射して反射させる。そして入射レーザー光を反射レー
ザー光とにおける偏光状態の差異を検出し、この偏光状
態の差異によって溝幅を知るのである。
That is, a laser beam is irradiated onto the optical disk master from an oblique direction and reflected. Then, the difference in polarization state between the incident laser light and the reflected laser light is detected, and the groove width is determined from this difference in polarization state.

ガラス等の基板上に透明物質の層を形成し、この透明物
質の表面に光を照射して反射させると、反射光における
偏光状態が、入射光の偏光状態と異なったものとなる。
When a layer of a transparent material is formed on a substrate such as glass and light is irradiated onto the surface of the transparent material and reflected, the polarization state of the reflected light will be different from the polarization state of the incident light.

入射光と反射光における偏光状態の差異は、透明物質層
の層厚に依存する。
The difference in polarization state between incident light and reflected light depends on the layer thickness of the transparent material layer.

それで、上記入射光と反射光の偏光状態の差異にもとづ
いて、透明物質層の厚みを知ることが可能である。この
原理を利用して、基板上の透明物質層の層厚を測定する
装置として、エリプソメーターが知られている。エリプ
ソメーターを用いると。
Therefore, it is possible to know the thickness of the transparent material layer based on the difference in polarization state between the incident light and the reflected light. An ellipsometer is known as a device that uses this principle to measure the layer thickness of a transparent material layer on a substrate. using an ellipsometer.

透明物質層の厚さを、IAの精度で測定することが可能
である。
It is possible to measure the thickness of a transparent material layer with IA accuracy.

してみると、エリプソメーターにおける照明光を、光デ
ィスク原盤上に、溝幅に比して十分に小さい径のスポッ
ト状に集束させて、この照射光で光ディスク原盤を、溝
に直交する方向へ走査するようにすれば、溝部と光溝部
との、フォトレジスト層の厚さの変動から、溝幅を測定
できるはずであるが、溝幅Aは、0.40〜0.60μ
m程度と極めて小さいので、照明光を、このように小さ
い溝幅に比してもさらに十分に小さいスポット径に集束
させるのが困難であり、上述の如き方法での溝幅測定は
現状ではむずかしい。
The illumination light from the ellipsometer is focused on the optical disc master into a spot with a diameter sufficiently small compared to the groove width, and the optical disc master is scanned with this illumination light in a direction perpendicular to the groove. If this is done, the groove width should be able to be measured from the variation in the thickness of the photoresist layer between the groove part and the optical groove part, but the groove width A should be 0.40 to 0.60μ.
Since the diameter of the groove is extremely small, on the order of m, it is difficult to focus the illumination light into a sufficiently small spot diameter even compared to such a small groove width, and it is currently difficult to measure the groove width using the method described above. .

しかるに発明者は、原盤のフォトレジスト表面を照射す
る照明光のスポット径を、特に小さくしなくても、光デ
ィスク原盤における溝幅を高精度に測定しうろことを見
出した。
However, the inventors have discovered that the groove width in an optical disk master can be measured with high precision without particularly reducing the spot diameter of the illumination light that irradiates the photoresist surface of the master.

以下、具体的な例に即して説明する。This will be explained below using a specific example.

第1図において、符号20は光ディスク原盤を示す。In FIG. 1, reference numeral 20 indicates an optical disc master.

レーザー光源22から発せられたレーザー光は直線偏向
しており、174波長板24を透過すると楕円偏光とな
って、原盤20のフォトレジスト層の側から、斜めに照
射され、反射される。入射光は。
The laser light emitted from the laser light source 22 is linearly polarized, and when it passes through the 174-wave plate 24, it becomes elliptically polarized light, which is obliquely irradiated from the photoresist layer side of the master 20 and reflected. The incident light is.

光束断面の径が1+nm程度の平行光束であり、入射角
ψは通常60〜70度程度に定められる。従って、入射
レーザー光によって、数100〜1000本程度の溝部
が照射されることになる。
The beam is a parallel beam with a cross-sectional diameter of about 1+nm, and the incident angle ψ is usually set to about 60 to 70 degrees. Therefore, approximately several hundred to one thousand grooves are irradiated with the incident laser beam.

反射レーザー光は、検光子、26を介して検出器28で
検出される。入射レーザー光と反射レーザー光とでは、
偏光状態が異なり、偏向状態の差異が、検出器28に検
出される訳であり、偏光状態の差異が、層厚に換算され
るのである。
The reflected laser light is detected by a detector 28 via an analyzer 26. Between incident laser light and reflected laser light,
The polarization states are different, and the difference in polarization state is detected by the detector 28, and the difference in polarization state is converted into layer thickness.

光ディスク・原盤に入射レーザー光を照射する場合、照
射光は、前述の通り、多数の溝部を一度に照射するので
あるから、上記の如くして得られる゛′層厚値″は、原
盤のフォトレジスト層自体の厚さを与えるものではない
When an optical disc/master disc is irradiated with an incident laser beam, the irradiation light irradiates a large number of grooves at once, as described above, so the ``layer thickness value'' obtained as described above is based on the photo of the master disc. It does not give the thickness of the resist layer itself.

しかし、この“層厚値″は、原盤における溝幅の大きさ
に依存して変化するのである。この点が、本発明者によ
って、新たに見出されたのである。
However, this "layer thickness value" changes depending on the size of the groove width in the master. This point was newly discovered by the present inventor.

第3図において、横軸は、原盤上の溝の溝幅を示す。縦
軸は、偏、光状態の差異を、層厚値に換算した値を示す
。両者が図の如き関係により結びつけられる。この関係
から、エリプソメーターの測定結果として与えられるパ
層厚値″′によって溝幅を特定できる。
In FIG. 3, the horizontal axis indicates the groove width of the groove on the master disc. The vertical axis indicates the value obtained by converting the difference in polarization and optical state into a layer thickness value. The two are connected by the relationship shown in the figure. From this relationship, the groove width can be specified by the layer thickness value "'" given as the measurement result of the ellipsometer.

第3図における、この曲線3−1を特性線と呼ぶ。This curve 3-1 in FIG. 3 is called a characteristic line.

特性線は、原盤における溝のピッチや、溝の深さが変わ
れば当然変化するが、定性的な傾向は、曲線3−1と同
様である。
The characteristic line naturally changes if the pitch of the grooves on the master disk or the depth of the grooves changes, but the qualitative tendency is the same as that of curve 3-1.

従って、ピッチや深さを種々に変えて、種々の特性線を
予めストックする。そして、測定に際しては、まず、ピ
ッチと深さとを知ることによって特性線を特定する。
Therefore, various characteristic lines are stocked in advance with various pitches and depths. In the measurement, first, the characteristic line is specified by knowing the pitch and depth.

ついで、エリプソメーターで測定値を与え″層厚値″と
して与えられる測定値を、上記の如く特定された特性線
を用いて、溝幅値に換算するのである。
Next, a measured value is given by an ellipsometer, and the measured value given as a "layer thickness value" is converted into a groove width value using the characteristic line specified above.

エリプソメーターによる測定から溝幅の算出までの操作
はマオクロコンピューターを用いて自動化することがで
きる。
Operations from measurement with an ellipsometer to calculation of groove width can be automated using a macrocomputer.

最後に、この方法で測定される溝幅の精度がどの程度の
ものになるかを説明しておく。
Finally, the accuracy of the groove width measured by this method will be explained.

例として、特性線3−1を取ると、溝幅の変化0.15
μm程度に対し、″層厚値″の方は、120A程度変化
している。先にものべたように、エリプソメーターでは
、IAまで読みとりうるがら、この方法で測定される溝
幅値の精度は特性線3−1に関しては0.001μmの
オーダーである。この結果は、一般的であることが実験
により確認された。
As an example, if we take characteristic line 3-1, the change in groove width is 0.15.
The "layer thickness value" changes by about 120 A compared to about μm. As mentioned above, although the ellipsometer can read up to IA, the accuracy of the groove width value measured by this method is on the order of 0.001 μm regarding the characteristic line 3-1. Experiments confirmed that this result is general.

(効  果) 以上、本発明によれば、光ディスク原盤における新規な
溝幅測定方法を提供できる。この方法では、測定が原盤
に対して非接触で行なわれるので、測定により光ディス
ク原盤がそこなわれることがない。また、測定精度も高
い。なお、エリプソメーターには種々の方式のものがあ
り、本発明は、第1図に示すものに限らず、種々のエリ
プソメーターを用いることができる。
(Effects) As described above, according to the present invention, it is possible to provide a novel method for measuring groove width in an optical disc master. In this method, the measurement is performed without contacting the master disc, so that the optical disc master is not damaged by the measurement. Also, the measurement accuracy is high. Note that there are various types of ellipsometers, and the present invention is not limited to the one shown in FIG. 1, and various types of ellipsometers can be used.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の1実施例を示す図、第2図は、光デ
ィスク原盤を説明するための図、第3図は、本発明を説
明するための図である。
FIG. 1 is a diagram showing one embodiment of the present invention, FIG. 2 is a diagram for explaining an optical disc master, and FIG. 3 is a diagram for explaining the present invention.

Claims (1)

【特許請求の範囲】[Claims] 光ディスク原盤にレーザー光を斜め方向から照射して反
射させ、入射レーザー光と反射レーザー光における偏光
状態の差異を検出して、上記光ディスク原盤における溝
幅を測定することを特徴とする光ディスク原盤の溝幅測
定方法。
A groove in an optical disc master, characterized in that the groove width in the optical disc master is measured by irradiating a laser beam on the optical disc master from an oblique direction and reflecting it, and detecting the difference in the polarization state between the incident laser beam and the reflected laser beam. Width measurement method.
JP16066384A 1984-07-31 1984-07-31 Method for measuring width of pit of optical disc master disc Pending JPS6139952A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16066384A JPS6139952A (en) 1984-07-31 1984-07-31 Method for measuring width of pit of optical disc master disc

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16066384A JPS6139952A (en) 1984-07-31 1984-07-31 Method for measuring width of pit of optical disc master disc

Publications (1)

Publication Number Publication Date
JPS6139952A true JPS6139952A (en) 1986-02-26

Family

ID=15719798

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16066384A Pending JPS6139952A (en) 1984-07-31 1984-07-31 Method for measuring width of pit of optical disc master disc

Country Status (1)

Country Link
JP (1) JPS6139952A (en)

Similar Documents

Publication Publication Date Title
US7161667B2 (en) Wafer edge inspection
CN101398293B (en) Measurement system and method for measuring critical dimensions using ellipsometry
JP5175605B2 (en) Pattern shape inspection method
US20100277745A1 (en) Method for Measuring Thickness
JPH0779119B2 (en) Workpiece inspection method
JP2000275182A (en) Apparatus and method for inspecting disk-shaped recording medium
CN109655015B (en) Non-contact type sample processing surface inclination angle and thickness micro-change measuring method
US4352564A (en) Missing order defect detection apparatus
JP2010236985A (en) Disk surface defect inspection method and apparatus
JPS6139952A (en) Method for measuring width of pit of optical disc master disc
JPS58121148A (en) Optical information recording and reproducing device
JP5548151B2 (en) Pattern shape inspection method and apparatus
US7295300B1 (en) Detecting surface pits
JP4307343B2 (en) Optical disk inspection method and apparatus
JP4802431B2 (en) Film thickness measuring method and film thickness measuring method for optical disc
JPH06259816A (en) Method for measuring thickness of stamper
JPH01292202A (en) Measurement of groove shape
JP2001208517A (en) Optical disc inspecting instrument
JPH0618230A (en) Thickness measuring apparatus
JPH0611313A (en) Thickness measuring instrument
JPS62284221A (en) Measuring method for beam spot diameter of optical head for optical disk
Honda et al. Holographic Rapid Error Detection Of Precise Gear Surfaces.
JPS62188948A (en) Defect inspection equipment
JPH0694760A (en) Eo probe
JPH05182257A (en) Method for inspecting groove defect of optical disk substrate