JPS6139667B2 - - Google Patents

Info

Publication number
JPS6139667B2
JPS6139667B2 JP52156526A JP15652677A JPS6139667B2 JP S6139667 B2 JPS6139667 B2 JP S6139667B2 JP 52156526 A JP52156526 A JP 52156526A JP 15652677 A JP15652677 A JP 15652677A JP S6139667 B2 JPS6139667 B2 JP S6139667B2
Authority
JP
Japan
Prior art keywords
transfer paper
separation
photoreceptor
range
bias
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52156526A
Other languages
Japanese (ja)
Other versions
JPS5489635A (en
Inventor
Hideyo Nishijima
Kazunori Matsuo
Tsukasa Adachi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP15652677A priority Critical patent/JPS5489635A/en
Publication of JPS5489635A publication Critical patent/JPS5489635A/en
Publication of JPS6139667B2 publication Critical patent/JPS6139667B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Discharging, Photosensitive Material Shape In Electrophotography (AREA)
  • Control Or Security For Electrophotography (AREA)

Description

【発明の詳細な説明】 本発明はゼログラフイー、特に静電転写によつ
て発生された転写紙と感光体表面との間の静電付
着力を、直流バイアス電圧を加えた交流コロナ発
生器(以下「分離チヤージヤ」という)により減
少させ、それによつてトナーを帯びた転写紙を感
光体から容易に分離する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to xerography, in particular, to an AC corona generator in which the electrostatic adhesion force between a transfer paper and a photoreceptor surface generated by electrostatic transfer is applied to a DC bias voltage. The present invention relates to a method of reducing toner-laden transfer paper (hereinafter referred to as "separation charge"), thereby easily separating toner-laden transfer paper from a photoreceptor.

従来のゼログラフイーでは、その感光体表面を
静電的に一様に帯電させ、この帯電表面を複写す
べき原画の光像で露光し、表面の光が当つた領域
を放電させる。かくして放電されない領域が原画
パターンの輪郭通りの静電潜像を形成する。次い
でこの静電潜像を上記帯電とは逆極性の電荷をも
つトナーに接触させて現像する。この場合画像濃
度は、感光体と対向している現像ローラに与える
現像バイアス電圧により調整される。トナーの付
着量は感光体表面上の静電荷の量及びこの現像バ
イアスの量により増減する。次いで転写紙をかく
して形成されたトナー像と同期接触状態で送る。
この同期接触期間中に、転写紙の裏面よりトナー
と逆極性の電圧をかけて、トナー像を感光体から
転写紙へ静電的に引き付け、転写を行なう。次い
で分離チヤージヤによりこの転写紙にコロナ放電
を施し、感光体上に転写紙を保持している静電荷
を減少させ、適当な分離手段、例えば転写紙の自
重により、転写紙を感光体から分離する。
In conventional xerography, the surface of the photoreceptor is uniformly electrostatically charged, the charged surface is exposed to a light image of the original image to be reproduced, and areas of the surface that are struck by the light are discharged. In this way, the areas that are not discharged form an electrostatic latent image that follows the outline of the original pattern. Next, this electrostatic latent image is brought into contact with toner having a polarity opposite to the above-mentioned charge to be developed. In this case, the image density is adjusted by a developing bias voltage applied to a developing roller facing the photoreceptor. The amount of toner attached increases or decreases depending on the amount of electrostatic charge on the surface of the photoreceptor and the amount of developing bias. The transfer paper is then advanced in synchronous contact with the toner image thus formed.
During this synchronous contact period, a voltage with a polarity opposite to that of the toner is applied from the back side of the transfer paper to electrostatically attract the toner image from the photoreceptor to the transfer paper, thereby performing transfer. The transfer paper is then subjected to a corona discharge by a separation charger to reduce the electrostatic charge holding the transfer paper on the photoreceptor, and the transfer paper is separated from the photoreceptor by a suitable separation means, such as the transfer paper's own weight. .

しかしながら従来の分離コロナによる転写紙の
除電は、一定の強さで行なわれている。転写紙の
先端部と後続部で除電の量を切換えることも知ら
れてはいるが、その転写紙先端部又は後続部にお
ける除電の強さは、やはり一定であり、除電の強
さを一定にするために、分離用チヤージヤの交流
高圧電源を定電流化する等の努力が払われてい
る。しかしそれでも転写紙が感光体から分離しな
い場合があり、分離不良を10/10000回の割で起す
こともあつた。
However, conventional static elimination of transfer paper using separated corona is performed with a certain level of strength. It is known that the amount of static electricity removal can be switched between the leading edge and the trailing part of the transfer paper, but the strength of static elimination at the leading edge or the trailing part of the transfer paper is still constant. In order to achieve this, efforts are being made to make the AC high voltage power source of the separation charger constant current. However, there were still cases where the transfer paper did not separate from the photoreceptor, and poor separation occurred in 10/10,000 times.

本発明は転写紙の感光体からの分離確率を向上
させることを目的とするものである。
An object of the present invention is to improve the probability of separation of transfer paper from a photoreceptor.

本発明者等は、上のような分離確率の低下は、
下記の2つが原因していることを見い出した。
The inventors believe that the above decrease in separation probability is due to
We found that the following two reasons were the cause.

その1つは、第1図に示すように、感光体の地
肌部電位の変動により、分離可能範囲Aに対する
共通分離範囲Bが狭くなるためである。横軸の地
肌部電位、即ち感光体表面の光の当つた明領域の
電位は、複写原稿の色その他により、或いは露光
光学系のよごれや絞りの値等によつて変化する。
第1図はセレンドラム表面をプラスに帯電させた
場合であつて、断面直径(0.08)mmのタングステ
ンワイヤを有する分離チヤージヤを用いて、周速
134mm/secで回転するセレンドラム表面上の転写
紙に対し12mm離れたところから、AC電圧を
5.0KV―rms―一定として分離コロナを施した例
である。分離可能な範囲Aは、地肌電位が50Vに
おいて(+)450V〜(−)250Vまで、また500V
において(+)200V〜(+)920VまでのDCバイ
アス電圧範囲があるのに対し、地肌電位が50V〜
500Vまで変動する場合の共通分離範囲BはDCバ
イアス電圧(+)200V〜(+)450Vまでと極め
て狭くなる。従つて、分離チヤージヤのDCバイ
アスの電圧設定を従来の如く一定にした場合に
は、分離確立が悪くなるのである。例えば、今、
分離チヤージヤのDCバイアスを(+)200Vに電
圧設定したとすると、地肌部電位が50Vの場合、
即ち第1図のE1点では、プラス側が7.2KV−
0.05KV=7.15KVでマイナス側が6.8KV+0.05KV
=6.85KVで放電が行なわれる。一方、地肌部電
位が500Vの場合、即ち第1図のE2点では、プラ
ス側が7.2KV−0.5KV=6.7KVでマイナス側が
6.8KV+0.5KV=7.3KVで放電が行なわれる。従
つて地肌部電位が500Vのときも分離範囲に関し
50Vのときと同一条件にするためには、DCバイ
アスを200Vから650Vに変更する必要があるので
ある。尚、AC印加電圧が7.0KVであるのに対し
上記例の放電交流電圧がプラス側とマイナス側で
異なつているのは、感光体表面の地肌電位がプラ
スであるため、この電位によつて分離コロナの正
放電は抑制され、その分だけ負放電が増加するた
めである。
One reason is that, as shown in FIG. 1, the common separation range B with respect to the separable range A becomes narrower due to fluctuations in the background potential of the photoreceptor. The background potential on the horizontal axis, that is, the potential of the bright area of the photoreceptor surface that is illuminated by light, changes depending on the color of the copy original, dirt on the exposure optical system, the aperture value, etc.
Figure 1 shows the case where the surface of the selenium drum is positively charged.
AC voltage is applied from a distance of 12 mm to the transfer paper on the surface of the selenium drum rotating at 134 mm/sec.
This is an example in which a separate corona was applied at a constant 5.0KV-rms. Separable range A is from (+) 450V to (-) 250V when the ground potential is 50V, and 500V.
There is a DC bias voltage range from (+) 200V to (+) 920V, while the ground potential is from 50V to
When the voltage varies up to 500V, the common separation range B becomes extremely narrow, ranging from DC bias voltage (+) 200V to (+) 450V. Therefore, if the voltage setting of the DC bias of the separation charger is kept constant as in the conventional case, the establishment of separation becomes poor. For example, now
Assuming that the DC bias of the separation charger is set to (+) 200V, if the skin potential is 50V,
In other words, at point E in Figure 1 , the positive side is 7.2KV-
0.05KV=7.15KV and negative side is 6.8KV+0.05KV
Discharge occurs at =6.85KV. On the other hand, when the skin potential is 500V, that is, at point E 2 in Figure 1, the positive side is 7.2KV - 0.5KV = 6.7KV and the negative side is 7.2KV - 0.5KV = 6.7KV.
Discharge occurs at 6.8KV + 0.5KV = 7.3KV. Therefore, even when the skin potential is 500V, the separation range is
In order to achieve the same conditions as when using 50V, it is necessary to change the DC bias from 200V to 650V. Note that while the AC applied voltage is 7.0 KV, the discharge AC voltage in the above example is different on the positive and negative sides because the ground potential on the surface of the photoreceptor is positive, so the separation is due to this potential. This is because positive discharge of the corona is suppressed and negative discharge increases accordingly.

従つて分離可能範囲を狭めないためには、地肌
電位が上るにつれ、分離チヤージヤのDCバイア
ス電圧を増加させなければならない。これは具体
的には、露光光学系の絞り値と連動させてDCバ
イアスを変化させ、或いは露光光線の一部を受光
素子で受けてその光電変換出力の変化によりDC
バイアスを変えればよい。
Therefore, in order not to narrow the separable range, it is necessary to increase the DC bias voltage of the separation charger as the ground potential rises. Specifically, this can be done by changing the DC bias in conjunction with the aperture value of the exposure optical system, or by receiving a portion of the exposure light beam with a light receiving element and changing the photoelectric conversion output.
Just change your bias.

分離確率を低下させる他の原因は、第2図に示
すように、現像バイアス電圧の変動、即ち感光体
地肌部へのトナーの付着量によつて、分離範囲A
に対する共通分離範囲Bが極単に狭くなるためで
ある。第2図は地肌部電位を(+)100V一定と
して現像ローラに印加する直流のバイアス電圧を
変化させたものである。使用した現像ローラはセ
レンドラムに対し4倍の速度で回転する直径60mm
のローラである。この図から判るように、現像バ
イアスを変化させて地肌部のトナー付着量を変え
ると、分離範囲がシフトするだけでなく分離範囲
も小さくなる。特にトナー付着量の変化を伴なう
現像バイアスDC300V附近から450V附近までの間
に、分離可能な範囲Aが1/2〜1/4に低下し、極端
なときは極性を切換る必要のあることが判る。
Another reason for decreasing the separation probability is as shown in FIG.
This is because the common separation range B becomes extremely narrow. In FIG. 2, the background potential is kept constant at (+) 100 V and the DC bias voltage applied to the developing roller is varied. The developing roller used is 60 mm in diameter and rotates at four times the speed of the selenium drum.
It's a roller. As can be seen from this figure, when the amount of toner adhering to the background portion is changed by changing the developing bias, not only does the separation range shift, but the separation range also becomes smaller. In particular, when the developing bias changes from around 300V DC to around 450V, which is accompanied by a change in toner adhesion amount, the separable range A decreases to 1/2 to 1/4, and in extreme cases, it is necessary to switch the polarity. I understand that.

これをこのような共通分離範囲の縮小化を避る
ため、分離チヤージヤのDCバイアスが現像バイ
アスに連動して変化せしめられる。これは、例え
ば複写機の濃度調整つまみと連動するポテンシヨ
メータであつて、かつその摺動子の回動角変位に
対する抵抗値の変化が第2図の曲線に沿うような
分布をもつものを用いることにより達成される。
しかし最も簡単かつ有効な方法は、現像バイアス
を切換えることに連動して、分離コロナの除電の
強さを切り換えるものであろう。
In order to avoid such a reduction in the common separation range, the DC bias of the separation charger is changed in conjunction with the development bias. This is, for example, a potentiometer that is linked to the density adjustment knob of a copying machine, and has a distribution such that the change in resistance value with respect to the rotational angular displacement of the slider follows the curve shown in Figure 2. This is achieved by using
However, the simplest and most effective method would be to switch the strength of static elimination of the separated corona in conjunction with switching the developing bias.

本発明は、感光体の地肌部電位の変動、現像バ
イアス電圧の変動等によつて生ずる分離可能範囲
のシフトに合せて、分離チヤージヤの除電の強さ
をシフトさせるものであるから、分離確率の最も
良好な条件に維持することができる。
The present invention shifts the static elimination strength of the separation charger in accordance with the shift of the separable range caused by fluctuations in the background potential of the photoreceptor, fluctuations in the developing bias voltage, etc., so that the separation probability can be reduced. can be maintained in the best conditions.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は分離チヤージヤのAC印加電圧を一定
とし、感光体の地肌部電位を変動せしめたときの
分離可能なDCバイアス電圧の範囲を示した図、
第2図は感光体の地肌部電位を一定とし、現像ロ
ーラのDCバイアスを変化せしめたときの分離可
能な分離チヤージヤのDCバイアス電圧の範囲を
示した図である。 A……分離可能範囲、B……共通分離範囲。
FIG. 1 is a diagram showing the range of separable DC bias voltage when the AC applied voltage to the separation charger is kept constant and the surface potential of the photoreceptor is varied;
FIG. 2 is a diagram showing the range of the DC bias voltage of the separable separation charger when the background potential of the photoreceptor is constant and the DC bias of the developing roller is varied. A...Separable range, B...Common separation range.

Claims (1)

【特許請求の範囲】[Claims] 1 静電転写によつて発生した転写紙と感光体表
面との間の静電付着力を、直流バイアス電圧を加
えた交流コロナ発生器により減少させ、それによ
りトナーを帯びた転写紙を感光体から容易に分離
するにあたり、感光体の地肌部の電位又は該地肌
部のトナー付着量に応じて、前記コロナ発生器に
よる除電の強さを変えることを特徴とする転写紙
の分離方法。
1. The electrostatic adhesion force between the transfer paper and the photoconductor surface generated by electrostatic transfer is reduced by an AC corona generator to which a DC bias voltage is applied, thereby transferring the toner-bearing transfer paper to the photoconductor surface. A method for separating transfer paper, characterized in that the intensity of static elimination by the corona generator is changed in accordance with the potential of the background part of a photoreceptor or the amount of toner adhering to the background part.
JP15652677A 1977-12-27 1977-12-27 Separating method of transfer paper Granted JPS5489635A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15652677A JPS5489635A (en) 1977-12-27 1977-12-27 Separating method of transfer paper

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15652677A JPS5489635A (en) 1977-12-27 1977-12-27 Separating method of transfer paper

Publications (2)

Publication Number Publication Date
JPS5489635A JPS5489635A (en) 1979-07-16
JPS6139667B2 true JPS6139667B2 (en) 1986-09-04

Family

ID=15629709

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15652677A Granted JPS5489635A (en) 1977-12-27 1977-12-27 Separating method of transfer paper

Country Status (1)

Country Link
JP (1) JPS5489635A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59104671A (en) * 1982-12-07 1984-06-16 Sharp Corp Separating system of transfer material
JPS607452A (en) * 1983-06-27 1985-01-16 Konishiroku Photo Ind Co Ltd Separating method of recording paper
JPH0642115B2 (en) * 1984-06-18 1994-06-01 富士ゼロックス株式会社 Cleaning device for electrophotographic copying machine
JPH01154183A (en) * 1987-12-11 1989-06-16 Konica Corp Electrostatic separating device for transfer type image recorder
JPH0525466U (en) * 1991-03-01 1993-04-02 富士ゼロツクス株式会社 Image forming apparatus such as electrophotographic copying machine
JP2008310311A (en) * 2007-05-17 2008-12-25 Ricoh Co Ltd Image forming apparatus, image forming method, and process cartridge

Also Published As

Publication number Publication date
JPS5489635A (en) 1979-07-16

Similar Documents

Publication Publication Date Title
JPH0314190B2 (en)
GB2062548A (en) Electrophotographic apparatus
US4792775A (en) Method for the formation of outline images corresponding to the peripheral outlines of document's images
JPS6139667B2 (en)
US4045217A (en) Developing process for electrophotography
US4794062A (en) Method for the formation of outline images corresponding to the peripheral outlines of document's images
JPH0314188B2 (en)
US4828953A (en) Method for the formation of outline images corresponding to the peripheral outlines of document's images
JPH01269969A (en) Image forming device
JP2537796B2 (en) Color-Electrophotographic method
JPS63172286A (en) Color electrophotographic device
JPS5833266A (en) Electrophotographic copying machine
JPH0136104B2 (en)
JPH0529479Y2 (en)
JPS5538522A (en) Electrophotographic type image recording method
JPH0143309B2 (en)
JPH01144083A (en) Image forming device
JPS6321660A (en) Contour image forming method
JPH0731439B2 (en) Color-Electrophotographic method
JPH0535120A (en) Image forming device
JPS6310829B2 (en)
JPS6022169A (en) Cleaning device of electrophotographic copying machine
JPS62260162A (en) Outline image forming method
JPH01191176A (en) Image forming device
JPS5918962A (en) Image forming device