JPS613952A - Heat accumulating device operated by photo-energy preserving compound - Google Patents

Heat accumulating device operated by photo-energy preserving compound

Info

Publication number
JPS613952A
JPS613952A JP59123859A JP12385984A JPS613952A JP S613952 A JPS613952 A JP S613952A JP 59123859 A JP59123859 A JP 59123859A JP 12385984 A JP12385984 A JP 12385984A JP S613952 A JPS613952 A JP S613952A
Authority
JP
Japan
Prior art keywords
heat
compound
photo
light energy
aqueous solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59123859A
Other languages
Japanese (ja)
Inventor
Muneshige Nagatomo
長友 宗重
Tatsu Iwai
岩井 達
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP59123859A priority Critical patent/JPS613952A/en
Publication of JPS613952A publication Critical patent/JPS613952A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S10/00Solar heat collectors using working fluids
    • F24S10/10Solar heat collectors using working fluids the working fluids forming pools or ponds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/44Heat exchange systems

Abstract

PURPOSE:To permit efficient heat accumulation by a method wherein the photo- enengy preserving compound is exposed to the projection of solar light energy in a heat accumulating pool having concentration difference greenhouse effect. CONSTITUTION:A heat accumulating pool 1 is provided with a constant concentration solution layer 2 of the photo-energy preserving compound (norbornadien, for example) and a non-convection layer 3, formed above the solution of said compound, and a heat exchanger 9 is communicated with the constant concentration solution layer 2 through a catalyst column 8 while the flow path of the constant concentration solution is provided with a circulating pump device 6. The photo-energy preserving compound is exposed to the projection of solar light energy in the heat accumulating pool having concentration difference greenhouse effect, therefore, the density of heat, retrieved by the photo-energy preserving compound, is improved from the density of reaction heat of exothermal internal isomerization reaction of said compound alone into the summarized density of said reaction heat and the retrieved heat commensurate to the temperature increase in the heat accumulating pool 1.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、光エネルギー貯蔵化合物による蓄熱装置に関
し、とくに非対流層を有する蓄熱プールを用いた光エネ
ルギー貯蔵化合物による蓄熱装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a heat storage device using a light energy storage compound, and more particularly to a heat storage device using a light energy storage compound using a heat storage pool having a non-convection layer.

従来の技術 近年、省エネルギーを目的とする太陽熱の直接利用及び
太陽熱発電に関する研究開発が広く行なわれ、とくに日
射の変動に対処するため太陽光エネルギーの貯蔵に対す
る関心が増大している。太陽光エネルギーを−H電気エ
ネルギーに変換した後これを蓄電池に貯蔵する方法が考
えられるが、この方法には、相当規模の蓄電池を要する
こと、蓄電池の自己放電が避は難いこと、貯蔵されたエ
ネルギーを他の形態のエネルギーとして使用する場合に
は変換損失の重複が避けられないこと等の欠点がある。
BACKGROUND OF THE INVENTION In recent years, research and development on the direct use of solar heat and solar thermal power generation for the purpose of energy conservation have been widely conducted, and in particular, interest in solar energy storage to cope with fluctuations in solar radiation has increased. One possible method is to convert solar energy into -H electrical energy and then store it in a storage battery, but this method requires a fairly large storage battery, self-discharge of the storage battery is unavoidable, and When energy is used as another form of energy, there are drawbacks such as unavoidable duplication of conversion losses.

太陽光エネルギーを熱容量の大きい蓄熱体に貯えること
も考えらるが、この場合にも蓄熱体の規模が大きくなる
こと及び長時間に亘る蓄熱の際の熱損失が避は難いこと
等の欠点がある。
It is also possible to store solar energy in a heat storage body with a large heat capacity, but this also has drawbacks such as the size of the heat storage body becoming large and heat loss during long-term heat storage being unavoidable. be.

従来技術の上記欠点を解決するものとして1本発明者は
、内部異性化反応を生ずる光エネルM−貯蔵化合物に注
目した。この化合物の一例は、雑誌「エネルギー」昭和
56年6月号第91−93頁の記事1本出願人等の特−
昭59−37315号その他の文献に記載されたノルボ
ルナジェンである。ノルボルナジェンは、大、S光エネ
ルギーを吸収してその原子価異性体たるりγドリシクラ
ンとなる原子価異性体化反応をし、クアドリシクランは
、安定なイリ物であって半永久的に蓄熱すやことが可能
であるのみでなくごく微量の銀等の触媒との接触により
予熱してノルボルナジェンに戻る。即ち、ノルボルナジ
ェンは、クアドリシクランとの可逆的原子価異性化反応
により蓄熱及び放熱を安定的に繰返す三とができる光エ
ネ′ルギー貯蔵化合物である。さらに、上記雑誌「エネ
ルギー」記事によれば、ノルボルナジェンは、92 c
al/gの割合でエネルギーを貯える能力を有する。ノ
ルデルナシエン、!Lびその誘導体の一般式を (1)
式に、クアドリシクラン及びその誘導体の一般式を (
2)式に示す。
As a solution to the above-mentioned drawbacks of the prior art, the present inventors focused on light energy M-storage compounds that undergo internal isomerization reactions. An example of this compound is the article 1 of the magazine "Energy" June 1986 issue, pages 91-93.
Norbornagene is described in No. 59-37315 and other documents. Norbornagene absorbs large and S light energy and undergoes a valence isomerization reaction to become its valence isomer, γ-dolycyclane. Quadricyclane is a stable iris that can store heat semi-permanently. Not only is it possible to do this, but it can also be preheated by contact with a very small amount of a catalyst such as silver, and then returned to norbornadiene. That is, norbornadiene is a light energy storage compound capable of stably repeating heat storage and heat release through a reversible valence isomerization reaction with quadricyclane. Furthermore, according to the above-mentioned magazine "Energy" article, norbornagen is 92 c
It has the ability to store energy at a rate of al/g. Nordernasien,! The general formula of L bis derivatives is (1)
The general formula of quadricyclane and its derivatives is expressed as (
2) It is shown in the formula.

R,R。R,R.

[式中、RI + R2+ Ra’+ Ra + R5
及びR6は水素原子、低級アルキル基又はアリ−・ ル
基を表わし、R7及びR8は水素原子、基−CN又は基
−COOR9(ここにR9は低級7゛ ルキル基を表わ
す、)を表わす。][1式沖R,l + R’l!  
+R2+R4、R5、R,+R1及びR8は(1)にお
ける対応記号と同じ、−意味を有する。] 光エネルギー貯蔵化合物としては、ノルボルナジェンの
ほかアセチルイン?ゴ等数種の化合物が知られている。
[In the formula, RI + R2+ Ra'+ Ra + R5
and R6 represent a hydrogen atom, a lower alkyl group or an aryl group, and R7 and R8 represent a hydrogen atom, a group -CN or a group -COOR9 (wherein R9 represents a lower 7'alkyl group). ] [Type 1 Oki R,l + R'l!
+R2+R4, R5, R, +R1 and R8 have the same - meaning as the corresponding symbols in (1). ] In addition to norbornagene, acetylin is a light energy storage compound. Several types of compounds are known, such as Go.

これらの化合物は、太陽光エネルギーに曝される′と上
記原子価異性体化反”応などの吸エネ゛ルギー形の可逆
性内部異性化反応により。
When these compounds are exposed to sunlight energy, they undergo energy-endoring reversible internal isomerization reactions such as the valence isomerization reactions described above.

上記原子価異性体などの高歪化合物となって光エネルギ
ーを貯え、その高歪化合物が銀、フタロシアニン金属錯
体、ポルフィリン金属錯体などの歪取り触媒との接触に
より発熱反応を経て元の光エネルギー貯綽化合物に戻る
際に前記貯えられたエネルギーを放出する。従って、原
理的には、前記高歪化合物に貯えられたエネルギ、−を
、前記発熱反応によって回収する1ことにより、暖房用
の熱源又は発電用フレオンタービン、の熱源等の熱源と
して利用することが考えられる。
The high-strain compounds such as the above-mentioned valence isomers store light energy, and when the high-strain compounds come into contact with strain relief catalysts such as silver, phthalocyanine metal complexes, and porphyrin metal complexes, an exothermic reaction occurs and the original light energy is stored. The stored energy is released when returning to the sapphire compound. Therefore, in principle, by recovering the energy stored in the high strain compound through the exothermic reaction, it can be used as a heat source for heating or for a Freon turbine for power generation. Conceivable.

しかし、この原理を実用化しようとすると5例えば、光
エネルギー貯蔵化合物としてノルボルナジェンの50%
水溶液を考慮する場合、上記雑誌「エネルギー」記事に
よれば回収熱の密度は約46 cal/gと予想され、
発電用輸入石油類の約8、、500 ca、j/g以上
と捗較する。ζ余りにも熱密度が低い。技術開発にさ?
て上部の回収熱密度が将来若干改善されても、上記熱暉
としての利用の実用化場当って光エネルギー貯蔵化合物
水溶液槽や熱交換器などの設備が大形化するものと予想
される。  ・    − 発明が解決しようとする問題点 従って、本発明が解決しようとする問題点は、太陽光照
射により光エネルギー貯蔵化合物を内部異性化した高歪
化合物から熱を回収する場合に、回収される熱の密度が
低い点に蔦る。
However, if we try to put this principle into practical use, for example, 50% of norbornadiene as a light energy storage compound.
When considering an aqueous solution, the density of recovered heat is expected to be approximately 46 cal/g, according to the above magazine "Energy" article.
This compares to approximately 8,500 ca, j/g or more of imported oil for power generation. ζThermal density is too low. For technology development?
Even if the recovery heat density of the upper part of the heat exchanger is slightly improved in the future, it is expected that equipment such as a light energy storage compound aqueous solution tank and a heat exchanger will become larger in order to put it into practical use as a heat extractor. - Problem to be solved by the invention Therefore, the problem to be solved by the present invention is that when heat is recovered from a highly strained compound in which a light energy storage compound is internally isomerized by sunlight irradiation, It grows at a point where the density of heat is low.

」1立1豊登まj犬差41焉 上記問題点を解決するため1本発明による光エネル午−
貯蔵化會物にキる蓄熱装置は、光エネルギー貯蔵化合物
の定濃度水溶液層とその水溶液の上方に形成された非対
流層とを有する蓄熱プール、前郷定濃度水溶液層に触媒
コラムを介して連通された熱交換器、及び前記定濃度水
溶液の流路に配置された循環ポンプ装置の結合からなる
手段を用いる。
In order to solve the above problems, we have developed a light energy system according to the present invention.
A heat storage device in a storage system includes a heat storage pool having a layer of a constant concentration aqueous solution of a light energy storage compound and a non-convection layer formed above the aqueous solution, and a layer of the constant concentration aqueous solution connected to the layer through a catalyst column. A means is used consisting of a combination of a heat exchanger and a circulation pump device arranged in the flow path of the constant concentration aqueous solution.

粗月 前記蓄熱プールの非対流層は・その下部が!濃度高密度
でありその上部が低濃度低密度である構成を有し、太陽
光エネルギーの照射を受けてもその上下密度差のために
対流を起こさず、さらに高濃度の下部溶液から放射され
る熱線を低濃度の上部溶畔が反射する。この現象は・、
濃度差温室効果又は塩田効果として知られている。
The non-convection layer of the heat storage pool mentioned above is the lower part! It has a structure of high concentration and low density at the top, and even when it is irradiated with solar energy, it does not cause convection due to the difference in density above and below, and is radiated from the lower solution with higher concentration. The heat rays are reflected by the lower concentration of the upper molten ridge. This phenomenon is...
This is known as the concentration difference greenhouse effect or the salt field effect.

この非対流層の下に光エネルギー貯蔵化合物の定濃度水
溶液層を形成してなる蓄熱プールに太陽光エネルギーが
照射されると、蓄熱プールの底層部に到達した紫i線・
可視光線等により、光エネルギー貯蔵化合物の前記定濃
度水溶液層において前記内部異性化反応が進行すると同
時に前記定濃度水溶液層が加熱されその温度が上昇する
。しかも、温度上昇した前記定濃度水溶液層から放射さ
れる熱線が前記非対流層から反射されるので、光エネル
ギー貯蔵化合物の前記定濃度水溶液層は効率よく加熱さ
れる。一般に、溶媒が高温である程溶質が溶は易いので
、前記蓄熱プールの上層と下層との間の濃度勾配と温度
勾配とが同時に維持される。
When solar energy is irradiated onto a heat storage pool formed by forming a constant concentration aqueous solution layer of a light energy storage compound under this non-convection layer, the violet I-rays that reach the bottom layer of the heat storage pool
As the internal isomerization reaction progresses in the constant concentration aqueous solution layer of the optical energy storage compound, the constant concentration aqueous solution layer is heated and its temperature increases by visible light or the like. Furthermore, since the heat rays emitted from the constant concentration aqueous solution layer whose temperature has increased are reflected from the non-convection layer, the constant concentration aqueous solution layer of the optical energy storage compound is efficiently heated. Generally, the higher the temperature of the solvent, the easier it is for the solute to dissolve, so that a concentration gradient and a temperature gradient between the upper and lower layers of the heat storage pool are maintained at the same time.

従って、前記循環ポンプにより前記触媒コラムを介して
前記熱交換器へ送られる前記光エネルギー貯蔵化合物水
溶液は、単に高歪化合物からの発熱形内部異性化反応に
よる回収熱だけでなく、前記濃度差温室効果による温度
上昇に見合った回収熱をもフレオン等の熱媒体に与える
。即ち1本発明によれば、光エネルギー貯蔵化合物から
回収さ、れる熱の密度が、前記高歪化合物9発熱形内部
異性化反応の反応熱のみの密度から、同反応熱と前記濃
度差温室効果による温度上昇に見合った回収熱との和の
密度まで改善される。
Therefore, the light energy storage compound aqueous solution sent to the heat exchanger via the catalyst column by the circulation pump is not only the recovered heat from the high strain compound due to the exothermic internal isomerization reaction, but also the heat recovered from the concentration difference chamber. Recovered heat commensurate with the temperature rise caused by the effect is also given to the heat medium such as Freon. That is, according to the present invention, the density of the heat recovered from the light energy storage compound is determined from the density of only the reaction heat of the exothermic internal isomerization reaction of the high strain compound 9, and the density of the heat of reaction and the concentration difference greenhouse effect. The density is improved to the sum of the recovered heat commensurate with the temperature rise due to

K層重 第1図を参照して、本発明の一実施例を説明する。蓄熱
プール1は、底部に形成された光エネルギー貯蔵化合物
の定濃度水溶液層2、及びその上の非対流層3を有する
。非対流N2は、上記の様に、その下部が高濃度高密度
でありその上部が低濃度低密度である構成を有する。前
記定濃度水溶液層2の一端4には、弁5を介して循環ポ
ンプ6が接続される。この循環ポンプ6は、前記一端4
から吸込んだ水溶液を、触媒7からなる触媒コラム8及
び熱交換器9を介して前記定濃度水溶液層2の他端10
へ送出することにより、光エネルギー貯蔵化合物の定濃
度水溶液を前記蓄熱プールlと前記熱交換器9との間に
矢印Aで示される様に循環させる。
An embodiment of the present invention will be described with reference to FIG. The heat storage pool 1 has a constant concentration aqueous solution layer 2 of a light energy storage compound formed at the bottom and a non-convection layer 3 above it. As described above, the non-convection N2 has a configuration in which the lower part thereof is high concentration and high density and the upper part thereof is low concentration and low density. A circulation pump 6 is connected to one end 4 of the constant concentration aqueous solution layer 2 via a valve 5 . This circulation pump 6 has the one end 4
The aqueous solution sucked in from the aqueous solution layer is passed through a catalyst column 8 comprising a catalyst 7 and a heat exchanger 9 to the other end 10 of the constant concentration aqueous solution layer 2.
A constant concentration aqueous solution of a light energy storage compound is circulated between the heat storage pool 1 and the heat exchanger 9 as shown by arrow A.

熱交換器9は、フレオン等の熱媒体に対する熱・媒体ポ
ンプ11及び弁12を有し、前記光エネルギー貯蔵化合
物の定濃度水溶液がその人口9aからその出口9bまで
進行する間に、前記水溶液の熱をフレオン等の熱媒体に
回収する。
The heat exchanger 9 has a heat-medium pump 11 and a valve 12 for the heat medium, such as Freon, to increase the concentration of the aqueous solution of the light energy storage compound while it travels from its population 9a to its outlet 9b. Heat is recovered into a heat medium such as Freon.

必要に応じ、第1図に点線で示される分離・添加槽13
を循環ポンプ6と触媒コラム7との間に配置し、この槽
13において吸熱後の高歪化合物を分離抽出しつつ吸熱
前の光エネルギー貯蔵化合物を添加して高歪化合物を本
発明装置外に蓄積するか、又は別途蓄積した吸熱後の高
歪化合物をこの槽13に添加して別途蓄積された熱を回
収することもできる。
Separation/addition tank 13 shown in dotted line in Figure 1 as required.
is placed between the circulation pump 6 and the catalyst column 7, and in this tank 13, the highly strained compounds after absorbing heat are separated and extracted, and the light energy storage compound before absorbing heat is added to remove the highly strained compounds from the apparatus of the present invention. It is also possible to add the accumulated or separately accumulated heat-absorbed highly strained compound to this tank 13 to recover the separately accumulated heat.

図示実施例の作用を説明するに、本発明者は、非対流層
3を有する蓄熱ブーツ古の底部における光エネルギー貯
蔵化合物の定濃度水溶液層2の鯨度が、東京付近におい
ても50℃に達すること′を実験により見出した。熱交
換器9により50℃の水溶液温度を20℃まで下降させ
ることができる場合には、この水溶液から回収される顕
熱の密度は30 cal/gとなる。このとき、光エネ
ルギー貯蔵化合物の50%水溶液に含まれる吸熱後の高
歪化合物から前記発熱形内部異性化反応により回収され
る熱の密度が前記の様に46cal/gであるとすると
、この光エネルギー貯蔵化合物50%水溶液から回収さ
れる熱密度は46 cal/gから76 cal/gへ
約65%改善される。
To explain the action of the illustrated embodiment, the present inventor has discovered that the temperature of the constant concentration aqueous solution layer 2 of the light energy storage compound at the bottom of the thermal storage boot with the non-convection layer 3 reaches 50°C even near Tokyo. This was discovered through experiments. When the temperature of the aqueous solution from 50° C. can be lowered to 20° C. by the heat exchanger 9, the density of sensible heat recovered from the aqueous solution is 30 cal/g. At this time, assuming that the density of the heat recovered by the exothermic internal isomerization reaction from the highly strained compound after endothermic absorption contained in the 50% aqueous solution of the light energy storage compound is 46 cal/g as described above, this light The heat density recovered from a 50% aqueous solution of energy storage compound is improved by about 65% from 46 cal/g to 76 cal/g.

発明の詳細 な説明した如く、本発明による光エネルギー貯蔵化合物
による蓄熱装置は、濃度差温室効果を有する蓄熱プール
において光エネルギー貯蔵化合物を太陽光エネルギーの
照射に曝すので、光エネルギー貯蔵化合物により回収さ
れる熱密度が、単なる前記光エネルギー貯蔵化合物の発
熱形内部異性化反応の反応熱の密度から、同反応熱と前
記蓄熱プールにお4+る温度上昇に見合った回収熱との
和の密度に改善される顕著な効果を奏する。
DETAILED DESCRIPTION OF THE INVENTION As described in detail, the heat storage device using a light energy storage compound according to the present invention exposes the light energy storage compound to solar energy irradiation in a heat storage pool having a concentration differential greenhouse effect, so that the light energy storage compound is recovered by the light energy storage compound. The heat density of the light energy storage compound is improved from the density of the reaction heat of the exothermic internal isomerization reaction of the light energy storage compound to the density of the sum of the reaction heat and the recovered heat commensurate with the temperature rise in the heat storage pool. It has a remarkable effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の″光エネルギー貯蔵化合物による蓄熱
装置の説明図である。 1・・・蓄熱プール、2・・・定濃度水溶液層、3・・
・非対流層、4・・・一端、5.12・・・弁、6・・
・循環ポンプ、7・・・触媒、8・・・触媒コラム、9
・・・熱交換器、lO・・・他端、11・・・熱媒体ポ
ンプ。
FIG. 1 is an explanatory diagram of a heat storage device using a light energy storage compound of the present invention. 1. Heat storage pool, 2. Constant concentration aqueous solution layer, 3.
・Non-convection layer, 4... One end, 5.12... Valve, 6...
・Circulation pump, 7...Catalyst, 8...Catalyst column, 9
...Heat exchanger, lO...Other end, 11...Heat medium pump.

Claims (1)

【特許請求の範囲】[Claims] 光エネルギー貯蔵化合物の定濃度水溶液層とその水溶液
の上方に形成された非対流層とを有する蓄熱プール、前
記定濃度水溶液層に触媒コラムを介して連通された熱交
換器、並びに前記定濃度水溶液の流路に設けられた循環
ポンプ装置を備えてなる光エネルギー貯蔵化合物による
蓄熱装置。
A heat storage pool having a constant concentration aqueous solution layer of a light energy storage compound and a non-convection layer formed above the aqueous solution, a heat exchanger communicating with the constant concentration aqueous solution layer via a catalyst column, and the constant concentration aqueous solution. A heat storage device using a light energy storage compound, comprising a circulation pump device provided in a flow path.
JP59123859A 1984-06-18 1984-06-18 Heat accumulating device operated by photo-energy preserving compound Pending JPS613952A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59123859A JPS613952A (en) 1984-06-18 1984-06-18 Heat accumulating device operated by photo-energy preserving compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59123859A JPS613952A (en) 1984-06-18 1984-06-18 Heat accumulating device operated by photo-energy preserving compound

Publications (1)

Publication Number Publication Date
JPS613952A true JPS613952A (en) 1986-01-09

Family

ID=14871156

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59123859A Pending JPS613952A (en) 1984-06-18 1984-06-18 Heat accumulating device operated by photo-energy preserving compound

Country Status (1)

Country Link
JP (1) JPS613952A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62220665A (en) * 1986-03-22 1987-09-28 石川島播磨重工業株式会社 Movable seat
US5353752A (en) * 1992-08-31 1994-10-11 Toyota Jidosha Kabushiki Kaisha Intake system for internal combustion engine

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5866753A (en) * 1981-10-16 1983-04-21 Dainippon Ink & Chem Inc Solar light energy collector
JPS5960148A (en) * 1982-09-27 1984-04-06 Sumitomo Metal Ind Ltd Heat collector of solar pond

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5866753A (en) * 1981-10-16 1983-04-21 Dainippon Ink & Chem Inc Solar light energy collector
JPS5960148A (en) * 1982-09-27 1984-04-06 Sumitomo Metal Ind Ltd Heat collector of solar pond

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62220665A (en) * 1986-03-22 1987-09-28 石川島播磨重工業株式会社 Movable seat
JPH0643761B2 (en) * 1986-03-22 1994-06-08 石川島播磨重工業株式会社 Movable bleachers
US5353752A (en) * 1992-08-31 1994-10-11 Toyota Jidosha Kabushiki Kaisha Intake system for internal combustion engine

Similar Documents

Publication Publication Date Title
US4063419A (en) Energy production from solar ponds
CA1066223A (en) Solar energy collection and retrieval employing reversible photochemical isomerization
Ekstrom et al. Further studies on the properties of electrons trapped in glassy hydrocarbons
JPS613952A (en) Heat accumulating device operated by photo-energy preserving compound
EP0408816A1 (en) Solar augmented power system
US4105014A (en) Catalytic extraction of stored solar energy from photochemicals
US5247796A (en) Solar augmented power system
CN109289546A (en) A kind of preparation method of graphene black matrix filter membrane
Adamson et al. Thermodynamic inefficiency of conversion of solar energy to work
JPS60255A (en) Collection and reservation of solar heat energy
US2877091A (en) Dehydration of deuterium oxide slurries
JP3226604B2 (en) Condensate desalination equipment
US20220228776A1 (en) Systems and methods for full spectrum solar thermal energy harvesting and storage by molecular and phase change material hybrids
SE8205379L (en) SYSTEM AND PROCEDURE FOR REFRIGERANT REFRIGERANT IN FUEL CELL POWER PLANTS
JP2003299947A (en) Hydrogenation apparatus and method using the same
JPS60185065A (en) Method to store solar energy in dispersion system of valency isomer
CA1149179A (en) Heat storage pond and power plant using same
JPS6399457A (en) Power generating device utilizing solar pond
JPS5243154A (en) Heat storage tank
BE848047A (en) CAPTURE AND RECOVERY OF SOLAR ENERGY USING REVERSIBLE PHOTOCHEMICAL ISOMERIZATION,
JPS5499339A (en) Room cooler utilizing solar heat
Malba PHOTOINDUCED ELECTRON TRANSFER: THE PRODUCTION OF CHARGE CARRIERS FROM DITHIOETHERS AND PYRIDINIUM IONS (METHYL VIOLOGEN, SOLAR ENERGY, WAVELENGTH, CHARGE EFFECTS)
JPS6148057B2 (en)
JPS586354A (en) Heating device for portable machine
FR2370242A1 (en) Recovering solar energy by photochemical isomerisation - of a trans isomer to the cis form, then converting it back exothermically