JPS6139359Y2 - - Google Patents

Info

Publication number
JPS6139359Y2
JPS6139359Y2 JP1981143572U JP14357281U JPS6139359Y2 JP S6139359 Y2 JPS6139359 Y2 JP S6139359Y2 JP 1981143572 U JP1981143572 U JP 1981143572U JP 14357281 U JP14357281 U JP 14357281U JP S6139359 Y2 JPS6139359 Y2 JP S6139359Y2
Authority
JP
Japan
Prior art keywords
pipe
thermocouple
simulated fuel
wire
fuel rod
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1981143572U
Other languages
Japanese (ja)
Other versions
JPS5847799U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1981143572U priority Critical patent/JPS5847799U/en
Publication of JPS5847799U publication Critical patent/JPS5847799U/en
Application granted granted Critical
Publication of JPS6139359Y2 publication Critical patent/JPS6139359Y2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Description

【考案の詳細な説明】 本考案は原子炉の模擬試験装置に用いる模擬燃
料棒構造体に関する。
[Detailed Description of the Invention] The present invention relates to a simulated fuel rod structure used in a nuclear reactor simulation test device.

例えば高速増殖炉の模擬試験を行なうための試
験装置は、実際の原子炉構造に対応して試験容器
の内部に原子燃料棒に相当するシーズヒータから
なる多数の模擬燃料棒を集合して配設したもの
で、模擬燃料棒すなわちシーズヒータの発熱によ
り試験容器内に入れたナトリウムなどの液体金属
を加熱して試験を行なつている。
For example, a test device for conducting a simulation test of a fast breeder reactor has a large number of simulated fuel rods consisting of sheathed heaters, which correspond to nuclear fuel rods, arranged inside a test vessel in a manner that corresponds to the actual reactor structure. The test is conducted by heating liquid metal such as sodium contained in the test container using the heat generated by a simulated fuel rod, that is, a sheathed heater.

しかして、この試験装置においては、試験容器
内に集合配設した各模擬燃料棒の相互の間に、実
際の燃料棒配設構造と同様にナトリウムを流通さ
せるための隙間をもたせている。従来、模擬燃料
棒相互間の隙間を保持する手段の1つとして、実
際の構造と同様に隙間断面に相当する直径を有す
る金属線からなるワイヤスペーサを模擬燃料棒の
外管外部にスパイラル状に巻付けることが行なわ
れている。
Therefore, in this test device, a gap is provided between each of the simulated fuel rods that are collectively arranged in the test container to allow sodium to flow, similar to the actual fuel rod arrangement structure. Conventionally, as one means of maintaining the gap between the simulated fuel rods, a wire spacer made of a metal wire having a diameter corresponding to the cross section of the gap was spirally placed outside the outer tube of the simulated fuel rod, similar to the actual structure. Wrapping is being done.

また、各模擬燃料棒には周囲のナトリウム温度
を計測するために熱電対が設けてあり、各模擬燃
料棒の隙間に位置するようにこの熱電対は模擬燃
料棒の外管外部に取付けている。
In addition, each simulated fuel rod is equipped with a thermocouple to measure the surrounding sodium temperature, and this thermocouple is attached to the outside of the outer tube of the simulated fuel rod so that it is located in the gap between each simulated fuel rod. .

しかしながら、実際の燃料棒には計測用の熱電
対が設けられておらず燃料棒の隙間には熱電対が
存在しないために、模擬燃料棒の外管外部に熱電
対を取付けることにより、模擬燃料棒間の隙間の
断面積の大きさが実際の燃料棒間の隙間の断面積
と異なることになる。このため、模擬燃料棒の配
設構造は実際の燃料棒の配設構造を忠実に模擬で
きず、正確な模擬試験を行なう上で問題を生じ
る。また、熱電対が同様に模擬燃料棒の外部に設
けたワイヤスペーサに絡まつて切断される不具合
を生じることもある。
However, since the actual fuel rods are not equipped with thermocouples for measurement and there are no thermocouples in the gaps between the fuel rods, by attaching thermocouples to the outside of the outer tube of the simulated fuel rod, it is possible to The cross-sectional area of the gap between the rods will be different from the actual cross-sectional area of the gap between the fuel rods. For this reason, the arrangement structure of the simulated fuel rods cannot faithfully simulate the arrangement structure of actual fuel rods, which causes problems in conducting accurate simulation tests. Furthermore, a problem may occur in which the thermocouple similarly gets entangled with the wire spacer provided outside the simulated fuel rod and is cut off.

本考案は前記事情に鑑みてなされたもので、熱
電対を模擬燃料棒に設ける構造を改良し、模擬燃
料棒間の隙間の断面積の大きさを実際の燃料棒間
の隙間の断面積に極力近づけた構造で熱電対を設
けることができるとともに、温度検出を阻害する
ことなく簡単な手段で熱電対を支持でき、また熱
電対がワイヤスペーサにより切断されることを防
止できる模擬燃料棒構造体を提供することを目的
とするものである。
The present invention was developed in view of the above circumstances, and it improves the structure in which thermocouples are installed in simulated fuel rods, and the size of the cross-sectional area of the gap between the simulated fuel rods is made equal to the cross-sectional area of the gap between the actual fuel rods. A simulated fuel rod structure that allows thermocouples to be installed as close together as possible, supports thermocouples with simple means without interfering with temperature detection, and prevents thermocouples from being cut by wire spacers. The purpose is to provide the following.

すなわち、本考案の模擬燃料構造体は、ワイヤ
スペーサとして少なくとも一部がパイプからなる
ものを使用し、このパイプの内部に熱電対を挿通
して設け、さらに熱電対の検出端に取付けた支持
線をワイヤスペーサのパイプの端部に固定すると
ともに、パイプの周壁に熱電対の検出端に対応し
て透孔を形成したものである。
That is, the simulated fuel structure of the present invention uses a wire spacer at least partially made of a pipe, a thermocouple inserted through the pipe, and a support wire attached to the detection end of the thermocouple. is fixed to the end of the pipe of the wire spacer, and a through hole is formed in the peripheral wall of the pipe to correspond to the detection end of the thermocouple.

以下本考案を図面で示す実施例について説明す
る。
Embodiments of the present invention will be described below with reference to drawings.

第1図および第2図は原子炉模擬試験装置を示
しており、図中Aは試験容器、Bは試験容器Aの
端部を密封する封鎖部材、Cは試験容器A内部に
例えばナトリウムを充填させるための流通口であ
る。本考案の模擬燃料構造体は試験容器Aの内部
に設けられるもので、シーズヒータである模擬燃
料棒1、模擬燃料棒1の外部に巻装されたワイヤ
スペーサ2、ワイヤスペーサ2の内部に挿通され
た熱電対3で構成されている。試験容器Aの内部
には多数の模擬燃料棒1が束ねて集合した状態で
容器Aの長手方向に沿つて配設され、各模擬燃料
棒1の基端部は一方の封鎖部材Bを貫通して外部
に突出し電源に接続されている。集合された各模
擬燃料棒1は夫々に巻回したワイヤスペーサ2が
他の模擬燃料棒1に接触することにより相互間の
隙間を保持している。そして模擬燃料棒1すなわ
ちシーズヒータに通電して発熱させることによ
り、試験容器A内に入れられたナトリウムを加熱
する。
Figures 1 and 2 show a nuclear reactor simulation test device, in which A is a test vessel, B is a sealing member that seals the end of test vessel A, and C is a member that fills the inside of test vessel A with, for example, sodium. It is a distribution outlet for The simulated fuel structure of the present invention is installed inside a test container A, and includes a simulated fuel rod 1 that is a sheathed heater, a wire spacer 2 wrapped around the outside of the simulated fuel rod 1, and a wire spacer 2 that is inserted into the interior of the wire spacer 2. It consists of a thermocouple 3. Inside the test container A, a large number of simulated fuel rods 1 are arranged in a bundle along the longitudinal direction of the container A, and the base end of each simulated fuel rod 1 penetrates one of the sealing members B. It protrudes outside and is connected to the power supply. Each of the assembled simulated fuel rods 1 maintains a gap therebetween by having the wire spacer 2 wound thereon contacting the other simulated fuel rods 1. Then, the simulated fuel rod 1, that is, the sheathed heater, is energized to generate heat, thereby heating the sodium contained in the test container A.

本考案の模擬燃料棒構造体の一実施例を第3図
ないし第5図について述べる。模擬燃料棒1は、
第3図で示すように外管4の内部に発熱線5を挿
通するとともに耐熱性絶縁粉末6を充填して構成
されるシーズヒータからなるもので、外管1の一
端封着部に設けた端子7が電源回路に接続されて
いる。ワイヤスペーサ2は模擬燃料棒1の外管4
の外部にその軸方向全体にわたりスパイラル状に
巻装して溶接により固定されている。ワイヤスペ
ーサ2は第4図および第5図で示すように模擬燃
料棒1の一端部に対向する基端部から所定長さに
わたる部分がステンレス鋼などの金属からなる中
空のパイプ8によつて形成されている。このパイ
プ8の長さは少なくとも模擬燃料棒1の軸方向に
おいて設定された熱電対3により温度測定する各
個所を全て通過して外管1に巻装できる大きさで
ある。このため、ワイヤスペーサ2は図示するよ
うに少なくとも前記の長さの部分をパイプ8で構
成し、他の残りの部分を中実のワイヤ9で構成し
て、両者を溶接、圧着などの手段により接合する
ようにしても良く、またワイヤスペーサ2全体を
単一のパイプ8で構成するようにしても良い。な
お、ワイヤスペーサ3の外径すなわちパイプ8お
よびワイヤ9の外径は各模擬燃料棒1相互の間に
所定の断面積をもつた隙間を形成するに必要な大
きさを有している。また、パイプ8の壁部には模
擬燃料棒1の外管4に巻装した状態にて熱電対3
により温度測定する各個所に夫々位置してパイプ
8の内外を貫通する透孔10が複数個形成してあ
る。そして、ワイヤスペーサ3はパイプ8を模擬
燃料棒1の外管4にその一端部側から巻装し続い
てワイヤ9を巻装しており、パイプ8の一端部は
試験容器Aの封鎖部材Bを貫通して外部に延出し
ている。熱電対3はシースパイプ11の内部に熱
電対素子12を挿通してなるシーズ型のもので、
ワイヤスペーサ2のパイプ8の内部に挿通して設
けられる。パイプ8の内部に挿通される熱電対3
の数は模擬燃料棒1での温度測定個所の数に対応
するもので、挿通された各熱電対3の基端部はパ
イプ8の基端部に設けたネツク体14に貫通固定
してパイプ8外部に延出し、熱電対素子12が温
度測定回路に接続される。各熱電対3は各温度測
定個所に対応して異なる長さを夫々有しており、
各熱電対3の検出端部(先端部)3aはパイプ8
壁部に形成した各透孔10に対向して位置してい
る。また、各熱電対3の検出端部3aとパイプ8
の先端部(この実施例ではパイプ8とワイヤ9と
の溶接接合部)との間にはステンレス鋼線などか
らなる支持線13が夫々緊張して張設されてお
り、この支持線13の各端部は熱電対3の検出端
部3a(すなわちシーズ管11の端部)とパイプ
8の端部に溶接により固定されている。このた
め、各熱電対3は支持線13に引張されてパイプ
8の軸方向に沿い緊張した状態で支持される。
An embodiment of the simulated fuel rod structure of the present invention will be described with reference to FIGS. 3 to 5. The simulated fuel rod 1 is
As shown in FIG. 3, this is a sheathed heater constructed by inserting a heating wire 5 into the outer tube 4 and filling it with heat-resistant insulating powder 6. Terminal 7 is connected to a power supply circuit. The wire spacer 2 is the outer tube 4 of the simulated fuel rod 1
The coil is wound spirally around the entire axial direction of the coil and fixed by welding. As shown in FIGS. 4 and 5, the wire spacer 2 is formed by a hollow pipe 8 whose portion extending over a predetermined length from its base end opposite to one end of the simulated fuel rod 1 is made of metal such as stainless steel. has been done. The length of the pipe 8 is at least large enough to pass through all the locations where the temperature is to be measured by the thermocouple 3 set in the axial direction of the simulated fuel rod 1 and to be wrapped around the outer tube 1 . Therefore, as shown in the figure, the wire spacer 2 consists of a pipe 8 for at least a portion of the above-mentioned length, and the remaining portion is made of a solid wire 9, and the two are welded, crimped, etc. They may be joined together, or the entire wire spacer 2 may be constructed from a single pipe 8. Note that the outer diameter of the wire spacer 3, that is, the outer diameter of the pipe 8 and the wire 9, has a size necessary to form a gap with a predetermined cross-sectional area between each of the simulated fuel rods 1. In addition, a thermocouple 3 is attached to the wall of the pipe 8 while being wrapped around the outer tube 4 of the simulated fuel rod 1.
A plurality of through holes 10 are formed at each location where the temperature is to be measured and penetrate through the inside and outside of the pipe 8. The wire spacer 3 wraps the pipe 8 around the outer tube 4 of the simulated fuel rod 1 from one end thereof, and then wraps the wire 9 around the outer tube 4 of the test vessel A. It passes through and extends to the outside. The thermocouple 3 is a sheathed type in which a thermocouple element 12 is inserted inside a sheath pipe 11.
The wire spacer 2 is inserted into the pipe 8 and provided therein. Thermocouple 3 inserted into pipe 8
The number corresponds to the number of temperature measurement points in the simulated fuel rod 1, and the base end of each inserted thermocouple 3 is fixed through the neck body 14 provided at the base end of the pipe 8. 8 extends outside, and a thermocouple element 12 is connected to the temperature measurement circuit. Each thermocouple 3 has a different length corresponding to each temperature measurement point,
The detection end (tip) 3a of each thermocouple 3 is a pipe 8
It is located opposite each through hole 10 formed in the wall portion. In addition, the detection end 3a of each thermocouple 3 and the pipe 8
Support wires 13 made of stainless steel wire or the like are stretched under tension between the tips of the pipes (in this embodiment, the welded joints between the pipe 8 and the wire 9). The ends are fixed to the detection end 3a of the thermocouple 3 (ie, the end of the sheath tube 11) and the end of the pipe 8 by welding. Therefore, each thermocouple 3 is pulled by the support wire 13 and supported in a tensed state along the axial direction of the pipe 8.

しかして、模擬燃料棒1は発熱線5の通電によ
り発熱して外管4の周囲のナトリウムを加熱す
る。ワイヤスペーサ2のパイプ8には各温度測定
個所にて透孔10が形成してあるので、ナトリウ
ムが透孔10を通つてパイプ8内部に流入してお
り、透孔10に対して位置する熱電対3の検出端
部3aに接触している。このため、ナトリウムが
加熱されると各温度測定個所において各熱電対3
がナトリウム温度を測定する。
Thus, the simulated fuel rod 1 generates heat by energizing the heating wire 5 and heats the sodium around the outer tube 4. Since through holes 10 are formed in the pipe 8 of the wire spacer 2 at each temperature measurement point, sodium flows into the pipe 8 through the through holes 10, and the thermoelectric cells located relative to the through holes 10 It is in contact with the detection end 3a of pair 3. Therefore, when sodium is heated, each thermocouple 3 at each temperature measurement point
measures the sodium temperature.

このように構成した模擬燃料棒構造体は、熱電
対3がワイヤスペーサ2のパイプ8内部に設けら
れ、模擬燃料棒1の外部にはワイヤスペーサ2の
みが巻装して設けられるので、各模擬燃料棒1相
互の隙間は実際の燃料棒間の隙間と同様にワイヤ
スペーサのみが存在することにより、その断面積
が実際の隙間の断面積に近似したものとなる。ま
た、熱電対3はワイヤスペーサ2のパイプ8内部
に設けられるため、ワイヤスペーサ2に絡まつて
切断されることがない。しかも、ワイヤスペーサ
2のパイプ8は内部が中空で充填物がないため
に、熱電対3の移動、固定が自由で所定の温度測
定個所に対応するように容易に位置決めを行なえ
る。また、パイプ8の壁部に透孔10を形成して
パイプ8内部にナトリウムを流入させ、熱電対3
の温度測定を容易ならしむ構成にできる。また、
支持線3により熱電対3をパイプ8内部で支持す
ることにより、構成を簡単にできる。
In the simulated fuel rod structure configured in this way, the thermocouple 3 is provided inside the pipe 8 of the wire spacer 2, and only the wire spacer 2 is wound around the outside of the simulated fuel rod 1. Similar to the actual gap between fuel rods, the gap between the fuel rods 1 has only a wire spacer, so that its cross-sectional area approximates the cross-sectional area of the actual gap. Moreover, since the thermocouple 3 is provided inside the pipe 8 of the wire spacer 2, it will not become entangled with the wire spacer 2 and be cut. Moreover, since the pipe 8 of the wire spacer 2 is hollow and has no filling, the thermocouple 3 can be moved and fixed freely, and can be easily positioned to correspond to a predetermined temperature measurement point. In addition, a through hole 10 is formed in the wall of the pipe 8 to allow sodium to flow into the pipe 8, and the thermocouple 3
It can be configured to easily measure the temperature of Also,
By supporting the thermocouple 3 inside the pipe 8 using the support wire 3, the configuration can be simplified.

本考案の模擬燃料棒構造体は以上説明したよう
に、原子炉模擬試験装置に用いられるものであつ
て、模擬燃料棒の外部に巻装されるワイヤスペー
サのパイプ内部に熱電対を挿通して設けることに
より、模擬燃料棒の間の隙間をワイヤスペーサの
みが存在する実際の燃料棒間の隙間の大きさに極
力近づけることができ、実際の原子炉に忠実な模
擬試験を行なうことができ、しかも熱電対はワイ
ヤスペーサと絡んで切断される事故がなくなり信
頼性と耐久性を高めることができる。
As explained above, the simulated fuel rod structure of the present invention is used in a nuclear reactor simulation test device, and is constructed by inserting a thermocouple into the pipe of a wire spacer wrapped around the outside of the simulated fuel rod. By providing this, the gap between the simulated fuel rods can be made as close as possible to the size of the gap between the actual fuel rods where only a wire spacer exists, making it possible to conduct a simulation test that is faithful to the actual reactor. Moreover, the thermocouple does not get tangled with the wire spacer and is cut off, which improves reliability and durability.

さらに、ワイヤスペーサのパイプの周壁に透孔
を形成してあるので、パイプ内部にナトリウムが
流入して熱電対による温度測定を容易に行なえ、
また熱電対の検出端に取付けた支持線をワイヤス
ペーサのパイプに固定することにより、熱電対を
パイプ内部にて簡単な構成で確実に支持すること
ができる。
Furthermore, since a through hole is formed in the peripheral wall of the pipe of the wire spacer, sodium flows into the pipe, making it easy to measure the temperature with a thermocouple.
Furthermore, by fixing the support wire attached to the detection end of the thermocouple to the pipe of the wire spacer, the thermocouple can be reliably supported inside the pipe with a simple structure.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は原子炉模擬試験装置を示す縦断面図、
第2図は同横断面図、第3図は本考案の模擬燃料
構造体の一実施例を示す一部切欠側面図、第4図
はワイヤスペーサを示す側面図、第5図はワイヤ
スペーサを拡大して示す縦断面図である。 1……模擬燃料棒、2……ワイヤスペーサ、3
……熱電対、4……外管、5……発熱線、8……
パイプ、10……透孔、13……支持線。
Figure 1 is a vertical cross-sectional view showing the nuclear reactor simulation test equipment;
Fig. 2 is a cross-sectional view of the same, Fig. 3 is a partially cutaway side view showing an embodiment of the simulated fuel structure of the present invention, Fig. 4 is a side view showing a wire spacer, and Fig. 5 is a side view showing a wire spacer. FIG. 3 is an enlarged vertical cross-sectional view. 1... Simulated fuel rod, 2... Wire spacer, 3
...Thermocouple, 4...Outer tube, 5...Heating wire, 8...
Pipe, 10...through hole, 13...support line.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 外管内に絶縁物を介して発熱線を設けてなる模
擬燃料棒と、この模擬燃料棒の外管に巻装され少
なくも一方の端部から中間部にかけてパイプで形
成されたワイヤスペーサと、このワイヤスペーサ
の前記パイプの内部空間に挿通して設けられた熱
電対とを具備し、この熱電対は、この検出端に取
付けた支持線を前記ワイヤスペーサのパイプの端
部に固定して支持され、且つ前記パイプの周壁に
は前記熱電対の検出端に対応して透孔が形成され
ていることを特徴とする模擬燃料棒構造体。
A simulated fuel rod in which a heat-generating wire is provided in an outer tube through an insulator, a wire spacer wrapped around the outer tube of the simulated fuel rod and formed of a pipe from at least one end to an intermediate portion; a thermocouple inserted through the inner space of the pipe of the wire spacer, and the thermocouple is supported by fixing a support wire attached to the detection end to the end of the pipe of the wire spacer. . A simulated fuel rod structure, wherein a through hole is formed in the peripheral wall of the pipe in correspondence with the detection end of the thermocouple.
JP1981143572U 1981-09-28 1981-09-28 Simulated fuel rod structure Granted JPS5847799U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1981143572U JPS5847799U (en) 1981-09-28 1981-09-28 Simulated fuel rod structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1981143572U JPS5847799U (en) 1981-09-28 1981-09-28 Simulated fuel rod structure

Publications (2)

Publication Number Publication Date
JPS5847799U JPS5847799U (en) 1983-03-31
JPS6139359Y2 true JPS6139359Y2 (en) 1986-11-11

Family

ID=29936553

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1981143572U Granted JPS5847799U (en) 1981-09-28 1981-09-28 Simulated fuel rod structure

Country Status (1)

Country Link
JP (1) JPS5847799U (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5810159Y2 (en) * 1978-12-08 1983-02-24 助川電気工業株式会社 Mounting part of simulated fuel rod

Also Published As

Publication number Publication date
JPS5847799U (en) 1983-03-31

Similar Documents

Publication Publication Date Title
US4556475A (en) Electrochemical gas sensor probe construction
US3874239A (en) Surface thermocouple
US3890485A (en) Electric heaters
US3898431A (en) Tubular electric heater with a thermocouple assembly
US4929092A (en) Resistance temperature detector
FR2398301A1 (en) ELECTROCHEMICAL MEASUREMENT PROBE
US4023411A (en) Temperature measuring device
JPS6139359Y2 (en)
US4087693A (en) Sensors for use in nuclear reactor cores
US5134772A (en) Method of making a U-shaped heated extended resistance temperature sensor
US4162175A (en) Temperature sensors
US3970481A (en) Thermocouple
AU598150B2 (en) Sensor used for electrical heating measurement
US4804935A (en) Sensor for measurement by electrical heating and method for manufacture of the same
CN111312418A (en) Thermal probe applied to high-temperature ball bed effective thermal conductivity measurement
JPH05164624A (en) Sheathed thermocouple device and cartridge heater device
Lacroix et al. Using the HELIOS facility for assessment of bundle-jacket thermal coupling in a CICC
EP0190858A2 (en) Temperature-sensitive probes
JPS6349703Y2 (en)
US3041387A (en) Thermocouple wire connection
JPS6118630Y2 (en)
JPS5810159Y2 (en) Mounting part of simulated fuel rod
JPS6323906Y2 (en)
SU664094A1 (en) Heat probe
JPH0439605B2 (en)