JPS6139142B2 - - Google Patents

Info

Publication number
JPS6139142B2
JPS6139142B2 JP54162339A JP16233979A JPS6139142B2 JP S6139142 B2 JPS6139142 B2 JP S6139142B2 JP 54162339 A JP54162339 A JP 54162339A JP 16233979 A JP16233979 A JP 16233979A JP S6139142 B2 JPS6139142 B2 JP S6139142B2
Authority
JP
Japan
Prior art keywords
carbon dioxide
resin
mold
caking material
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54162339A
Other languages
Japanese (ja)
Other versions
JPS5684142A (en
Inventor
Shigeo Sato
Susumu Koarai
Takeshi Sumi
Masatoshi Yoshida
Masae Kuroda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP16233979A priority Critical patent/JPS5684142A/en
Publication of JPS5684142A publication Critical patent/JPS5684142A/en
Publication of JPS6139142B2 publication Critical patent/JPS6139142B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は炭酸ガスの通気により迅速に硬化する
有機鋳型粘結材料に関するものである。 従来から水ガラスを粘結材料とし、炭酸ガスの
通気によつて硬化させる、所謂CO2法が広く普及
している。 このCO2法は、粘結剤が安価であること、炭酸
ガス通気後直ちに抜型できるので生産性が高いこ
と、配合秒を密閉容器に保存すれば反応せず、可
使時間が長いこと等の利点を持つている。 しかし他方、鋳湯時の熱によつて水ガラスが焼
結してしまうので、中子の場合など砂落ちが悪
く、崩壊性が問題となり、それが作業工数上、し
たがつてコスト面で大きな欠点となつている。そ
こで従来からCO2法の崩壊性改善には種々の方法
が試みられて来た。水ガラスに澱分質、繊維質等
を添加する方法は若干の効果を示すが、水ガラス
の硬化を阻害して粘結力の低下を招くので、強度
と崩壊性の両方を十分満足させることができな
い。崩壊性に関しては有機粘結材料が有利であ
る。 シエルモールド法、フランノーベーク法等は崩
壊性良好であるが、シエルモールド法は加熱硬化
型で生産性が劣る。また、フランノーベーク法は
抜型可能な強度になるまでに長時間かかるので生
産性が悪く、常温で反応が進むので可使時間が短
いという欠点をもつている。 前述したCO2法の利点のうち、高い生産性、長
い可使時間は水ガラスのガズ通気によつて初めて
迅速に硬化するという特性によるものであり、し
たがつて、有機粘結材料でかつガス硬化型のもの
が望ましいと言える。最近フエノール樹脂とイソ
シアネートを粘結剤とし、アミンガスを吹き込む
ことで常温で硬化させるコールドボツクス法が開
発された。このコールドボツクス法は生産性、可
使時間、崩壊性をほぼ満足するが、アミンガスの
毒性が強いので作業環境を汚染するという重大な
欠点を持つている。 本発明は以上の従来技術の欠点を解決する目的
でなされたもので、水酸基の一部もしくは全部を
カルボン酸エーテル化したフエノール樹脂を粘結
剤成分として用いた取扱いの安全な炭酸ガスで硬
化し、高い生産性と長い水ガラスを持ち、崩壊性
の良好な鋳型粘結材料を提供するものである。 本発明は(a)水酸基の一部もしくは全部をカルボ
ン酸エーテル化したフエノール樹脂のアルカリ金
属塩と(b)水と(c)多価金属の水酸化物および/また
は酸化物と(d)必要に応じて有機溶剤からなる炭酸
ガス硬化用鋳型粘結材料に関するものでフエノー
ル樹脂の水酸基の一部または全部をカルボン酸エ
ーテル化することにより粘結力を向上できること
を見い出したことに基づくものである。この理由
は十分に解析されていないが、その理由の一つに
フエノール性水酸基のカルシウム塩は比較的水溶
性であるが、これに比べてカルボン酸のカルシウ
ム塩は一般に難溶性であり、これが粘結力の向上
をもたらしたものと考えられる。 本発明に用いる水酸基の一部もしくは全部をカ
ルボン酸エーテル化したカルボン酸エーテル化フ
エノール樹脂はフエノール樹脂の水酸基と脂肪族
カルボン酸のモノハロゲン誘導体との反応によつ
て得られ、フエノール樹脂の水酸基はそのまま、
またはアルカリフエノラートの形で反応させる。
また、カルボン酸エーテル化フエノール類モノマ
ーとアルデヒド類との縮合反応によつてもカルボ
ン酸エーテル化フエノール樹脂を得ることができ
る。脂肪族カルボン酸のモノハロゲン誘導体と反
応させるフエノール樹脂はノボラツク型、レゾー
ル型等の種類に関係なくフエノール性水酸基をも
つのであればよい。又、合成原料についてもフエ
ノール類はフエノールだけでなく、クレゾール、
キシレノール、レゾルシン、またはアルデヒド類
についてはホルムアルデヒド、アセトアルデヒ
ド、フルフラルームなどを使用することができ
る。脂肪族カルボン酸のモノハロゲン誘導体とし
てはクロル酢酸、クロルマロン酸、ブロムステア
リン酸、ブロム酢酸、α―クロムプロピオン酸、
B―クロムプロピオン酸、α―ブロムプロピオン
酸、B―ブロムプロピオン酸等が挙げられる。ま
たカルボン酸エーテル化フエノール類モノマーと
してはフエノキシ酢酸があり、アルデヒド類につ
いては、ホルムアルデヒド、アセトアルデヒド、
フラフラール等のアルデヒド類があり、強酸の存
在化で縮合反応を行い、カルボン酸エーテル化フ
エノール樹脂を得ることができる。以上述べた様
にフエノール樹脂中の水酸基がカルボン酸エーテ
ル化された形に変換された樹脂であれば本発明に
使用することができる。 上記樹脂は苛性アルカリを加えカルボキシル基
をアルカリ金属塩とし水に溶解させて使用する。
苛性アルカリ量は樹脂100重量部に対して10から
100重量部、好ましくは20から80重量部加える。
少なすぎる場合は水溶液にならず、多すぎる場合
は炭酸ガス通気直後の強度が低下する。水溶液に
する理由は炭酸ガス通気時に多価金属と樹脂Na
塩とのイオン反応を起させて粘結力を得るためで
あり、水の量が少ないと反応が起りにくく、多す
ぎると粘結力の出現が遅くなる。水は樹脂100重
量部に対して100〜500重量部、好ましくは150〜
250重量部使用される。 本発明に使用される多価金属の酸化物および/
または水酸化物としてはCa,Mg,Ba,Zn,A
,Fe等のそれらが挙げられ、好ましくはCa,
Mg,Baであり、経済的にはCaの水酸化物(消石
灰)が更に好ましい。 これらの酸化物または水酸化物は樹脂100重量
部に対して30〜300重量部、好ましくは50〜150重
量部使用される。以上述べたカルボン酸エーテル
化フエノール樹脂のアルカリ金属、塩、水および
多価金属の酸化物およびまたは水酸化物が本発明
の主要な成分であり、鋳型粘結材料として使用す
る場合は好ましくは耐火物粒子に樹脂のアルカリ
金属水溶液を投入混練し、次いで多価金属の酸化
物および/または水酸化物を投入混練して鋳型材
料とする。粘結材料は耐火物粒子に対し1〜10%
添加すれば炭酸ガス通気後迅速に硬化し直ちに抜
型できる強度が得られる。 本発明の粘結材料には必要に応じて有機溶剤を
配合することができる。有機溶剤は樹脂アルカリ
金属塩の水に対する溶解を助け、かつ水溶液の粘
度を下げ、また炭酸ガス通気直後の強度を向上さ
せる効果を示すものである。有機溶剤としてはメ
タノール、エタノール等の低級1価アルコール
類、多価アルコール類、アセトン、酢酸エステ
ル、セルソルブなどが使用できる。有機溶剤は樹
脂100重量部に対し、1〜100重量部を樹脂のアル
カリ金属水溶液に添加または混練時に投入して使
用される。多価アルコール類としてはグリセリ
ン、エチレングリコール、プロピレングリコール
等が用いられる。 次に実施例で本発明を具体的に説明するが、こ
れらに限定されるものではない。 実施例 1. 冷却管、温度計、撹拌装置を備えた四ツ口フラ
スコにフエノール940g、80%パラホルム、225
g、37%ホルマリン162gおよびシユウ酸10gを
投入し、105℃で3hr反応後脱水、濃縮し軟化点85
℃のノボラツク型フエノール樹脂(樹脂A)を得
た。 別のフラスコに樹脂A100gをとり、メタノー
ル100gを投入して溶解させ、予めクロム酢酸9.5
gをメタノール40gに溶解させた液を加え、65℃
で反応させた。生成する塩化水素は冷却管の上か
ら20%水酸化ナトリウム水溶液に導き吸収させ
た。5hr反応後減圧下でメタノールを除去し、2
回水洗をして未反応のクロル酢酸を除き得られた
樹脂110gに対して20%水酸化ナトリウム水溶液
75g、メタノール10gおよびグリセリン10gを加
えて溶解させ粘結剤とした。 実施例 2. 実施例1の樹脂A100gに20%水酸化ナトリウ
ム水溶液200gを加え溶解させ、これに水200gに
溶かしたクロルマロン酸139gを徐々に加えなが
ら80℃で1hr反応させ、冷却し樹脂状沈澱物を得
た。 2回湯洗し、得られた樹脂102gに水50g、メ
タノール10gおよびエチレングリコール5gを加
えて溶解し、粘結剤とした。 実施例 3. 冷却管、温度計、撹拌装置を備えた四ツ口フラ
スコにフエノール940g、37%ホルマリン973gお
よび20%水酸化ナトリウム水溶液60gを投入し、
60℃で8hr反応させ30℃で100pのレゾール型フエ
ノール樹脂を得た。この樹脂110gに40%水酸化
カリウム水溶液200gを加え、これに水200gに溶
したブロムステアリン酸234gを徐々に加えなが
ら80℃で1hr反応させ、冷却して樹脂状沈澱物を
得た。2回湯洗し得られた樹脂102gに水50g、
エタノール10g、メチルセルソルブ10gを加えて
溶解させ粘結剤とした。 実施例 4. 冷却管、温度計、撹拌装置を備えた四ツ口フラ
スコにフエノキシ酢酸152gおよび37%ホルマリ
ン140gを投入し撹拌しながら濃硫酸50gを滴下
していき95℃で5hr反応させ、次いで、冷却し、
樹脂沈澱物を得た。2回湯洗して得られた樹脂83
gに20%水酸化ナトリウム水溶液80g、メタノー
ル10gおよびグリセリン10gを加え、溶解させ粘
結剤とした。 対照例 カルボン酸エーテルを行なわない例として、実
施例1の樹脂A100gに20%水酸化ナトリウム200
g、メタノール20gおよびグリセリン20gを加
え、溶解させ粘結剤とした。 実施例1〜4および対照例1の粘結剤をフラタ
リー珪砂に対し樹脂固形分が1.5%になる量を添
加し1分間混練後、多価金属の酸化物または水酸
化物を珪砂に対し1.0%になる量を投入し1分間
混練して砂と粘結材料とからなる配合砂を得た。
この配合砂160〜165gを50φ×50mmの試験片につ
き固め2Kg/cm、25/minの炭酸ガスを20秒通気
し通気直後と24hr後の圧縮強度を測定した。結果
を表―1に示す。
The present invention relates to an organic template caking material that hardens rapidly by aeration of carbon dioxide gas. Conventionally, the so-called CO 2 method, which uses water glass as a caking material and hardens it by aeration of carbon dioxide gas, has been widely used. This CO 2 method has several advantages, including that the binder is inexpensive, the mold can be removed immediately after aeration of carbon dioxide gas, resulting in high productivity, and the mixture does not react if stored in an airtight container, resulting in a long pot life. Has advantages. However, on the other hand, the water glass is sintered by the heat of the casting process, so sand removal is difficult in the case of cores, and collapsibility becomes a problem, which increases the number of man-hours and costs. It has become a drawback. Therefore, various methods have been tried to improve the disintegration properties of the CO 2 method. The method of adding starch, fibers, etc. to water glass has some effect, but it inhibits the hardening of water glass and causes a decrease in cohesive strength, so it is necessary to satisfy both strength and disintegration properties sufficiently. I can't. Organic caking materials are advantageous in terms of disintegrability. The shell mold method, furan-no-bake method, etc. have good disintegration properties, but the shell mold method is a heat-curing type and has poor productivity. Further, the furanobake method has the disadvantage that productivity is poor because it takes a long time to reach a strength that can be removed from a mold, and that the pot life is short because the reaction proceeds at room temperature. Among the advantages of the CO 2 method mentioned above, the high productivity and long pot life are due to the property that water glass quickly hardens only when gas is aerated. A hardening type is preferable. Recently, a cold box method has been developed that uses phenolic resin and isocyanate as a binder and cures at room temperature by blowing in amine gas. Although this cold box method generally satisfies productivity, pot life, and disintegration, it has the serious drawback of contaminating the working environment due to the strong toxicity of amine gas. The present invention was made for the purpose of solving the above-mentioned drawbacks of the prior art, and uses a phenol resin in which some or all of the hydroxyl groups have been converted to carboxylic acid ether as a binder component, and is cured with carbon dioxide gas, which is safe to handle. , which provides a mold caking material with high productivity, long water glass, and good disintegration properties. The present invention comprises (a) an alkali metal salt of a phenolic resin in which some or all of the hydroxyl groups have been converted into carboxylic acid ethers, (b) water, (c) a hydroxide and/or oxide of a polyvalent metal, and (d) the necessary This invention relates to a mold caking material for curing with carbon dioxide gas made of an organic solvent according to the requirements of the industry, and is based on the discovery that the caking strength can be improved by converting some or all of the hydroxyl groups of a phenolic resin into carboxylic acid ethers. . The reason for this has not been fully analyzed, but one reason is that calcium salts of phenolic hydroxyl groups are relatively water-soluble, whereas calcium salts of carboxylic acids are generally poorly soluble; This is thought to have led to an improvement in cohesion. The carboxylic acid etherified phenolic resin in which part or all of the hydroxyl groups used in the present invention are carboxylic etherified can be obtained by reacting the hydroxyl groups of a phenolic resin with a monohalogen derivative of an aliphatic carboxylic acid, and the hydroxyl groups of the phenolic resin are As it is,
Or react in the form of alkali phenolate.
Further, a carboxylic acid etherified phenol resin can also be obtained by a condensation reaction between a carboxylic acid etherified phenol monomer and an aldehyde. The phenolic resin to be reacted with the monohalogen derivative of aliphatic carboxylic acid may be of any type, such as novolac type or resol type, as long as it has a phenolic hydroxyl group. In addition, regarding synthetic raw materials, phenols include not only phenol but also cresol,
For xylenol, resorcinol, or aldehydes, formaldehyde, acetaldehyde, furfurame, etc. can be used. Monohalogen derivatives of aliphatic carboxylic acids include chloroacetic acid, chloromalonic acid, bromostearic acid, bromoacetic acid, α-chromiumpropionic acid,
Examples include B-chromium propionic acid, α-bromopropionic acid, B-bromopropionic acid, and the like. Carboxylic acid etherified phenol monomers include phenoxyacetic acid, and aldehydes include formaldehyde, acetaldehyde,
There are aldehydes such as furafural, and by performing a condensation reaction in the presence of a strong acid, a carboxylic acid etherified phenolic resin can be obtained. As described above, any resin in which the hydroxyl groups in the phenol resin are converted into carboxylic acid ether can be used in the present invention. The above resin is used by adding caustic alkali to convert the carboxyl group into an alkali metal salt and dissolving it in water.
The amount of caustic alkali is from 10 to 100 parts by weight of resin.
Add 100 parts by weight, preferably 20 to 80 parts by weight.
If it is too small, it will not become an aqueous solution, and if it is too large, the strength immediately after carbon dioxide gas ventilation will decrease. The reason for making an aqueous solution is that when carbon dioxide gas is aerated, polyvalent metals and resin Na
This is to obtain cohesive force by causing an ionic reaction with the salt; if the amount of water is small, the reaction will be difficult to occur, and if it is too large, the appearance of cohesive force will be delayed. Water is 100 to 500 parts by weight, preferably 150 to 500 parts by weight, based on 100 parts by weight of resin.
250 parts by weight are used. Polyvalent metal oxides and/or polyvalent metal oxides used in the present invention
Or as hydroxides, Ca, Mg, Ba, Zn, A
, Fe, etc., preferably Ca,
Mg, Ba, and economically more preferable is Ca hydroxide (slaked lime). These oxides or hydroxides are used in an amount of 30 to 300 parts by weight, preferably 50 to 150 parts by weight, per 100 parts by weight of the resin. The above-mentioned alkali metals, salts, water, and polyvalent metal oxides and/or hydroxides of the carboxylic acid etherified phenolic resin are the main components of the present invention, and when used as a mold caking material, preferably fireproof. An aqueous alkali metal solution of resin is added to the material particles and kneaded, and then an oxide and/or hydroxide of a polyvalent metal is added and kneaded to obtain a mold material. Caking material is 1 to 10% of refractory particles
If added, it will harden quickly after carbon dioxide gas ventilation, and will have the strength to be immediately removed from the mold. An organic solvent can be added to the caking material of the present invention, if necessary. The organic solvent has the effect of helping the resin alkali metal salt to dissolve in water, lowering the viscosity of the aqueous solution, and improving the strength immediately after carbon dioxide gas ventilation. As the organic solvent, lower monohydric alcohols such as methanol and ethanol, polyhydric alcohols, acetone, acetic acid ester, cellosolve, etc. can be used. The organic solvent is used in an amount of 1 to 100 parts by weight per 100 parts by weight of the resin, by adding it to the aqueous alkali metal solution of the resin or adding it during kneading. Glycerin, ethylene glycol, propylene glycol, etc. are used as the polyhydric alcohol. EXAMPLES Next, the present invention will be specifically explained with reference to Examples, but the present invention is not limited thereto. Example 1. In a four-necked flask equipped with a condenser, thermometer, and stirrer, 940 g of phenol, 80% paraform, 225
g, 162 g of 37% formalin and 10 g of oxalic acid were reacted at 105°C for 3 hours, then dehydrated and concentrated until the softening point was 85.
A novolak-type phenolic resin (resin A) was obtained. Take 100g of resin A in another flask, add 100g of methanol to dissolve it, and prepare 9.5g of chromium acetate in advance.
Add a solution of 40 g of methanol and heat to 65℃.
I reacted with The generated hydrogen chloride was introduced into a 20% aqueous sodium hydroxide solution from the top of the cooling tube and absorbed. After 5 hours of reaction, methanol was removed under reduced pressure and 2
20% aqueous sodium hydroxide solution for 110g of the resin obtained by washing with water twice to remove unreacted chloroacetic acid.
75 g, methanol 10 g and glycerin 10 g were added and dissolved to form a binder. Example 2. Add and dissolve 200 g of a 20% aqueous sodium hydroxide solution to 100 g of the resin A of Example 1. To this, 139 g of chlormalonic acid dissolved in 200 g of water was gradually added, reacting at 80°C for 1 hour, and cooling to form a resinous precipitate. I got something. The resin was washed twice with hot water, and 50 g of water, 10 g of methanol, and 5 g of ethylene glycol were added to and dissolved in 102 g of the obtained resin to obtain a binder. Example 3. 940 g of phenol, 973 g of 37% formalin, and 60 g of 20% aqueous sodium hydroxide solution were put into a four-necked flask equipped with a condenser, thermometer, and stirrer.
The reaction was carried out at 60°C for 8 hours to obtain a 100p resol type phenolic resin at 30°C. To 110 g of this resin, 200 g of a 40% aqueous potassium hydroxide solution was added, and while 234 g of bromstearic acid dissolved in 200 g of water was gradually added thereto, the mixture was reacted at 80° C. for 1 hour and cooled to obtain a resinous precipitate. 102g of resin obtained by washing twice with hot water, 50g of water,
10 g of ethanol and 10 g of methylcellosolve were added and dissolved to form a binder. Example 4. 152 g of phenoxyacetic acid and 140 g of 37% formalin were put into a four-necked flask equipped with a cooling tube, thermometer, and stirring device, and while stirring, 50 g of concentrated sulfuric acid was added dropwise to react at 95°C for 5 hours. , cooled,
A resin precipitate was obtained. Resin 83 obtained by washing twice with hot water
80 g of a 20% aqueous sodium hydroxide solution, 10 g of methanol, and 10 g of glycerin were added and dissolved to form a binder. Control example: As an example in which carboxylic acid ether is not used, 200 g of 20% sodium hydroxide is added to 100 g of resin A of Example 1.
g, 20 g of methanol and 20 g of glycerin were added and dissolved to form a binder. The binders of Examples 1 to 4 and Comparative Example 1 were added to flattary silica sand in an amount such that the resin solid content was 1.5%, and after kneading for 1 minute, polyvalent metal oxides or hydroxides were added to the silica sand in an amount of 1.5%. % and kneaded for 1 minute to obtain mixed sand consisting of sand and caking material.
160 to 165 g of this mixed sand was compacted into a 50φ x 50 mm test piece, and carbon dioxide gas was aerated at 2 Kg/cm and 25/min for 20 seconds, and the compressive strength was measured immediately after aerating and after 24 hours. The results are shown in Table-1.

【表】 本発明の粘結材料はカルボン酸エーテル化を行
つていない対照例に比較し、通ガス直後強度並び
に24hr強度とも上まわり、従つて本発明により炭
酸ガス通気で迅速に硬化し、すなわち生産性が良
く更に有機粘結材料であるので崩壊性のよい鋳型
をつくることができた。
[Table] The caking material of the present invention exceeds the strength immediately after passing through the gas and the 24-hour strength as compared to the control example which is not subjected to carboxylic acid etherification. In other words, it was possible to make molds with good productivity and, since it was an organic caking material, with good disintegration.

Claims (1)

【特許請求の範囲】 1 水酸基の一部もしくは全部をカルボン酸エー
テル化したフエノールのアルカリ塩と(b)水と(c)多
価金属の水酸化物および/または酸化物(d)と必要
に応じて有機溶剤からなる炭酸ガス硬化用鋳型粘
結材料。 2 多価金属の水酸化物およびまたは酸化物がア
ルカリ土類金属の水酸化物およびまたは酸化物で
ある特許請求の範囲第1項記載の炭酸ガス硬化用
鋳型粘結材料。 3 アルカリ土類金属の水酸化物が消石灰である
特許請求の範囲第2項記載の炭酸ガス硬化用鋳型
粘結材料。 4 有機溶剤が低級1価アルコール類である特許
請求の範囲第1項、第2項または第3項記載の炭
酸ガス硬化用鋳型粘結材料。 5 有機溶剤が多価アルコールである特許請求の
範囲第1項、第2項または第3項記載の炭酸ガス
硬化用鋳型粘結材料。 6 多価アルコールがグリセリンである特許請求
の範囲第5項記載の炭酸ガス硬化用鋳型粘結材
料。
[Scope of Claims] 1. An alkali salt of phenol in which some or all of the hydroxyl groups are etherified with carboxylic acid, (b) water, (c) a hydroxide and/or oxide of a polyvalent metal (d), and as necessary Template caking material for carbon dioxide curing made of organic solvent as required. 2. The mold caking material for carbon dioxide curing according to claim 1, wherein the polyvalent metal hydroxide and/or oxide is an alkaline earth metal hydroxide and/or oxide. 3. The mold caking material for carbon dioxide curing according to claim 2, wherein the alkaline earth metal hydroxide is slaked lime. 4. The mold caking material for carbon dioxide curing according to claim 1, 2 or 3, wherein the organic solvent is a lower monohydric alcohol. 5. The mold caking material for carbon dioxide curing according to claim 1, 2 or 3, wherein the organic solvent is a polyhydric alcohol. 6. The mold caking material for carbon dioxide curing according to claim 5, wherein the polyhydric alcohol is glycerin.
JP16233979A 1979-12-13 1979-12-13 Mold binder cured with carbon dioxide Granted JPS5684142A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16233979A JPS5684142A (en) 1979-12-13 1979-12-13 Mold binder cured with carbon dioxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16233979A JPS5684142A (en) 1979-12-13 1979-12-13 Mold binder cured with carbon dioxide

Publications (2)

Publication Number Publication Date
JPS5684142A JPS5684142A (en) 1981-07-09
JPS6139142B2 true JPS6139142B2 (en) 1986-09-02

Family

ID=15752669

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16233979A Granted JPS5684142A (en) 1979-12-13 1979-12-13 Mold binder cured with carbon dioxide

Country Status (1)

Country Link
JP (1) JPS5684142A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4989315A (en) * 1972-12-29 1974-08-27

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4989315A (en) * 1972-12-29 1974-08-27

Also Published As

Publication number Publication date
JPS5684142A (en) 1981-07-09

Similar Documents

Publication Publication Date Title
US5032642A (en) Phenolic resin compositions
JPH0733464B2 (en) Modifier for aqueous base solution of phenolic resole resin
US5021539A (en) Alkaline benzylic ether phenolic resin binders
JP2003511518A (en) Improvement of ester curing binder
US4988745A (en) Ester hardeners for phenolic resin binder systems
JPS6139142B2 (en)
WO1990006903A1 (en) Phenolic resins
JP6798059B1 (en) Binder composition for molding
US5036116A (en) Ester hardeners for phenolic resin binder systems
JP2831830B2 (en) Binder composition for foundry sand
JP3161563B2 (en) Mold production method
JPS58184034A (en) Resin coated sand
JP3025762B1 (en) Mold manufacturing method
JP3249010B2 (en) Manufacturing method of casting mold
JP3197973B2 (en) Composition for foundry sand
JPH0725990B2 (en) Method for producing phenolic resin binder
JPH08164439A (en) Resin coated aggregate
JP2521869B2 (en) Method for producing water-soluble phenol resin
JPH04294839A (en) Binder for molding sand and its manufacture
JPH0890148A (en) Phenolic resin composition for casting mold
JPH07308731A (en) Phenolic resin composition for gas curing casting mold
JPH0531550A (en) Production of casting mold
JP3330886B2 (en) Mold resin composition and method for producing mold
JPH09122819A (en) Sweeping mold type molding method
JP3221803B2 (en) Binder composition for mold, mold composition and method for producing mold