JPS6139045B2 - - Google Patents

Info

Publication number
JPS6139045B2
JPS6139045B2 JP6069877A JP6069877A JPS6139045B2 JP S6139045 B2 JPS6139045 B2 JP S6139045B2 JP 6069877 A JP6069877 A JP 6069877A JP 6069877 A JP6069877 A JP 6069877A JP S6139045 B2 JPS6139045 B2 JP S6139045B2
Authority
JP
Japan
Prior art keywords
pressure
thermistor
temperature coefficient
coefficient thermistor
positive temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6069877A
Other languages
Japanese (ja)
Other versions
JPS53145782A (en
Inventor
Yukio Matsumoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP6069877A priority Critical patent/JPS53145782A/en
Publication of JPS53145782A publication Critical patent/JPS53145782A/en
Publication of JPS6139045B2 publication Critical patent/JPS6139045B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Resistance Heating (AREA)
  • Cookers (AREA)

Description

【発明の詳細な説明】 本発明は熱源として正特性サーミスタを用いた
圧力形加熱調理器に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a pressure type cooking device using a positive temperature coefficient thermistor as a heat source.

従来、正特性サーミスタを熱源とする圧力鍋が
発明され、これは正特性サーミスタの入力が温度
上昇に従い自動的に減少することから圧力調整弁
の作動中における熱放出損失を軽減できると云う
点で優れた可能性を有していたが、次の理由によ
り実用化が困難であつた。第1図に従来の熱源の
構造を示す。この第1図において、1は電極2及
び3により挾まれた正特性サーミスタで、この正
特性サーミスタ1は鍋底4に前記電極3及び絶縁
板5を介して接触された構造になつており、この
構造によれば正特性サーミスタ1の発熱中心から
鍋底4の表面までの間の全熱抵抗が極めて大き
く、一個の正特性サーミスタ当り5〜10℃/Wの
熱抵抗となることが実験的に知られている。これ
は正特性サーミスタ1の厚さ方向の熱抵抗と、正
特性サーミスタ1及び電極3間の接触抵抗と、絶
縁板5の厚さ方向の熱抵抗によるものである。熱
源としての全熱抵抗は、正特性サーミスタ1の配
置個数に反比例するが、その配置個数が圧力鍋の
場合、多くて五個程度が限度であるから、熱抵抗
は1℃/W程度にすることが限度である。一方、
正特性サーミスタの熱的出力Pは近似的に次式で
表わされる。
Conventionally, a pressure cooker using a positive temperature coefficient thermistor as a heat source has been invented, and this is because the input of the positive temperature coefficient thermistor automatically decreases as the temperature rises, thereby reducing heat release loss during operation of the pressure regulating valve. Although it had excellent potential, it was difficult to put it into practical use for the following reasons. Figure 1 shows the structure of a conventional heat source. In FIG. 1, reference numeral 1 denotes a positive temperature coefficient thermistor sandwiched between electrodes 2 and 3. This positive coefficient thermistor 1 is in contact with a pot bottom 4 via the electrode 3 and an insulating plate 5. According to the structure, it is experimentally known that the total thermal resistance between the heat generation center of the PTC thermistor 1 and the surface of the pot bottom 4 is extremely large, and the thermal resistance is 5 to 10°C/W per PTC thermistor. It is being This is due to the thermal resistance of the PTC thermistor 1 in the thickness direction, the contact resistance between the PTC thermistor 1 and the electrode 3, and the thermal resistance of the insulating plate 5 in the thickness direction. The total thermal resistance as a heat source is inversely proportional to the number of PTC thermistors 1 arranged, but in the case of a pressure cooker, the maximum number of such thermistors arranged is about five, so the thermal resistance should be about 1°C/W. That is the limit. on the other hand,
The thermal output P of a positive temperature coefficient thermistor is approximately expressed by the following equation.

P=C−T/Pth ……(1) ここで、Cpは正特性サーミスタのキユーリー
点温度、Tpは負荷の温度、Pthは正特性サーミ
スタから鍋底等負荷に到ぬ間の熱抵抗である。第
5図には正特性サーミスタを熱源とした圧力鍋に
おける入力Pと、負荷(内容物)例えば水の温度
Tとの関係が示されている。この第5図におい
て、曲線6は入力に対する負荷の温度特性を示
し、特に曲線6の一点鎖線7は圧力調整弁の動作
開始後の温度特性、二点鎖線8は圧力調整弁が故
障して圧力抜き作用が行なわれなかつた場合の温
度特性を示し、更に点線9は圧力鍋が布等で包ま
れる等熱放散の極めて低い状態で用いられる等異
常使用され、しかも圧力調整弁が故障した場合の
温度特性を示す。直線10はCp=230℃及びRth
=1℃/Wの正特性サーミスタ1の熱的特性を示
している。この直線10は前記(1)式により得られ
たものである。上記条件の正特性サーミスタ1に
おいて、負荷の温度が50℃及び100℃の時の夫々
の出力P50及びP100は夫々(1)式に順じた下式によ
り得られる。
P=C p -T p /P th ...(1) Here, C p is the Curie point temperature of the PTC thermistor, T p is the temperature of the load, and P th is the time from the PTC thermistor to the load such as the bottom of the pot. is the thermal resistance of FIG. 5 shows the relationship between the input P in a pressure cooker using a positive temperature coefficient thermistor as a heat source and the temperature T of the load (contents), for example, water. In FIG. 5, a curve 6 shows the temperature characteristics of the load with respect to the input. In particular, the one-dot chain line 7 of the curve 6 shows the temperature characteristics after the pressure regulating valve starts operating, and the two-dot chain line 8 shows the temperature characteristic when the pressure regulating valve malfunctions. The dotted line 9 shows the temperature characteristics when the pressure cooker is used in an abnormal manner, such as when the pressure cooker is wrapped in cloth or the like, with very low heat dissipation, and when the pressure regulating valve breaks down. Indicates temperature characteristics. Straight line 10 has C p =230°C and R th
1 shows the thermal characteristics of the positive temperature coefficient thermistor 1 of =1°C/W. This straight line 10 is obtained by the above equation (1). In the positive temperature coefficient thermistor 1 under the above conditions, the outputs P 50 and P 100 when the load temperature is 50° C. and 100° C. are respectively obtained by the following equations based on equation (1).

P50=230−50(℃)/1(℃/W)=180(W
) P100=230−100(℃)/1(℃/W)=130
(W) このP50、P100に対応した点が直線10中のA1
点及びA2点である。直線10と一点鎖線7との
交点A5付近で圧力鍋の内圧が安定し、負荷が略
120℃程度になるようにする場合の正特性サーミ
スタ1の平均出力は実験上、負荷温度90℃程度に
する140(W)(図示A4点)程度であり、この程
度の平均出力では加熱調理に適さない。これを防
止するには(1)式から理解されるように、キユーリ
ー点温度の高い正特性サーミスタを用いればよい
が現状では230℃程度以上のキユーリー点を有す
るものの入手は極めて困難である。一方、直線1
0のような特性の正特性サーミスタ1を用いたも
のにおいて、圧力調整弁が故障した場合、圧力鍋
の内圧は、A5点またはA6点で安定するが、キユ
ーリー点温度が230℃と極めて高く、この温度ま
で上昇する可能性があり、爆発の危険性が極めて
高い。主として以上のように、正特性サーミスタ
の熱抵抗が高いことに基づき、圧力鍋において正
特性サーミスタを熱源とすることの実現が極めて
困難であつた。
P 50 =230-50(℃)/1(℃/W)=180(W
) P 100 =230-100(℃)/1(℃/W)=130
(W) The point corresponding to these P 50 and P 100 is A 1 on the straight line 10
Point and A 2 points. The internal pressure of the pressure cooker becomes stable near the intersection A5 of straight line 10 and dashed line 7 , and the load is approximately
Experimentally, the average output of the positive temperature coefficient thermistor 1 when the temperature is about 120℃ is about 140 (W) ( 4 points in the figure A), which makes the load temperature about 90℃. Not suitable for To prevent this, as understood from equation (1), it is possible to use a positive temperature coefficient thermistor with a high Curie point temperature, but at present it is extremely difficult to obtain one with a Curie point of about 230° C. or higher. On the other hand, straight line 1
If the pressure regulating valve fails in a device using a positive temperature thermistor 1 with characteristics such as 0, the internal pressure of the pressure cooker will stabilize at point A5 or point A6 , but the Curie point temperature will be extremely low at 230℃. It is possible for the temperature to rise to this temperature, posing an extremely high risk of explosion. Mainly as described above, it has been extremely difficult to use a PTC thermistor as a heat source in a pressure cooker due to the high thermal resistance of the PTC thermistor.

本発明は上記の欠点を除去すべくなされたもの
であり、その目的は、熱抵抗の小さい正特性サー
ミスタを形成してこれを熱源とすることによりキ
ユーリー温度の比較的低い正特性サーミスタであ
つても加熱調理用熱源としての役を十分に果すこ
とができ、従つて正特性サーミスタを圧力加熱調
理用熱源とすることを確実に実現でき、またキユ
ーリー点温度が低いので、万一、キユーリー点温
度まで発熱したとしても爆発の危険が軽減され且
つ耐熱及び耐圧構造の形成も容易になる圧力形加
熱調理器を提供するにある。
The present invention has been made in order to eliminate the above-mentioned drawbacks, and its purpose is to form a positive temperature coefficient thermistor with a low thermal resistance and use this as a heat source to provide a positive coefficient thermistor with a relatively low Curie temperature. It is also possible to use a positive temperature coefficient thermistor as a heat source for pressure heating cooking. To provide a pressure type heating cooker which reduces the risk of explosion even if it generates a lot of heat, and which facilitates the formation of a heat-resistant and pressure-resistant structure.

以下、本発明の一実施例を第2図乃至第6図を
参照して説明する。第2図に示す圧力鍋20にお
いて、21は鍋本体、22は蓋、23は蓋に設け
られた圧力調整弁、24は安全弁、25及び26
は鍋本体21側の主取手及び補助取手、27は蓋
22側の取手、28は鍋本体21の脚、29は給
電用プラグ、30は鍋本体21の底部カバー、3
1は加熱装置である。次にこの加熱装置31につ
いて第3図及び第4図により具体的に説明する。
即ち、32は厚さ1mmの矩形状をなした正特性サ
ーミスタで、これの一側表面には両極の各々に対
応するくし歯状をなした第一及び第二の電極3
3,34が互に入り込むような状態に例えばスク
リーン印刷法により20μ程度の厚さとなるように
形成され、夫々の電極33,34に端子板35,
36が接続されている。正特性サーミスタ32の
前記電極33,34を形成した前記一側表面には
熱硬化性シリコンゴムの薄層37を介して熱伝導
の良好なアルミナ磁器等より成る絶縁板38が固
着されている。斯ような絶縁板38を一体化した
正特性サーミスタ32はケース39内に例えば熱
伝導率の高いシリコンゴム40によりモールドさ
れて内設され、その端子板35,36がケース3
9外に導出され、そして、そのケース39は鍋本
体21の底壁21aにねじ41により固着され
る。この固着過程で前記正特性サーミスタ32の
一側表面を電極33,34及び絶縁板38並びに
グリースを介して底壁21a外面に密接させる。
このような構成によると、サーミスタ32は、そ
の一側表面に設けた両電極33,34によつて電
圧が印加されるため、電流が正特性サーミスタ3
2の一側表面部で流れその一側表面部で発熱す
る。従つてその発熱中心が一側表面に極めて接近
しているから、正特性サーミスタ32の厚さ方向
の熱抵抗が極めて低くなり、特にこの実施例では
各電極33,34が極めてうすいこと、及び絶縁
板38の熱伝導率が高いこととあいまつて、正特
性サーミスタ32から負荷までの熱抵抗Rthが極
めて低く、Rthが一個の正特性サーミスタで0.4
℃/Wになることが実験的に確かめられた。この
実施例では二個の正特性サーミスタ32を用い且
つそのキユーリー点温度が共に略160℃のものと
する。従つて熱抵抗Rthは0.2℃/Wとなり、この
使用法による正特性サーミスタ32の特性を第5
図中に直線42にて示した。この直線42は、R
th=0.2℃/W、Cp=160℃とし、Tpを夫夫90℃、
120℃となして前記(1)式を計算し、その結果得ら
れたA7,A8点間を直線で結んだもので、その直
線42の勾配は従来のRthが1℃/Wであるのに
対してこの実施例のRthが0.2℃/Wと低くなつた
分だけ、直線10よりも第5図のように大きな勾
配になることは(1)式より理解される。この第5図
から明らかなように、この実施例の正特性サーミ
スタ32の出力は平均出力を与える負荷温度90℃
付近において、A7点で示す如く350(W)と高
く、加熱調理用源として十分に役立つ出力を得る
ことがきる。圧力調整弁23が作用している設定
温度120℃付近ではA8点に示す如く正特性サーミ
スタ32の出力は200(W)であり、この点で圧
力鍋20の内圧が安定する。この正特性サーミス
タ32による加熱中に、圧力調整弁23が故障し
た場合、温度はA9点またはA10点に示す温度まで
上昇するが、正特性サーミスタ32がキユーリー
点温度まで達する最悪の状態になつたとしても、
そのキユーリー点温度は160℃であつて従来より
も極めて低く、内圧もそれぼど高くはならない。
第6図には圧力鍋20内の温度Tと、飽和蒸気圧
sとの関係が曲線43によつて示されている。
この第6図中、B9点は第5図のA9点に対応して
おり約3.4気圧である。またB11点は正特性サーミ
スタ32がキユーリー点温度160℃に達した第5
図A11点に対応しており約6気圧である。尚、第
5図中A12点は350(W)のニクロム線ヒータを
用いた場合の供給熱と損失熱とが等しくなつた点
を示し、第6図のB12は上記A12に対応していて、
圧力は16気圧である。従つて圧力調整弁の交障
時、従来例における正特性サーミスタ1がキユー
リー点温度23℃に達したときの圧力鍋の内圧が16
気圧をはるかに超えてしまうことがわかる。これ
に対して、本発明の上記実施例の場合は、最悪時
でも第6図中B11点にて示す如く6気圧程度と極
めて低く、これは現存する圧力鍋の耐圧7乃至8
気圧以下であり、爆発の危険性が少ない上に、当
然ながらキユーリー点温度が低いので、総じて圧
力鍋20の耐圧及び耐熱構造の形成が容易にな
る。尚、上記実施例では正特性サーミスタの取付
個数を2個としたが必らずしもこれに限られない
し、またキユーリー点温度を160℃にしたこと及
び鍋底に取り付けたときの正特性サーミスタの熱
抵抗を0.2℃/Wとしたことは一例に過ぎず、0.3
℃/W以下なら性能的に問題はない。
An embodiment of the present invention will be described below with reference to FIGS. 2 to 6. In the pressure cooker 20 shown in FIG. 2, 21 is the pot body, 22 is a lid, 23 is a pressure regulating valve provided on the lid, 24 is a safety valve, 25 and 26
27 is a handle on the lid 22 side, 28 is a leg of the pot body 21, 29 is a power supply plug, 30 is a bottom cover of the pot body 21, 3
1 is a heating device. Next, this heating device 31 will be specifically explained with reference to FIGS. 3 and 4.
That is, 32 is a rectangular positive temperature coefficient thermistor with a thickness of 1 mm, and on one side surface of this thermistor 32 is provided with first and second electrodes 3 in the form of comb teeth corresponding to each of the two poles.
Terminal plates 35 and 34 are formed by screen printing, for example, to a thickness of about 20 μm so that the electrodes 3 and 34 are inserted into each other.
36 are connected. An insulating plate 38 made of alumina porcelain or the like having good thermal conductivity is fixed to the one side surface of the positive temperature coefficient thermistor 32 on which the electrodes 33 and 34 are formed through a thin layer 37 of thermosetting silicone rubber. A positive temperature coefficient thermistor 32 with such an insulating plate 38 integrated therein is molded and installed inside the case 39 using silicone rubber 40 having high thermal conductivity, and its terminal plates 35 and 36 are attached to the case 39.
The case 39 is then fixed to the bottom wall 21a of the pot body 21 with screws 41. In this fixing process, one side surface of the PTC thermistor 32 is brought into close contact with the outer surface of the bottom wall 21a via the electrodes 33, 34, the insulating plate 38, and the grease.
According to such a configuration, voltage is applied to the thermistor 32 by both electrodes 33 and 34 provided on one surface thereof, so that current flows through the positive temperature coefficient thermistor 3.
It flows on one side surface of 2 and generates heat on that one side surface. Therefore, since the heat generation center is extremely close to one surface, the thermal resistance in the thickness direction of the PTC thermistor 32 is extremely low, and in particular, in this embodiment, each electrode 33, 34 is extremely thin and the insulation is extremely low. Coupled with the high thermal conductivity of the plate 38, the thermal resistance R th from the PTC thermistor 32 to the load is extremely low, and R th is 0.4 with one PTC thermistor.
It was experimentally confirmed that ℃/W. In this embodiment, two positive temperature coefficient thermistors 32 are used, and both have a Curie point temperature of approximately 160°C. Therefore, the thermal resistance R th is 0.2°C/W, and the characteristics of the positive temperature coefficient thermistor 32 using this method are expressed as
It is indicated by a straight line 42 in the figure. This straight line 42 is R
th = 0.2℃/W, C p = 160℃, T p is 90℃,
The above formula (1) is calculated assuming that the temperature is 120℃, and the resulting points A 7 and A 8 are connected with a straight line, and the slope of the straight line 42 is the same as the conventional R th of 1℃/W. On the other hand, it can be understood from equation (1) that the slope of the straight line 10 is larger than that of the straight line 10, as shown in FIG. As is clear from this FIG.
In the vicinity, as shown at point A7 , the output is as high as 350 (W), which is sufficiently useful as a cooking source. At around the set temperature of 120° C. where the pressure regulating valve 23 is operating, the output of the positive temperature coefficient thermistor 32 is 200 (W) as shown at point A8 , and the internal pressure of the pressure cooker 20 is stabilized at this point. If the pressure regulating valve 23 fails during heating by the PTC thermistor 32, the temperature will rise to the temperature shown at point A9 or A10 , but the PTC thermistor 32 will reach the Curie point temperature in the worst case. Even if it's summer,
Its Curie point temperature is 160°C, which is much lower than before, and the internal pressure does not increase at all.
In FIG. 6, a curve 43 shows the relationship between the temperature T inside the pressure cooker 20 and the saturated steam pressure Ps .
In this Figure 6, point B 9 corresponds to point A 9 in Figure 5, and is approximately 3.4 atmospheres. In addition, point B 11 is the fifth point where the positive temperature coefficient thermistor 32 has reached the Curie point temperature of 160°C.
Figure A corresponds to 11 points and is approximately 6 atmospheres. Note that point A 12 in Figure 5 indicates the point where the supplied heat and heat loss become equal when using a 350 (W) nichrome wire heater, and B 12 in Figure 6 corresponds to A 12 above. and
The pressure is 16 atmospheres. Therefore, when the pressure regulating valve fails, the internal pressure of the pressure cooker becomes 16°C when the positive temperature coefficient thermistor 1 in the conventional example reaches the Curie point temperature of 23°C.
You can see that it far exceeds the atmospheric pressure. On the other hand, in the case of the above-mentioned embodiment of the present invention, even in the worst case, the pressure resistance is extremely low at about 6 atmospheres as shown at point B11 in Figure 6, which is lower than the pressure resistance of existing pressure cookers of 7 to 8 atmospheres.
Since the pressure is below the atmospheric pressure, there is little risk of explosion, and the Curie point temperature is naturally low, it is generally easier to form a pressure-resistant and heat-resistant structure for the pressure cooker 20. In the above example, the number of PTC thermistors installed was two, but this is not necessarily limited to this, and the Curie point temperature was set to 160°C, and the number of PTC thermistors installed at the bottom of the pot was Setting the thermal resistance to 0.2℃/W is just an example;
If it is below ℃/W, there is no problem in terms of performance.

本発明は以上述べたように、一側表面に電極を
形成してこの一側表面で主たる発熱を行なう正特
性サーミスタを熱源として調理器に設ける構成と
したことにより、正特性サーミスタの負荷への熱
抵抗が減少して出力が増大され、この結果、キユ
ーリー点温度の低い正特性サーミスタでも加熱調
用熱源としての役を十分果すことができ、且つキ
ユーリー点温度が低くてもよいために、万一、キ
ユーリー点温度まで発熱したとしても爆発の危険
が軽減され、且つ耐熱及び耐圧構造の形成も容易
になり、総じて正特性サーミスタを圧力加熱調理
用熱源とすることを確実にできる圧力形加熱調理
器を提供することができる。
As described above, the present invention has a configuration in which a PTC thermistor is provided as a heat source in a cooking appliance, with an electrode formed on one surface and the PTC thermistor mainly generating heat on this one surface, thereby reducing the load on the PTC thermistor. The thermal resistance is reduced and the output is increased, and as a result, even a positive temperature coefficient thermistor with a low Curie point temperature can fully serve as a heat source for heating adjustment. , a pressure-type heating cooker that reduces the risk of explosion even if it generates heat up to the Curie point temperature, makes it easy to form a heat-resistant and pressure-resistant structure, and generally ensures that a positive temperature coefficient thermistor is used as the heat source for pressure cooking. can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は正特性サーミスタを用いた従来の熱源
構造を示す縦断面図、第2図は本発明の一実施例
を示す圧力鍋の縦断面図、第3図及び第4図は夫
夫同実施例における加熱装置の縦断面図及び正特
性サーミスタの斜視図、第5図及び第6図は作用
を説明するための特性曲線図である。 図中、21は鍋本体、22は蓋、23は圧力調
整弁、31は加熱装置、32は正特性サーミス
タ、33及び34は電極、38は絶縁板である。
Fig. 1 is a longitudinal sectional view showing a conventional heat source structure using a positive temperature coefficient thermistor, Fig. 2 is a longitudinal sectional view of a pressure cooker showing an embodiment of the present invention, and Figs. 3 and 4 are the same. A longitudinal sectional view of the heating device, a perspective view of the PTC thermistor, and FIGS. 5 and 6 are characteristic curve diagrams for explaining the operation. In the figure, 21 is a pot body, 22 is a lid, 23 is a pressure regulating valve, 31 is a heating device, 32 is a positive temperature coefficient thermistor, 33 and 34 are electrodes, and 38 is an insulating plate.

Claims (1)

【特許請求の範囲】[Claims] 1 熱源として配置された正特性サーミスタの一
側表面に電極の両極を形成してこの一側表面で主
たる発熱が行なわれるようにしたことを特徴とす
る圧力形加熱調理器。
1. A pressure type cooking device characterized in that both poles of an electrode are formed on one side surface of a positive temperature coefficient thermistor arranged as a heat source so that the main heat generation is performed on this one side surface.
JP6069877A 1977-05-24 1977-05-24 Pressure heating cooking instrument Granted JPS53145782A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6069877A JPS53145782A (en) 1977-05-24 1977-05-24 Pressure heating cooking instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6069877A JPS53145782A (en) 1977-05-24 1977-05-24 Pressure heating cooking instrument

Publications (2)

Publication Number Publication Date
JPS53145782A JPS53145782A (en) 1978-12-19
JPS6139045B2 true JPS6139045B2 (en) 1986-09-02

Family

ID=13149764

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6069877A Granted JPS53145782A (en) 1977-05-24 1977-05-24 Pressure heating cooking instrument

Country Status (1)

Country Link
JP (1) JPS53145782A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11228097B2 (en) 2017-06-13 2022-01-18 Kymeta Corporation LC reservoir

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11228097B2 (en) 2017-06-13 2022-01-18 Kymeta Corporation LC reservoir
TWI772437B (en) * 2017-06-13 2022-08-01 美商凱米塔公司 Lc reservoir
US11811134B2 (en) 2017-06-13 2023-11-07 Kymeta Corporation LC reservoir

Also Published As

Publication number Publication date
JPS53145782A (en) 1978-12-19

Similar Documents

Publication Publication Date Title
FR2447625A1 (en) ELECTRIC HEATER, ESPECIALLY FOR A SWITCHING CABINET
JPS59153027A (en) Glow plug
US3521138A (en) Thermal starting device for a singlephase asynchronous motor
US3518407A (en) Heating device
JPS6475896A (en) Igniter for electric type igniter
US4661690A (en) PTC heating wire
JPS6139045B2 (en)
FR2404985A1 (en) Domestic appliance electrical plate heating element - produces heat power greater than 50 watts per square centimetre and is of PTC material
GB1338954A (en) Electric hair curlers
GB1230002A (en)
JPS61131372A (en) Liquid fuel cell
JPS5932830Y2 (en) cigarette lighter
JPS61250421A (en) Steam oven
JPS6244478Y2 (en)
JPH0755836Y2 (en) heater
JPS63170877A (en) Temperature self-control far-infrared heater
JP3257746B2 (en) Inrush current suppression type PTC heating device
JPS5856579Y2 (en) electric rice cooker
JPS63150877A (en) Heater
JPS645843Y2 (en)
JPS6023985A (en) Electric heater
JPS54150752A (en) Surface-type heat generator
JPS5850631Y2 (en) pressure sensitive electric warmer
JPS62195883A (en) Ceramic heater
JPS5858091B2 (en) Heat retention electric rice cooker