JPS6138913A - Armored submarine optical cable - Google Patents

Armored submarine optical cable

Info

Publication number
JPS6138913A
JPS6138913A JP15895084A JP15895084A JPS6138913A JP S6138913 A JPS6138913 A JP S6138913A JP 15895084 A JP15895084 A JP 15895084A JP 15895084 A JP15895084 A JP 15895084A JP S6138913 A JPS6138913 A JP S6138913A
Authority
JP
Japan
Prior art keywords
cable
armored
submarine optical
optical cable
tensile strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15895084A
Other languages
Japanese (ja)
Inventor
Yasushi Funaki
舟木 靖
Kenichi Mochizuki
望月 研一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OCC Corp
Original Assignee
OCC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OCC Corp filed Critical OCC Corp
Priority to JP15895084A priority Critical patent/JPS6138913A/en
Publication of JPS6138913A publication Critical patent/JPS6138913A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/4415Cables for special applications
    • G02B6/4427Pressure resistant cables, e.g. undersea cables

Abstract

PURPOSE:To improve the reliability of the titled cable by forming a hard steel wire with the twisting pitch of 21-40 times as long as twice the distance from the center of the cable and an armored iron wire with the twisting pitch of 12- 16 times as long as twice the distance from the center of the cable. CONSTITUTION:The hard steel wire 3 to be a tensile strength body is formed with the twisting pitch of 21-40 times as long as twice the distance from the center of the cable and the armored iron wire 7 is formed with the twisting pitch 12-16 times as long as twice the distance from the center of the cable. When the value of P0/D0 is limited within the range of 12<=(P0/D0)<=16, the ratio of partial charge of tension to the tensile strength body 3 of the submarine optical cable is about 20% the whole load. When the value of P1/D1 is set up within the range of 21-40, the P0/D0 value of the armored iron wire 7 can be suppressed to 0.5% expansion or less against 12-16 times the using load and cable winding and production can be attained easily, so that the reliability is improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、鉄線によって外装を施した外装海底光ケー
ブルに関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an armored submarine optical cable that is armored with iron wire.

〔背景技術とその問題点〕[Background technology and its problems]

海底光ケーブルは、第1図に示すように光ファイバユニ
ット1を保護するために金属性の耐圧層2を設け、ピア
ノ線等から硬鋼線を複数本撚り合わせた抗張力体3を積
層し、さらに金属チューブ4で被覆してポリエチレン(
PE)外被5による絶縁層を形成している。
As shown in Fig. 1, a submarine optical cable is constructed by providing a metallic pressure-resistant layer 2 to protect an optical fiber unit 1, laminating a tensile strength member 3 made of a plurality of twisted hard steel wires such as piano wire, and further Covered with metal tube 4 and covered with polyethylene (
PE) An insulating layer is formed by the outer cover 5.

かかる海底光ケーブルは、通常、深海用として使用され
ているものであるが、沿岸や浅海に布設する場合は、岩
石による損傷、船舶のアンカー。
Such submarine optical cables are usually used for deep sea applications, but when installed on the coast or in shallow seas, they are prone to damage from rocks and ship anchors.

トロール網等による切断から保護するために、さらに、
内部座床6を介して外装鉄線7を撚り合わせて外装海底
光ケーブルとしている。
In addition, to protect against cutting by trawls etc.
Exterior iron wires 7 are twisted together via an internal seat 6 to form an exterior submarine optical cable.

ところで一般に海底光ケーブルは、特に、ケーブルの布
設時や、引揚げ時に受ける引張力に酎え、かつ、伸び歪
に工って光ファイバの伝送損失が劣化しない構造とする
ことが要求されるが、前述した外装海底光ケーブルの場
合、内部に設けた抗張力体3と外装鉄線7が負担する引
張力の割合をどのように定めるかという問題が発生する
By the way, submarine optical cables are generally required to have a structure that can withstand the tensile forces that are applied during cable installation and salvage, and that does not deteriorate the transmission loss of the optical fiber due to elongation strain. In the case of the above-mentioned armored submarine optical cable, a problem arises as to how to determine the ratio of the tensile force borne by the internally provided tensile strength member 3 and the armored iron wire 7.

この点に関しては、すでに特公昭56−6801号公報
によって引秦力の分担率を最適にする外装海底ケーブル
が開示されているが、この発明には以下に示すような問
題点がある。
Regarding this point, Japanese Patent Publication No. 56-6801 has already disclosed an armored submarine cable that optimizes the sharing ratio of the pulling force, but this invention has the following problems.

■ 前記発明は同軸ケーブルを通信路とする外装海底ケ
ーブルを実施例としており、このまま光ファイバを通信
路とする外装海底光ケーブルに適用できない。何故なら
ば、外装海底光ケーブルでは内部の抗張力体3の中に更
に円形の耐圧層2と光ファイバユニット1があり、同軸
ケーブルのように絶縁層や外部導体がなく、外被外径も
20mmφ前後と細い構造となっている。これらの違い
によってケーブル心の剛性が大きくなり外装線の撚リピ
ッ、チはP/Dが20以上になると、通常巻取っている
コイル直径5〜2.0 mではコイル取り時にケーブル
が突張ってスムーズに巻くことができず、ときにはケー
ブルが浮き上がって損傷を与えることもある。
(2) The above invention is an embodiment of an armored submarine optical cable using a coaxial cable as a communication path, and cannot be directly applied to an armored submarine optical cable using an optical fiber as a communication path. This is because an armored submarine optical cable has a circular pressure-resistant layer 2 and an optical fiber unit 1 inside the internal tensile strength member 3, and unlike a coaxial cable, there is no insulating layer or external conductor, and the jacket outer diameter is around 20 mmφ. It has a thin structure. Due to these differences, the rigidity of the cable core increases, and if the twisting pitch of the armored wire becomes P/D of 20 or more, the cable will be stretched during coiling when the coil diameter is 5 to 2.0 m, which is normally wound. The cable cannot be wound smoothly and sometimes the cable may lift up and cause damage.

■ 前記発明では、外装線の撚りピッチがある値の時に
ケーブルの設計張力が最大値を示しているが、ケーブル
構造から考えて外装海底光ケーブルでは内部抗張力体3
の撚りピッチも合わせて規定して始めて外装海底ケーブ
ル全体の特性が得られるので外装海底光ケーブルの場合
には、内部抗張力線のピッチも限定する必要がある。
■ In the above invention, the design tension of the cable reaches its maximum value when the twist pitch of the armored wire is a certain value, but considering the cable structure, in the armored submarine optical cable, the internal tensile strength member 3
In the case of an armored submarine optical cable, it is necessary to limit the pitch of the internal tensile strength wires, since the characteristics of the entire armored submarine cable can only be obtained by specifying the twist pitch of the wires.

〔発明の目的〕[Purpose of the invention]

この発明は、かかる実状にかんがみてなされたもので、
外装海底光ケーブルを取扱い性、および製造上から最適
となるように外装鉄線、および内部抗張力体の設計応力
を定めた外装海底光ケーブルを提供するものである。
This invention was made in view of the actual situation,
The purpose of the present invention is to provide an armored submarine optical cable in which the design stresses of the armored iron wire and internal tensile strength members are determined to optimize the handling and manufacturing of the armored submarine optical cable.

〔実施例〕〔Example〕

以下、この発明の外装海底光ケーブルの一実施例を第2
図で説明する。
Hereinafter, a second embodiment of the armored submarine optical cable of the present invention will be described.
This will be explained with a diagram.

この図において、第1図と同様に、1は光ファイバユニ
ット、2は外径が7mmφの耐圧層、3は後述するよう
に所定のP/Dで撚り合わせた複数本の硬鋼線(外径1
.698mmφ)からなる抗張力体、4は金属チューブ
、5はPE外被(外径22mmφ)、6は内部座床、7
は後述する所定のP/Dで撚り合わせた外径6mmφの
外装鉄線、8は外部被覆である。
In this figure, as in Fig. 1, 1 is an optical fiber unit, 2 is a pressure-resistant layer with an outer diameter of 7 mmφ, and 3 is a plurality of hard steel wires (outer Diameter 1
.. 698mmφ), 4 is a metal tube, 5 is a PE jacket (outer diameter 22mmφ), 6 is an internal seat, 7
8 is an exterior iron wire with an outer diameter of 6 mmφ twisted at a predetermined P/D as described later, and 8 is an outer covering.

この発明では、まず、外装鉄線7の撚りピッチP0と、
ケーブル中心から外装鉄線7の中心までの距離Doの比
Po/Doを以下に示すように設定した。
In this invention, first, the twist pitch P0 of the armored iron wire 7,
The ratio Po/Do of the distance Do from the center of the cable to the center of the armored iron wire 7 was set as shown below.

PoZDo値は海流によりケーブルが流されないこと、
船のアンカーやトロール網で切断されにくいこと等を考
慮するが、取扱いの上で少なくとも5mφの貯線槽にコ
イル取りできることを考えると経験則からP。/ D 
oが最大16以下とするのが妥当とされる。一方、P 
o / D o値の最小値はケーブルの伸び特性や回転
特性から12以上とすることが妥当である。
The PoZDo value indicates that the cable will not be washed away by ocean currents,
Considering that it is difficult to be cut by a ship's anchor or trawl net, etc., but considering that the coil can be removed in a wire storage tank of at least 5 mφ in handling, the rule of thumb is P. /D
It is considered appropriate that o is at most 16 or less. On the other hand, P
It is appropriate that the minimum o/D o value is 12 or more in view of the elongation characteristics and rotation characteristics of the cable.

ここで、外装海底光ケーブルにおいてもつとも重要な特
性である光ファイバの伸びについて考察する。
Here, we will consider the elongation of optical fiber, which is the most important characteristic of armored submarine optical cables.

外装海底光ケーブルを引張したときの伸びが、中味の光
ファイバの伸びとほぼ同一であると考えると、ある特定
の張力における光ファイノくの伸びは外装鉄線7と、中
味の海底光ケーブルの抗張力体3の張力分担で決まるこ
とになる。
Considering that the elongation when an armored submarine optical cable is pulled is almost the same as the elongation of the inner optical fiber, the elongation of the optical fiber under a certain tension is the difference between the outer steel wire 7 and the tensile strength member 3 of the inner submarine optical fiber. It is determined by the tension sharing between.

この張力分担は、外装鉄線7のP0/Do値と、中味の
海底光ケーブルの抗張力体3のPi/Di値とに相関関
係があるが、図示したような海底光ケーブルの寸法では
外装鉄線7のP。/ D 。
This tension sharing has a correlation between the P0/Do value of the armored iron wire 7 and the Pi/Di value of the tensile strength member 3 of the submarine optical cable. . /D.

値が大きく効いており、特にこの値を前述したように、
12≦Po/Do≦16の狭い範囲に限定すると、中味
の海底光ケーブルの抗張力体3の張力分担率は、第3図
の実験値で示されるようにせいぜい全荷重の20%程度
であることが知られている。
This value has a large effect, especially when using this value as mentioned above,
If it is limited to a narrow range of 12≦Po/Do≦16, the tension sharing ratio of the tensile strength member 3 of the submarine optical cable can be at most about 20% of the total load, as shown by the experimental values in Fig. 3. Are known.

一方、外装海底光ケーブルの水中重量は、図示したもの
でおよそ3〜4tan/Kmであり、外装海底光ケーブ
ルの適用水深が1000m以下である点を考慮すると、
外装海底光ケーブルを布設。
On the other hand, the underwater weight of the armored submarine optical cable is approximately 3 to 4 tan/Km as shown in the figure, and considering that the applicable water depth of the armored submarine optical cable is 1000 m or less,
Laying an armored submarine optical cable.

補修する際に印加される使用荷重は、およそ15ton
以下と推定される。
The working load applied during repair is approximately 15 tons.
It is estimated that the following.

但し、αは変動荷重に対する余裕分(3ton)第4図
は中味の海底光ケーブルについて無外装の状態で抗張力
体3のPi/Di値を変化し、張力とケーブル伸びを測
定し、グラフ化したものである(当ケーブルの破断荷重
は9〜10ton程度である)。
However, α is the margin for the fluctuating load (3 tons). Figure 4 is a graph of the tension and cable elongation measured by changing the Pi/Di value of the tensile strength member 3 for the submarine optical cable without sheathing. (The breaking load of this cable is about 9 to 10 tons).

この図から光ファイバの伸びを0.5%以下に押えるこ
とが通常の海底光ケーブルの設計要件とされていること
を勘案すると、P i / D +値が21の場合を示
す曲線Aでは、およそ3 tonが光ファイバ0.5%
伸びに相当し、Pi/Di値を27とすると曲線Bから
およそ3 、8 tonが0.5%の伸びを作ることに
なる。同様にPi/Di値を37にすると曲線Cから5
 tonが、同じPi/Di値でも抗張力線を後述する
2層構造とすると曲線りから張力が多少アップしている
ことが分かる。
From this figure, taking into account that the design requirement for normal submarine optical cables is to suppress the elongation of the optical fiber to 0.5% or less, curve A, which shows the case where the P i / D + value is 21, has approximately 3 tons is optical fiber 0.5%
This corresponds to elongation, and if the Pi/Di value is 27, approximately 3.8 tons from curve B will produce an elongation of 0.5%. Similarly, if the Pi/Di value is set to 37, 5 from curve C.
Even if ton is the same Pi/Di value, if the tensile strength line is a two-layer structure described later, it can be seen from the curve that the tension increases somewhat.

そこで、前述したように外装鉄線7を施した場合最大1
5tonの使用荷重の20%、すなわち、3 tonの
張力を抗張力体3が負担するためにはP i / D 
iが少なくても21以上となることが要求される。
Therefore, if the exterior iron wire 7 is applied as described above, the maximum
In order for the tensile strength member 3 to bear 20% of the working load of 5 tons, that is, a tension of 3 tons, P i / D
It is required that i be at least 21 or more.

さらに、抗張力体3のP i / D +値の上限は製
造時ドラム(直径1m)へ巻取ることを考慮すると、笑
いが生じないために40以下にすることが妥当である。
Furthermore, considering that the tensile strength member 3 is wound onto a drum (diameter 1 m) during production, it is appropriate to set the upper limit of the P i /D + value to 40 or less in order to prevent laughter.

したがって、以上の説明からPi/Di値を21〜40
の範囲に設定すると、外装鉄線7のPo/Do値が12
〜16の場合の使用荷重に対して0.5%の伸び以下に
押えることができるとともに、ケーブルの取扱い性(貯
線槽への巻き取り)や製造上の問題もクリアできる外装
海底光ケーブルとすることができる。
Therefore, from the above explanation, the Pi/Di value is 21 to 40.
When set to the range of , the Po/Do value of the exterior iron wire 7 is 12.
An armored submarine optical cable that can hold the elongation to 0.5% or less for the working load in the case of ~16, and also solves problems in cable handling (winding into a storage tank) and manufacturing. be able to.

第5図は、この発明の外装海底光ケーブルの他の実施例
を示したもので、第2図と同一部分は同一符号とされて
いる。3A、3Bは2層構造とされている抗張力体で、
そのPi/Di値を27〜40の範囲としたものである
FIG. 5 shows another embodiment of the armored submarine optical cable of the present invention, in which the same parts as in FIG. 2 are given the same reference numerals. 3A and 3B are tensile strength bodies with a two-layer structure,
The Pi/Di value is in the range of 27-40.

〔発明の効果〕〔Effect of the invention〕

この発明は、上述したように外装海底光ケーブルの外装
鉄線および抗張力体のP/Dを実際の取扱い性、および
製造上から問題が生じないように設定し、かつ、引張力
に対して光ファイバが十分保護できる範囲に設定したの
で、高い信頼性をもった外装海底光ケーブルを構成する
ことができるという効果がある。
As described above, the present invention sets the P/D of the armored iron wire and the tensile strength member of the armored submarine optical cable so that problems do not arise in terms of actual handling and manufacturing, and that the optical fiber is resistant to tensile force. Since it is set within a range that can be sufficiently protected, it has the effect that a highly reliable armored submarine optical cable can be constructed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は海底光ケーブルの構造を示す断面図、第2図は
所定のP/D値を持たせたこの発明の外装海底光ケーブ
ルの断面図、第3図は外装海底光ケーブルを引張ったと
きの張力分担率のデータ図、第4図は無外装の海底光ケ
ーブルにおけるPi/Di値をパラメータとした張力と
伸びの関係を示す測定グラフ、第5図は2層構造の抗張
力体とした外装海底光ケーブルの断面図である。 図中、1は光ファイバユニット、2は耐圧層、3は抗張
力体、4は金属チューブ、5はPE外被、6は内部座床
、7は外装鉄線を示す。 第1図 第2図 第3図 一全張力(ton) −張力(ton)
Fig. 1 is a cross-sectional view showing the structure of a submarine optical cable, Fig. 2 is a cross-sectional view of the armored submarine optical cable of the present invention with a predetermined P/D value, and Fig. 3 is the tension when the armored submarine optical cable is pulled. Figure 4 is a measurement graph showing the relationship between tension and elongation using the Pi/Di value as a parameter for an unarmored submarine optical cable, and Figure 5 is a graph of the armored submarine optical cable with a two-layer tensile strength structure. FIG. In the figure, 1 is an optical fiber unit, 2 is a pressure layer, 3 is a tensile strength member, 4 is a metal tube, 5 is a PE jacket, 6 is an internal seat, and 7 is an exterior iron wire. Figure 1 Figure 2 Figure 3 - Total tension (ton) - Tension (ton)

Claims (2)

【特許請求の範囲】[Claims] (1)光ファイバユニットを保護している耐圧層の外周
に硬鋼線を撚り合わせて抗張力体を形成し、さらに金属
チューブおよびポリエチレン外被を被覆して外装鉄線に
よる外装を施した外装海底光ケーブルにおいて、前記硬
鋼線をケーブルの中心からの距離の2倍に対して21〜
40倍の撚りピッチとし、前記外装鉄線をケーブルの中
心からの距離の2倍に対して12〜16倍の撚りピッチ
としたことを特徴とする外装海底光ケーブル。
(1) An armored submarine optical cable in which a tensile strength body is formed by twisting hard steel wires around the outer periphery of a pressure-resistant layer that protects an optical fiber unit, which is then covered with a metal tube and a polyethylene jacket, and is then armored with armored iron wire. , the hard steel wire is 21 to 2 times the distance from the center of the cable.
An armored submarine optical cable characterized in that the twisting pitch is 40 times, and the twisting pitch of the armored iron wire is 12 to 16 times twice the distance from the center of the cable.
(2)抗張力体が硬鋼線の2層撚りで形成されているこ
とを特徴とする特許請求の範囲第(1)項記載の外装海
底光ケーブル。
(2) The armored submarine optical cable according to claim (1), wherein the tensile strength member is formed of two-layer twisted hard steel wire.
JP15895084A 1984-07-31 1984-07-31 Armored submarine optical cable Pending JPS6138913A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15895084A JPS6138913A (en) 1984-07-31 1984-07-31 Armored submarine optical cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15895084A JPS6138913A (en) 1984-07-31 1984-07-31 Armored submarine optical cable

Publications (1)

Publication Number Publication Date
JPS6138913A true JPS6138913A (en) 1986-02-25

Family

ID=15682875

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15895084A Pending JPS6138913A (en) 1984-07-31 1984-07-31 Armored submarine optical cable

Country Status (1)

Country Link
JP (1) JPS6138913A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54136343A (en) * 1978-04-14 1979-10-23 Kokusai Denshin Denwa Co Ltd Submarine cable for photoocommunication
JPS58100104A (en) * 1981-12-10 1983-06-14 Nippon Telegr & Teleph Corp <Ntt> Submarine optical fiber cable transmission line

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54136343A (en) * 1978-04-14 1979-10-23 Kokusai Denshin Denwa Co Ltd Submarine cable for photoocommunication
JPS58100104A (en) * 1981-12-10 1983-06-14 Nippon Telegr & Teleph Corp <Ntt> Submarine optical fiber cable transmission line

Similar Documents

Publication Publication Date Title
US4979795A (en) Coilable torque-balanced cable and method of manufacture
US9722406B2 (en) Undersea cable, undersea cable installation structure, and method for installing undersea cable
US9947437B2 (en) Metal sheathed cable designed on the basis of torque balance and design method thereof
CN111292883A (en) Light-duty nonmetal armor submarine cable
CN107301890B (en) WMF high-toughness low-stress load-bearing detection cable
JP4346306B2 (en) Underwater cable with a single outer shell structure
CN111653401A (en) Steel wire armored submarine cable design method
JPS6138913A (en) Armored submarine optical cable
US4913516A (en) Submarine optical fiber cable
JP6229916B2 (en) Electric power underwater / underwater cable track
JPS6197607A (en) Submarine optical cable
JP2579615B2 (en) Optical fiber composite cable
CN110828049B (en) Full-locking type steel wire armored submarine power cable and design method thereof
JP6270701B2 (en) cable
JPS58100104A (en) Submarine optical fiber cable transmission line
JP2021189436A (en) Abrasion protected deepwater cable
CN110890172A (en) Fatigue-resistant high-water-resistance submarine cable
CN109473226A (en) The high-strength cable of photoelectricity and its manufacturing method
CN111326288B (en) Wind power generation high-voltage direct-current submarine cable
CN210984323U (en) Fatigue-resistant high-water-resistance submarine cable
JPH08249939A (en) Submarine cable insulated with rubber or plastic
JP4096485B2 (en) Armored cable with wear detection function
JPH0423202Y2 (en)
JPH0453612Y2 (en)
JPS5828705A (en) Optical cable