JPS6138851B2 - - Google Patents

Info

Publication number
JPS6138851B2
JPS6138851B2 JP16245278A JP16245278A JPS6138851B2 JP S6138851 B2 JPS6138851 B2 JP S6138851B2 JP 16245278 A JP16245278 A JP 16245278A JP 16245278 A JP16245278 A JP 16245278A JP S6138851 B2 JPS6138851 B2 JP S6138851B2
Authority
JP
Japan
Prior art keywords
electron beam
rectangular
particles
image
exposure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16245278A
Other languages
Japanese (ja)
Other versions
JPS5588329A (en
Inventor
Junichi Kai
Nobuyuki Yasutake
Tooru Funayama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CHO ERU ESU AI GIJUTSU KENKYU KUMIAI
Original Assignee
CHO ERU ESU AI GIJUTSU KENKYU KUMIAI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CHO ERU ESU AI GIJUTSU KENKYU KUMIAI filed Critical CHO ERU ESU AI GIJUTSU KENKYU KUMIAI
Priority to JP16245278A priority Critical patent/JPS5588329A/en
Publication of JPS5588329A publication Critical patent/JPS5588329A/en
Publication of JPS6138851B2 publication Critical patent/JPS6138851B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/317Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation
    • H01J37/3174Particle-beam lithography, e.g. electron beam lithography

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Analytical Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Measurement Of Radiation (AREA)
  • Electron Beam Exposure (AREA)

Description

【発明の詳細な説明】 本発明は、電子ビーム露光方法に関し、特に矩
形電子ビームを適用した際の該電子ビームの辺の
方向と基板の移動方向及び電子ビームの偏向走査
方向のずれを検出し、さらにビームの大きさを測
定する方法を提供するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electron beam exposure method, and in particular detects deviations between the side direction of the electron beam, the moving direction of the substrate, and the deflection scanning direction of the electron beam when a rectangular electron beam is applied. , and also provides a method for measuring the beam size.

従来、電子線(ビーム)露光方法の一つとして
電子線感応性物質(電子線レジスト)を塗布した
被処理基板上にパターンを描画する際、微小径の
電子線を用いてこれを偏向走査して一点一点塗り
潰して所望形状パターンを描画することが提案さ
れている。しかしながら、このような方式だと所
望パターン面積が大きくなつた場合には走査点数
が増加して描画時間がかかり過ぎるという欠点が
存在する。このため近時、比較的大きな矩形状断
面をもつ電子線でパターンを描画する方式が提案
されている。このような矩形電子ビーム露光方式
においては、電子線断面形状は矩形である為方向
性を持ち被処理基板上のチツプの配列方向と矩形
の辺の方向が一致し、電子線の走査方向と矩形の
辺の一方向も一致していなければならない。
Conventionally, when drawing a pattern on a substrate coated with an electron beam-sensitive material (electron beam resist) as an electron beam exposure method, a fine-diameter electron beam is used to deflect and scan the pattern. It has been proposed to draw a desired shape pattern by filling in each point one by one. However, this method has the disadvantage that when the desired pattern area becomes large, the number of scanning points increases and the drawing time becomes too long. For this reason, a method has recently been proposed in which a pattern is drawn using an electron beam having a relatively large rectangular cross section. In such a rectangular electron beam exposure method, since the cross-sectional shape of the electron beam is rectangular, it has directionality, and the arrangement direction of the chips on the substrate to be processed matches the direction of the sides of the rectangle, and the scanning direction of the electron beam and the rectangle One direction of the sides must also match.

もしチツプの配列方向と電子線の辺の方向とが
一致しない時に、被処理基板を断続的に移動して
描画した場合に正しくは、例えば第1図aに示す
に示す如く走査範囲11が帯状に移動しなければ
ならないのに対し、実際には、同図bに示す如く
走査範囲12は徐々にずれてしまい好ましくな
い。
If the direction in which the chips are arranged and the direction of the side of the electron beam do not match, and if the substrate to be processed is moved intermittently for drawing, the scanning range 11 will be in the form of a strip, as shown in FIG. 1a, for example. However, in reality, the scanning range 12 gradually shifts, which is not desirable, as shown in FIG.

一方、電子線の走査方向と、矩形の辺の方向と
が一致しない時に矩形パターンを偏向走査して描
画した場合に、正しくは、例えば第2図aに示す
如く、帯状の矩形ビームパターン21が描画され
なければならないのに対し、同図bのように折線
状のパターン22が描画されてしまい、これも好
ましくない。なお、23及び24は偏向走査範囲
を示す。
On the other hand, when a rectangular pattern is drawn by deflection scanning when the scanning direction of the electron beam and the direction of the sides of the rectangle do not match, the correct result is a band-shaped rectangular beam pattern 21 as shown in FIG. 2a, for example. However, a broken line pattern 22 is drawn as shown in FIG. 2B, which is also undesirable. Note that 23 and 24 indicate deflection scanning ranges.

本発明は、このような矩形電子ビーム露光にお
ける、矩形電子ビームの辺の方向と被処理基板の
移動方向とのずれ及び矩形電子ビームの辺の方向
と偏向走査方向とのずれを検出し、更に該矩形電
子ビームの大きさをも測定して、前述の如き矩形
電子ビーム露光における問題点を解決し当該矩形
電子ビーム露光を容易且つ正確に行なうことがで
きる方法を提供しようとするものである。
The present invention detects the deviation between the side direction of the rectangular electron beam and the movement direction of the substrate to be processed and the deviation between the side direction of the rectangular electron beam and the deflection scanning direction in such rectangular electron beam exposure, The present invention aims to provide a method that solves the above-mentioned problems in rectangular electron beam exposure by also measuring the size of the rectangular electron beam, and allows the rectangular electron beam exposure to be carried out easily and accurately.

このため本発明によれば露光用電子ビームとし
て断面形状を矩形とされた電子ビームを用いる電
子ビーム露光方法において、該矩形電子ビームの
被照射面上に格子状に且つ等間隔をもつて粒子あ
るいは凹凸を配設し、該粒子あるいは凹凸上を該
矩形電子ビームにより偏向走査して粒子あるいは
凹凸から発生する二次電子あるいは反射電子の像
を観測し、該電子像の状態から前記矩形電子ビー
ムの辺の方向と被処理体の移動方向とのずれ及び
矩形電子ビームの辺の方向と偏向走査方向とのず
れを検出する工程を有することを特徴とする電子
ビーム露光方法および露光用電子ビームとして断
面形状を矩形とされた電子ビームを用いる電子ビ
ーム露光方法において、該矩形電子ビームの被照
射面上に格子状に且つ等間隔をもつて粒子あるい
は凹凸を配設し、該粒子あるいは凹凸上を該矩形
電子ビームにより偏向走査して粒子あるいは凹凸
から発生する二次電子あるいは反射電子の像を観
測し、該電子像の状態から前記矩形電子ビームの
大きさを検出する工程を有することを特徴とする
電子ビーム露光方法が提供される。
Therefore, according to the present invention, in an electron beam exposure method using an electron beam having a rectangular cross section as an exposure electron beam, particles or The rectangular electron beam is deflected and scanned over the particles or the irregularities to observe the image of secondary electrons or reflected electrons generated from the particles or the irregularities, and from the state of the electron image, the rectangular electron beam is An electron beam exposure method characterized by having a step of detecting a deviation between a side direction and a moving direction of an object to be processed and a deviation between a side direction of a rectangular electron beam and a deflection scanning direction, and a cross section as an exposure electron beam. In an electron beam exposure method using an electron beam having a rectangular shape, particles or irregularities are arranged in a grid pattern and at equal intervals on the surface to be irradiated with the rectangular electron beam, and the particles or irregularities are arranged on the surface to be irradiated with the rectangular electron beam. It is characterized by comprising the step of deflecting and scanning a rectangular electron beam to observe an image of secondary electrons or reflected electrons generated from particles or irregularities, and detecting the size of the rectangular electron beam from the state of the electron image. An electron beam exposure method is provided.

次に本発明を図面をもつて詳細に説明しよう。
本発明にかかる方法を実施するための電子線露光
装置の一例を第3図に示す。
Next, the present invention will be explained in detail with reference to the drawings.
FIG. 3 shows an example of an electron beam exposure apparatus for carrying out the method according to the present invention.

当該電子線露光装置においては、一般的露光処
理にあつては、電子銃31より発生した電子線は
照射レンズ35を介して第一整形用スリツト36
に投射される。該第一整形用スリツト36上に設
けられた矩形開口を通過した電子線はビーム整形
用偏向器37,37′と整形レンズ38によつて
偏向整形されて第二整形用スリツト39上に投映
される。該第二整形用スリツト39上に設けられ
た矩形開口を通過した電子線は縮小レンズ40、
投映レンズ41、位置決め偏向器42により電子
線感応物質(レジスト)を塗布した被処理基板4
3に投映され、該被処理基板43上のレジストに
所望パターンが描画される。
In the electron beam exposure apparatus, in general exposure processing, the electron beam generated from the electron gun 31 passes through the first shaping slit 36 through the irradiation lens 35.
is projected on. The electron beam passing through the rectangular aperture provided on the first shaping slit 36 is deflected and shaped by the beam shaping deflectors 37, 37' and the shaping lens 38, and is projected onto the second shaping slit 39. Ru. The electron beam passing through the rectangular opening provided on the second shaping slit 39 is transmitted through a reduction lens 40,
A substrate 4 to be processed coated with an electron beam sensitive material (resist) using a projection lens 41 and a positioning deflector 42
3, and a desired pattern is drawn on the resist on the substrate 43 to be processed.

このような露光装置においては該被処理基板4
3あるいは他の測定用試料基板への電子線照射に
よつて発生する二次電子あるいは反射電子を、電
子検出器44によつて検出し、検出番号を増幅器
45によつて増幅し、モニター用CRT46に印
加することができる。そしてこの時前記基板上に
予め例えば第4図aに示されるように例えば微小
粒子101を配設しておけば、該微小粒子101
に、波形発生器47によつて生成された信号電圧
が前記位置決め偏向器42に加えられることによ
つてラスター走査される矩形電子線102を走査
し、一方前記モニター用CRT46の偏向器にも
前記信号電圧を加えれば、前記微小粒子101に
おいて発生した二次あるいは反射電子は、第4図
bに示されるように矩形形状103をもつてモニ
ター用CRT46の画面46′に得られる。
In such an exposure apparatus, the substrate to be processed 4
Secondary electrons or reflected electrons generated by electron beam irradiation to 3 or other measurement sample substrates are detected by an electron detector 44, the detection number is amplified by an amplifier 45, and the detection number is amplified by an amplifier 45. can be applied to At this time, if, for example, microparticles 101 are arranged on the substrate in advance as shown in FIG. 4a, the microparticles 101
Then, the signal voltage generated by the waveform generator 47 is applied to the positioning deflector 42 to scan the rectangular electron beam 102 which is raster scanned, and the deflector of the monitor CRT 46 is also applied to the rectangular electron beam 102. When a signal voltage is applied, secondary or reflected electrons generated in the microparticles 101 are obtained in a rectangular shape 103 on the screen 46' of the monitor CRT 46, as shown in FIG. 4b.

なお、第3図において32はグリツド、33は
ビーム軸調整用コイル、34はブランキング用デ
イフレクタである。
In FIG. 3, 32 is a grid, 33 is a beam axis adjustment coil, and 34 is a blanking deflector.

本発明においては、このようにモニター用
CRTの画面に反映される二次あるいは反射電子
線の像を複数個とし、該像をもつて矩形電子ビー
ムの辺の方向と被処理基板の移動方向及び偏向走
査方向とのずれを検出すると共に更に該矩形電子
ビームの大きさをも測定する。
In the present invention, as described above,
Multiple images of the secondary or reflected electron beam reflected on the CRT screen are used to detect the deviation between the side direction of the rectangular electron beam and the moving direction and deflection scanning direction of the substrate to be processed. Furthermore, the size of the rectangular electron beam is also measured.

このため、本発明にあつては、被処理基板表面
の適当箇所あるいは試験用試料基板の表面の適当
箇所に、第5図に示される如く微小粒子101を
格子状に等間隔に、更に素子(チツプ)配列方向
に配設する。該微小粒子は、走査される矩形電子
線の大きさに比較して充分小さな面積を有し且つ
基板材料と二次あるいは反射電子線の発生効率の
異なる材料から構成される。基板がシリコン
(Si)であるならば、該微小粒子材料は金(Au)
等が好適である。また該微小粒子に代えて凹凸を
形成する部材であつてもよい。このような例えば
微小粒子の配列に前述の如き手段によつて矩形電
子線をラスター走査すると、格子点の数(微小粒
子の数)だけの電子線像がモニター用CRTの画
面に得られる。
For this reason, in the present invention, microparticles 101 are arranged at equal intervals in a lattice pattern as shown in FIG. Chips) Arrange in the array direction. The microparticles have a sufficiently small area compared to the size of the rectangular electron beam to be scanned, and are made of a material that has a different efficiency in generating secondary or reflected electron beams than the substrate material. If the substrate is silicon (Si), the microparticle material is gold (Au).
etc. are suitable. Moreover, a member forming unevenness may be used instead of the fine particles. For example, when a rectangular electron beam is raster-scanned over such an array of microparticles by the means described above, electron beam images as many as the number of lattice points (the number of microparticles) are obtained on the screen of a monitor CRT.

そして、当該走査される矩形電子線の矩形の辺
の方向、偏向走査方向、格子の配列方向の三者が
一致している時は第6図のように規則正しく格子
状に配列した像103がCRTモニタ上に観測さ
れる。
When the rectangular side direction of the rectangular electron beam to be scanned, the deflection scanning direction, and the grid arrangement direction match, the image 103 arranged in a regular grid pattern as shown in FIG. Observed on the monitor.

また矩形の辺の方向と格子の配列方向が一致し
ない場合は第7図aに示されるように観測像が帯
状でなくなり、又ビーム偏向走査方向と矩形の辺
の方向とが一致しない場合は、第7図bのように
なる。
Furthermore, if the direction of the sides of the rectangle and the direction of the grid arrangement do not match, the observed image will not be band-shaped as shown in Figure 7a, and if the direction of beam deflection scanning and the direction of the sides of the rectangle do not match, The result will be as shown in Figure 7b.

以上のように基板に格子状に等間隔に配列した
微小粒子上を矩形断面形状を有する整形ビームで
ラスター走査して、該微小粒子より発生する電子
を検出しCRTでモニタすることで矩形電子ビー
ムの辺の方向と被処理体の移動方向とのずれ及び
矩形電子ビームの辺の方向と偏向走査方向とのず
れを観察することができる。
As described above, a rectangular electron beam is created by raster scanning the microparticles arranged at equal intervals in a grid pattern on the substrate with a shaped beam having a rectangular cross section, detecting the electrons generated by the microparticles, and monitoring them with a CRT. It is possible to observe the deviation between the side direction of the rectangular electron beam and the moving direction of the object to be processed, and the deviation between the side direction of the rectangular electron beam and the deflection scanning direction.

一方、整形ビームの大きさが、基板において格
子状に配列された微小粒子間隔より大きい場合
は、第8図aのように像103が重なり斜線部が
二重になつて観測される。又、ビームの方が格子
間隔より小さい場合は、同図bのように隙間が存
在する像が観測される。
On the other hand, if the size of the shaped beam is larger than the interval between microparticles arranged in a lattice on the substrate, the images 103 overlap as shown in FIG. 8a, and the hatched area is observed as double. Furthermore, if the beam is smaller than the lattice spacing, an image with gaps as shown in FIG. 2B will be observed.

よつて格子の配列間隔を適当に選べば、矩形ビ
ームの大きさを測定し得、更に該矩形ビームを所
望の大きさに調整する指標とすることができる。
Therefore, by appropriately selecting the arrangement interval of the gratings, the size of the rectangular beam can be measured and further used as an index for adjusting the rectangular beam to a desired size.

このような本発明による方法によれば、簡単な
モニタ装置で、可変寸法整形ビーム露光装置のア
ライメントが容易に行なえる。又、上記の説明で
は、格子状の微小粒子は基板上に配設されたが該
基板を保持する試料台上に配設してもよい。
According to such a method according to the present invention, alignment of a variable-dimensional shaped beam exposure apparatus can be easily performed using a simple monitoring device. Furthermore, in the above description, the lattice-shaped microparticles are arranged on the substrate, but they may be arranged on a sample stage that holds the substrate.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は、矩形電子ビームを用いて
の電子ビーム露光処理における理想的露光状態と
実際の露光状態の相違を示す平面図、第3図は本
発明による電子ビーム露光方法を実施するための
電子ビーム露光装置の構成を示す概略断面図、第
4図は本発明による電子ビーム露光方法における
電子線のモニター法を説明する平面図、第5図乃
至第8図は本発明による電子ビーム露光方法にお
ける電子線の状態とモニター像との関係を説明す
る平面図である。第1図乃至第8図において 11,12,23及び24……走査範囲、2
1,22……露光パターン、36,39……電子
ビーム(線)整形用スリツト、43……被処理基
板、44……電子線検出器、45……増幅器、4
6……モニター用CRT、47……波形発生器、
101……微小粒子、102……矩形電子線、1
03……二次あるいは反射電子形状。
1 and 2 are plan views showing the difference between an ideal exposure state and an actual exposure state in electron beam exposure processing using a rectangular electron beam, and FIG. 3 is a plan view showing the electron beam exposure method according to the present invention. FIG. 4 is a plan view illustrating a method of monitoring the electron beam in the electron beam exposure method according to the present invention, and FIGS. FIG. 3 is a plan view illustrating the relationship between the state of an electron beam and a monitor image in a beam exposure method. In Figures 1 to 8, 11, 12, 23 and 24...scanning range, 2
1, 22...Exposure pattern, 36, 39...Slit for electron beam (line) shaping, 43...Substrate to be processed, 44...Electron beam detector, 45...Amplifier, 4
6...Monitor CRT, 47...Waveform generator,
101... Microparticle, 102... Rectangular electron beam, 1
03...Secondary or backscattered electron shape.

Claims (1)

【特許請求の範囲】 1 露光用電子ビームとして断面形状を矩形とさ
れた電子ビームを用いる電子ビーム露光方法にお
いて、該矩形電子ビームの被照射面上に格子状に
且つ等間隔をもつて粒子あるいは凹凸を配設し、
該粒子あるいは凹凸上を該矩形電子ビームにより
偏向走査して粒子あるいは凹凸から発生する二次
電子あるいは反射電子の像を観測し、該電子像の
状態から前記矩形電子ビームの辺の方向と被処理
体の移動方向とのずれ及び前記矩形電子ビームの
辺の方向と偏向走査方向とのずれを検出する工程
を有することを特徴とする電子ビーム露光方法。 2 露光用電子ビームとして断面形状を矩形とさ
れた電子ビームを用いる電子ビーム露光方法にお
いて、該矩形電子ビームの被照射面上に格子状に
且つ等間隔をもつて粒子あるいは凹凸を配設し、
該粒子あるいは凹凸上を該矩形電子ビームにより
偏向走査して粒子あるいは凹凸から発生する二次
電子あるいは反射電子の像を観測し、該電子像の
状態から前記矩形電子ビームの大きさを検出する
工程を有することを特徴とする電子ビーム露光方
法。
[Scope of Claims] 1. In an electron beam exposure method using an electron beam having a rectangular cross section as an exposure electron beam, particles or By arranging unevenness,
The rectangular electron beam is deflected and scanned over the particles or irregularities to observe the image of secondary electrons or reflected electrons generated from the particles or irregularities, and from the state of the electron image, the direction of the side of the rectangular electron beam and the object to be processed are determined. An electron beam exposure method comprising the step of detecting a deviation from a moving direction of a body and a deviation between a side direction of the rectangular electron beam and a deflection scanning direction. 2. In an electron beam exposure method using an electron beam having a rectangular cross section as an exposure electron beam, particles or irregularities are arranged in a grid pattern and at equal intervals on the surface to be irradiated with the rectangular electron beam,
A step of deflecting and scanning the particles or unevenness with the rectangular electron beam to observe an image of secondary electrons or reflected electrons generated from the particles or unevenness, and detecting the size of the rectangular electron beam from the state of the electron image. An electron beam exposure method comprising:
JP16245278A 1978-12-27 1978-12-27 Exposing method for electron beam Granted JPS5588329A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16245278A JPS5588329A (en) 1978-12-27 1978-12-27 Exposing method for electron beam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16245278A JPS5588329A (en) 1978-12-27 1978-12-27 Exposing method for electron beam

Publications (2)

Publication Number Publication Date
JPS5588329A JPS5588329A (en) 1980-07-04
JPS6138851B2 true JPS6138851B2 (en) 1986-09-01

Family

ID=15754872

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16245278A Granted JPS5588329A (en) 1978-12-27 1978-12-27 Exposing method for electron beam

Country Status (1)

Country Link
JP (1) JPS5588329A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1293532C (en) * 2003-02-28 2007-01-03 夏普株式会社 Display device and method for driving the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5766637A (en) * 1980-10-14 1982-04-22 Toshiba Corp Exposure device for electron beam

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1293532C (en) * 2003-02-28 2007-01-03 夏普株式会社 Display device and method for driving the same

Also Published As

Publication number Publication date
JPS5588329A (en) 1980-07-04

Similar Documents

Publication Publication Date Title
US6265719B1 (en) Inspection method and apparatus using electron beam
US7791022B2 (en) Scanning electron microscope with length measurement function and dimension length measurement method
JP4679978B2 (en) Charged particle beam application equipment
JP6442295B2 (en) Method for measuring rotation angle of multi-charged particle beam image, method for adjusting rotation angle of multi-charged particle beam image, and multi-charged particle beam drawing apparatus
US6320187B1 (en) Magnification and rotation calibration patterns for particle beam projection system
TW202004816A (en) Multiple electron beam image acquisition apparatus, and alignment method of multiple electron beam optical system
CA1103813A (en) Apparatus for electron beam lithography
US6661008B2 (en) Electron-optical system and inspection method using the same
JPH0324771B2 (en)
JPH02230649A (en) Sample testing method for particle beam apparatus
JP4184782B2 (en) Multi-electron beam apparatus and multi-electron beam current measurement / display method used therefor
US7282711B2 (en) Multiple electron beam device
US4021674A (en) Charged-particle beam optical apparatus for irradiating a specimen in a two-dimensional pattern
JPS6138851B2 (en)
US4152599A (en) Method for positioning a workpiece relative to a scanning field or a mask in a charged-particle beam apparatus
TW202226315A (en) Multibeam image acquisition apparatus and multibeam image acquisition method
JP2001148016A (en) Sample inspecting device, sample display device, and sample displaying method
JPH10339711A (en) Inspection equipment for semiconductor device
US6246065B1 (en) Electron beam projection exposure apparatus
US11430631B2 (en) Methods of inspecting samples with multiple beams of charged particles
JP2848417B2 (en) Charged particle beam exposure apparatus and exposure method
JP3168032B2 (en) Electron beam exposure apparatus and method for inspecting drawing pattern
JP2898726B2 (en) Charged particle beam exposure method
JPS6244406B2 (en)
JPS5848042B2 (en) Method for detecting deviation between electron beam and material movement direction