JPS6138629A - Hydrogenation catalyst and metal removal and desulfurization of hydrocarbon residue using the same - Google Patents

Hydrogenation catalyst and metal removal and desulfurization of hydrocarbon residue using the same

Info

Publication number
JPS6138629A
JPS6138629A JP25905584A JP25905584A JPS6138629A JP S6138629 A JPS6138629 A JP S6138629A JP 25905584 A JP25905584 A JP 25905584A JP 25905584 A JP25905584 A JP 25905584A JP S6138629 A JPS6138629 A JP S6138629A
Authority
JP
Japan
Prior art keywords
catalyst
volume
range
macropore
molybdenum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25905584A
Other languages
Japanese (ja)
Inventor
ロバート・デイー・クリストマン
ユージン・エイ・パセク
ロナルド・ダブリユー・プレスコ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gulf Research and Development Co
Original Assignee
Gulf Research and Development Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gulf Research and Development Co filed Critical Gulf Research and Development Co
Publication of JPS6138629A publication Critical patent/JPS6138629A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/66Pore distribution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/882Molybdenum and cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/883Molybdenum and nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/887Molybdenum containing in addition other metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/8872Alkali or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/887Molybdenum containing in addition other metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/8878Chromium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • C10G45/04Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
    • C10G45/06Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof
    • C10G45/08Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof in combination with chromium, molybdenum, or tungsten metals, or compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/6350.5-1.0 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/65150-500 nm

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (発明の分野) この発明は、水素化触媒並びにこれを用いるアスファル
ト含有炭化水素の脱金属及び脱硫方法、一層詳細には、
触媒活性のあるミクロポアを相互に連結する、制御した
量の供給路マクロポアを備える、モリブデン水素化触媒
あ製造及びこの触媒のアスファルト含有炭化水素の脱金
属及び脱硫における利用に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of the Invention) The present invention relates to a hydrogenation catalyst and a method for demetallizing and desulfurizing asphalt-containing hydrocarbons using the same, more specifically,
The present invention relates to the production of a molybdenum hydrogenation catalyst with a controlled amount of feed macropores interconnecting catalytically active micropores and the use of this catalyst in the demetalization and desulfurization of asphalt-containing hydrocarbons.

(従来の技術) ゛石油のアスファルト含有炭化水素留分を、水素化成分
を含有する触媒と接触させながら、高温高圧下、水素に
より処理することにより、該留分から金属及び硫黄を除
くことは、−界においてよく知られる。
(Prior Art) ``Removal of metals and sulfur from an asphalt-containing hydrocarbon fraction of petroleum by treating the fraction with hydrogen under high temperature and high pressure while bringing it into contact with a catalyst containing a hydrogenation component is as follows: - Well known in the world.

代表的には、第■族及び第■族金属、又はこれらの酸化
物及び硫化物を、触媒の金属成分として用いた。例えば
、アスファルト含有原油仕込みの水素化脱硫に商業的に
利用された触媒は、アルミナ担持ニッケルーコバルト−
モリブデン触媒である。このような触媒及び水素化脱硫
方法は、例えば、カールソンら(Carlson et
 al、)の米国特許第Re 29315号明細書に開
示される。上記のような、従来の水素化脱硫触媒の寿命
は、重質油中に見られる金属の濃度に比例して短かくな
る。こ゛れらの金属は、触媒上に吸収され、細孔(po
re)をふさぎ、かつ水素化脱硫触媒を失活させる。
Typically, Group I and Group II metals, or their oxides and sulfides, were used as the metal component of the catalyst. For example, the catalyst used commercially for the hydrodesulfurization of asphalt-containing crude oil feeds is nickel-cobalt supported on alumina.
It is a molybdenum catalyst. Such catalysts and hydrodesulfurization methods are described, for example, by Carlson et al.
al., U.S. Patent No. Re 29315. The lifetime of conventional hydrodesulfurization catalysts, such as those mentioned above, decreases in proportion to the concentration of metals found in heavy oil. These metals are absorbed onto the catalyst and fill the pores.
re) and deactivate the hydrodesulfurization catalyst.

米国特許第4411824号明細書記載のような、従来
の脱金属触媒としてもちいられた水素化触媒は、良好な
脱金属化をもたらすが、これに伴う脱硫は通常不十分で
あり、じゅうぶんな脱硫を達成するには、404°C(
760°F)またはこれより高いような過剰の運転開始
温度を必要とする。
Hydrogenation catalysts used as conventional demetalization catalysts, such as those described in U.S. Pat. To achieve this, 404°C (
760° F.) or higher.

大きな触媒細孔が重質油の、同時的脱金属及び脱硫に有
用でありうるという認識は、ジョフリー・アール・ウィ
ルソン(Geoffrey R,Wilson)の米国
特許第3898155号明細書に示される。この参考文
献には、少なくとも50ppmの金属を含有する重質油
を、第VIB族金属及び少なくとも1種の第■族金属を
アルミナと複合して含んでなる触媒組成物を用いて、同
時に脱金属及び脱硫すること、また前記触媒組成物は1
00人単位より大きい平均細孔径を有し、細孔における
全細孔体積の10〜40%は600人単位より大きい直
径を有し、細孔における全細孔体積の60〜90%はθ
〜600人単位の範囲の直径を有し、かつ細孔において
ミクロポア体積の少な(とも80%は少なくとも100
人単位の直径を有することが記載される。
The recognition that large catalyst pores can be useful for simultaneous demetalization and desulfurization of heavy oils is shown in US Pat. No. 3,898,155 to Geoffrey R. Wilson. This reference discloses that heavy oil containing at least 50 ppm of metals is simultaneously demetallized using a catalyst composition comprising a Group VIB metal and at least one Group II metal in combination with alumina. and desulfurizing, and the catalyst composition is
10-40% of the total pore volume in the pores has a diameter greater than 600 nanometers, and 60-90% of the total pore volume in the pores has an average pore diameter of θ
~600 micropores in diameter and a small micropore volume in the pores (both 80% and at least 100%
It is described as having a diameter of a person.

また、アスファルトテン含有炭化水素の、ニモード径触
媒を用いる水素化脱金属及び水素化脱硫方法も、米国特
許第4225421号明細書に記載される。
A process for hydrodemetalization and hydrodesulfurization of asphaltothene-containing hydrocarbons using a nimodic catalyst is also described in US Pat. No. 4,225,421.

この参考文献には、アルミナよりなる支持体上に第VI
B族金属を析出させた触媒、そしてそのミクロポア体積
の約60〜95%は約50〜200人の範囲内の直径を
有するミクロポアにあり、そのミクロポア体積の0〜約
15%は約200〜600人の範囲内の直径を有するミ
クロポアにあり、かつ全細孔体積の約3〜30%は60
0人又はこれより大きい直径を有するマクロポアにある
触媒が記載される。
In this reference, VI
A catalyst deposited with Group B metals, and about 60-95% of its micropore volume is in micropores having a diameter in the range of about 50-200 pores, and 0 to about 15% of its micropore volume is in the range of about 200-600 pores. micropores with diameters within the human range, and approximately 3-30% of the total pore volume is 60
Catalysts located in macropores with diameters of 0 or more are described.

(発明の要約) この発明により、モリブデン及び少なくとも1種の第■
族金属をアルミナと複合してなる触媒であり、かつ該触
媒が水銀浸透法による測定に基づく少なくとも0.4c
c/gの全細孔体積、0.02〜0.2cc/触媒体積
ccの範囲内のマクロポア体積及び少なくとも0.12
cc/触媒体積ccのミクロポア体積を有する触媒を、
水素化条件下に用いることによってアスファルト含有炭
化水素の、最適の脱金属及び脱硫が得られる。
(Summary of the Invention) According to the present invention, molybdenum and at least one
A catalyst comprising a group metal in combination with alumina, and the catalyst has a mercury content of at least 0.4 c as measured by mercury permeation method.
c/g total pore volume, a macropore volume in the range of 0.02 to 0.2 cc/catalyst volume cc and at least 0.12 cc/g.
A catalyst having a micropore volume of cc/catalyst volume cc,
Optimal demetalization and desulfurization of asphalt-containing hydrocarbons is obtained by use under hydrogenation conditions.

(発明の説明) アスファルト含有炭化水素の脱金属及び脱硫はモリブデ
ンの添加の制御並びにマクロポア体積及びミクロポア体
積の分布の制御をした触媒組成物を用いることにより最
適化しうろことを確かめた。
DESCRIPTION OF THE INVENTION It has been determined that the demetalization and desulfurization of asphalt-containing hydrocarbons may be optimized by using a catalyst composition with controlled molybdenum addition and controlled macropore volume and micropore volume distribution.

この明細書において用いる場合、「マクロポア体積」と
いう用語は、A37Mブレチン(Bulletin) 
tk236゜1959年2月のウィンスロウ(Wins
low)及びシャピロ(Shapiro)による「水銀
浸透による細孔径分布測定装置」に記載される試験方法
により測定して、1000〜10000人の範囲内の細
孔径を有する細孔に含まれる全細孔体積の割合を言う。
As used herein, the term "macropore volume" refers to the A37M Bulletin
tk236゜Winslow in February 1959
The total pore volume contained in pores having a pore size in the range of 1,000 to 10,000 pores, as measured by the test method described in "Pore Size Distribution Measuring Apparatus by Mercury Penetration" by J. Low and Shapiro. Say the percentage.

用語「ミクロポア体積」とは、「アナリチカル・ケミス
トリー」(八nalytical Chemistrい
第32巻P532.1960年にイー・ブイ−ハロン(
E、V、Ba1lon)、オー・ケイ・ドレン(0,に
、Dollen)により記載される窒素吸着法により測
定して、100〜600人単位の範囲内の直径を有する
細孔に含まれる全細孔体積の割合を言い、ここに参照に
より述べた各試験方法は、以下において、それぞれ「水
銀浸透」法及び「窒素吸着」法という。
The term "micropore volume" is the term used in "Analytical Chemistry" Volume 32, P532.
The total pores contained in pores with diameters in the range of 100 to 600 nanometers, as measured by the nitrogen adsorption method described by Dollen et al. The test methods that refer to the percentage of pore volume and are mentioned herein by reference are hereinafter referred to as the "mercury infiltration" method and the "nitrogen adsorption" method, respectively.

この発明の新規触媒の調製においては、アルミナ支持体
を用いる。この発明のアルミナは、シリカのような他の
成分の約10重量%までを含有することができる。代表
的には、支持体は、水銀浸透性測定による、0.8cc
/gの全細孔体積、0.5cc/gの窒素吸着体積、0
.5g/ccの圧密かさ密度、100〜600人の範囲
内の直径を有する細孔の中に窒素吸着体積の95%が存
する窒素吸着体積、200rrF/gのBET表面積、
細孔径が2000〜6000人範囲にある、0.05c
c/触媒体積ccのマクロポア体積及び0.3cc/触
媒体積ccのミクロポア体積を有すべきである。
An alumina support is used in the preparation of the novel catalyst of this invention. The alumina of this invention can contain up to about 10% by weight of other components such as silica. Typically, the support is 0.8 cc by mercury permeability measurements.
/g total pore volume, 0.5cc/g nitrogen adsorption volume, 0
.. Consolidated bulk density of 5 g/cc, nitrogen adsorption volume where 95% of the nitrogen adsorption volume resides in pores with diameters in the range of 100-600 mm, BET surface area of 200 rrF/g,
Pore diameter is in the range of 2000-6000, 0.05c
It should have a macropore volume of c/catalyst volume cc and a micropore volume of 0.3 cc/catalyst volume cc.

触媒金属の添加によって、前記支持体パラメータを調節
して以下に述べる触媒を製造することができる。
By adding catalytic metals, the support parameters can be adjusted to produce the catalysts described below.

触媒調製にあたり、アルミナは、乾燥して、代表的には
121℃(250°F)の温度で1〜24時間の範囲の
時間の間、それからいかなる遊離の水をも除くことがで
きる。
In catalyst preparation, the alumina can be dried to remove any free water from it, typically at a temperature of 121°C (250°F) for a period of time ranging from 1 to 24 hours.

この発明の触媒は、モリブデン及び第1族から選ばれた
少なくとも1種の金属成分を含有する。
The catalyst of the present invention contains molybdenum and at least one metal component selected from Group 1.

モリブデンをアルミナ支持体上に析出させ、三酸化モリ
ブデンを基準にして、触媒表面積の平方メートルあたり
三酸化モリブデンの少なくとも0.0005g 、好ま
しくは0.0006〜0.0014 gの添加となるよ
うにする。第■族金属の支持体への析出は、第■族金属
対モリブデンの重量比が0.10〜0.50、好ましく
は0.18〜0.38の範囲内になるようにする。
The molybdenum is deposited on an alumina support, with an addition of at least 0.0005 g, preferably from 0.0006 to 0.0014 g, of molybdenum trioxide per square meter of catalyst surface area, based on molybdenum trioxide. The Group 1 metal is deposited on the support such that the weight ratio of the Group 1 metal to molybdenum is in the range of 0.10 to 0.50, preferably 0.18 to 0.38.

以下に述べる触媒の調製は、他の調製方法をも用いうる
が、アルミナ支持体への金属の2段階含浸に特定して述
べる。ただ1回の含浸段階を用いることができ、又は触
媒をジャーナル・オブ・キャクリシス(Journal
 of Catalysis)第72巻P255〜26
265 (1981年)記載の押出方法により、調製す
ることができる。
The preparation of the catalysts described below is specifically described as a two-step impregnation of metal into an alumina support, although other preparation methods may also be used. Only one impregnation step can be used or the catalyst can be
of Catalysis) Volume 72 P255-26
265 (1981).

アルミナ支持体の2段階含浸においては、アルミナ押圧
物をモリブデン酸アンモニウム、七モリブデン酸アンモ
ニウム、五塩化モリブデン又はシュウ酸モリブデンのよ
うな塩の水溶液と混合することができる。次いで、湿っ
た含浸アルミナを、例えば、121℃(250°F)の
温度で1〜24時間の間という条件で乾燥することがで
きる。
In a two-step impregnation of an alumina support, the alumina presses can be mixed with an aqueous solution of a salt such as ammonium molybdate, ammonium heptamolybdate, molybdenum pentachloride or molybdenum oxalate. The wet impregnated alumina can then be dried, for example, at a temperature of 121°C (250°F) for between 1 and 24 hours.

その後、モリブデンを含浸したアルミナ支持体を硝酸ニ
ッケルのような第■族金属の水溶液に接触させうる。次
いで、湿った触媒を121℃(250°F)で1〜24
時間の間第2乾燥段階で乾燥することができる。次いで
、第2乾燥段階に続いて、触媒を427〜704℃(8
00〜1300°F)の範囲内の温度で1〜24時間の
間か焼することができる。
The molybdenum-impregnated alumina support can then be contacted with an aqueous solution of a Group I metal, such as nickel nitrate. The wet catalyst was then heated at 121°C (250°F) for 1 to 24 hours.
It can be dried in a second drying stage for an hour. The catalyst is then heated to 427-704°C (827-704°C) following a second drying stage.
Calcining can be performed at a temperature within the range of 0.000-1300° F. for a period of 1 to 24 hours.

調製触媒の水素化金属成分は、硫化物又は非硫化物形態
で用いることができる。硫化物形態が好ましい場合、触
媒をか焼後、又はか焼及び還元後、業界で知られる方法
によりあらかじめ硫化物にする。例えば、硫化物化は、
204〜371℃(400〜700 ” F)の範囲の
温度で、大気圧又は高圧で行うことができる。あらかじ
め硫化物化することを、オンスドリーム期間の初期に、
脱金属及び脱硫工程の開始に用いるのと同じ条件で行う
のが便利であることがある。水素と硫化水素の混合物を
用いうるが、水素と硫化水素の比率は臨界的でない。
The hydrogenation metal component of the prepared catalyst can be used in sulfide or non-sulfide form. If the sulfide form is preferred, the catalyst is pre-sulfidized after calcination, or after calcination and reduction, by methods known in the art. For example, sulfidation is
It can be carried out at atmospheric or elevated pressures at temperatures ranging from 204 to 371 degrees Celsius (400 to 700'' F).
It may be convenient to carry out the same conditions used to initiate the demetalization and desulfurization steps. Mixtures of hydrogen and hydrogen sulfide may be used, although the ratio of hydrogen to hydrogen sulfide is not critical.

元素の硫黄又はメルカプタン又は二硫化炭素のような硫
黄化合物を硫化水素の代りに用いうる。
Elemental sulfur or sulfur compounds such as mercaptans or carbon disulfide may be used in place of hydrogen sulfide.

このように調製し、この発明のアスファルト含有炭化水
素脱金属及び脱硫方法において用いる触媒は、水銀浸透
測定による、少なくとも0.5cc/g+好ましくは0
.60〜0.75cc/gの範囲内の全細孔体積、マク
ロポア径が1000〜10000人の範囲内であって、
0.02〜0.20cc/触媒体積ccのマクロポア体
積、及び少なくとも0.12、好ましくは0.20〜0
.32cc/触媒体積CCのマクロポア体積を有する。
The catalyst thus prepared and used in the asphalt-containing hydrocarbon demetallization and desulfurization process of this invention has a mercury permeation measurement of at least 0.5 cc/g + preferably 0.
.. The total pore volume is within the range of 60 to 0.75 cc/g, the macropore diameter is within the range of 1000 to 10000,
Macropore volume of 0.02 to 0.20 cc/catalyst volume cc, and at least 0.12, preferably 0.20 to 0
.. It has a macropore volume of 32 cc/catalyst volume CC.

マクロポア体積の細孔径が2000〜6000人の範囲
内であり、マクロポア体積が0.035〜0.075c
c/触媒体積ccであり、かつミクロボア体積の細孔径
が 100〜400人の範囲内であることが好ましい。更に
この発明の触媒は、少なくとも0.3、好ましくは0.
40〜0.55cc/gの窒素吸着体積、少なくとも0
.4゜好ましくは0.50〜0.70g/ccの圧密密
度、−少なくとも100、好ましくは13’0〜175
rrF/gの表面積を有し、かつミクロポア体積は窒素
吸着体積の少なくとも70、好ましくは80〜95%を
含む。
The pore diameter of the macropore volume is within the range of 2000 to 6000, and the macropore volume is 0.035 to 0.075c.
c/catalyst volume cc, and the pore diameter of the micropore volume is preferably within the range of 100 to 400 pores. Furthermore, the catalyst of the invention has a molecular weight of at least 0.3, preferably 0.3.
Nitrogen adsorption volume of 40-0.55 cc/g, at least 0
.. 4° Consolidation density preferably from 0.50 to 0.70 g/cc - at least 100, preferably from 13'0 to 175
rrF/g and the micropore volume comprises at least 70, preferably 80-95% of the nitrogen adsorption volume.

特定の細孔構造における触媒金属濃度の効果を、前記2
段階方法に従って7種の触媒を調製することにより、測
定した。調製アルミナ支持触媒の特性及び市販触媒(隘
6)の特性を下記の表1に示す: 媚 爛 憬 佃 触媒1〜5は大きなマクロポア(8000人)を有して
いた;触媒6及び8はマクロポアを有しなかった;また
触媒7は小さなマクロポア(800人)を有した。これ
らの触媒を0.4LH3V、 171kg/cnケージ
圧(2430ps i g)の水素圧力及び供給原料リ
ットルあたりの水素ガスの標準リットルの割合8901
 / j!(SCF’B:バレルあたりの標準立方フィ
ート=5000)の循環率、及び399℃(750’ 
F)の温度で操作するアスファルト含有炭化水素脱金属
−脱硫細流床パイロットプラントで選別した。用いた供
給原料は、次の検査を有する脱塩ベネズエラ原油であっ
た:API度、′へP I     9.1硫黄、 重
量%    3.3 窒素、 重量%    0.61 ニッケル、 ppm    87 バナジウム、p p m    360炭素残留物  
      15.2 8日間の運転後得られた生成物品質データを第1〜3図
に示す。
The effect of catalytic metal concentration in a specific pore structure was
It was determined by preparing seven catalysts according to a stepwise method. The properties of the prepared alumina supported catalyst and the properties of the commercially available catalyst (6) are shown in Table 1 below: Catalysts 1-5 had large macropores (8000); Catalysts 6 and 8 had large macropores Catalyst 7 also had small macropores (800). These catalysts were operated at a hydrogen pressure of 0.4 LH3V, 171 kg/cn cage pressure (2430 ps i g) and a standard liter of hydrogen gas per liter of feedstock ratio of 8901
/ j! (SCF'B: standard cubic feet per barrel = 5000) and a circulation rate of 399°C (750'
F) was screened in an asphalt-containing hydrocarbon demetallization-desulfurization trickle-bed pilot plant operating at temperatures of F). The feedstock used was desalinated Venezuelan crude oil with the following tests: API degree, 'PI 9.1 Sulfur, wt% 3.3 Nitrogen, wt% 0.61 Nickel, ppm 87 Vanadium, p p m 360 carbon residue
15.2 The product quality data obtained after 8 days of operation are shown in Figures 1-3.

第1図は、マクロポア率の量、すなわち、太きさが生成
物の硫黄濃度に影響せず、100〜600人径細孔中の
モリブデン濃度の増加とともに脱硫が増大することを明
らかにする。表面積平方メートルあたり三酸化モリブデ
ンの少なくとも0.0005グラムのモリブデン添加で
、脱硫は最適化される。
Figure 1 reveals that the amount of macropore fraction, i.e., the size, does not affect the sulfur concentration of the product, and that desulfurization increases with increasing molybdenum concentration in 100-600 human diameter pores. Desulfurization is optimized with a molybdenum addition of at least 0.0005 grams of molybdenum trioxide per square meter of surface area.

100〜600人径範囲の細孔構造を有するこれらの触
媒に対して、有機硫黄分子の拡散は制限要因でない。
For these catalysts with pore structures in the 100-600 diameter range, the diffusion of organic sulfur molecules is not a limiting factor.

第2図および第3図は、残留炭化水素留分の脱金属にお
ける大きなマクロポア(1000〜10000人の範囲
の細孔径における)を用いる場合の臨界性を明らかにす
る。触媒7のマクロポア率は触媒1〜5のそれと本質的
に同等であるけれども、触媒7の脱金属効果は著しく小
さく、大きなマクロポアの著しく、すぐれた拡散能を証
明する。
Figures 2 and 3 reveal the criticality of using large macropores (with pore sizes in the range of 1000 to 10000) in the demetalization of residual hydrocarbon fractions. Although the macropore fraction of catalyst 7 is essentially the same as that of catalysts 1-5, the demetalization effect of catalyst 7 is significantly smaller, demonstrating the significantly better diffusion ability of the large macropores.

大きな金属含有分子が触媒粒子のすべての部分で接触的
に反応することを可能にするために大きな、すなわち「
供給路」マクロポアの必要度が確立されたので、マクロ
ポア体積の量及びマクロポア体積における細孔の最適大
きさを決める実験を行った。マクロポア率の付艇は、単
位体積あたりの触媒活性のあるミクロポア率の減少を伴
うので、マクロポア率の量は、脱金属及び脱硫触媒活性
を維持するように最適化すべきである。
To allow large metal-containing molecules to react catalytically on all parts of the catalyst particles, i.e.
With the need for macropores established, experiments were conducted to determine the amount of macropore volume and the optimal size of the pores in the macropore volume. Since increasing the macroporosity is accompanied by a decrease in the catalytically active micropores per unit volume, the amount of macroporosity should be optimized to maintain demetalization and desulfurization catalytic activity.

一連のアルミナ支持触媒を前記2段階含浸方法を用いて
調製した。調製した触媒の特性を次の表2に示す: 表   2 □、g/cc  0.3960.4290.3590.
3960.7550.2590.2640.286□ 
1.8B 2.692.211.491.392,73
2.542.476蹟、□ 表2の触媒を、0.5LH3V、 141kg/c4ケ
ージ圧(2000psig)の水素圧及び循環率356
1 / N (SCFB2000 )及び371℃(7
00” F)の温度で操作した一連の運転における前記
パイロ・ノドプラントで選別した。用いた供給原料は次
の検査を有するメキシコマヤ(1’1exican M
aya)常圧塔ボトムスであったzAPI度、”API
     7.5 硫黄、 重量%    4.7 ニッケル、 ppm     7B バナジウム、p p m    40B運転生成物の各
の硫黄及び金属濃度を表2に示す。
A series of alumina supported catalysts were prepared using the two-step impregnation method described above. The properties of the prepared catalyst are shown in Table 2 below: Table 2 □, g/cc 0.3960.4290.3590.
3960.7550.2590.2640.286□
1.8B 2.692.211.491.392,73
2.542.476 kg, □ The catalyst in Table 2 was heated at 0.5 LH3V, 141 kg/c4 cage pressure (2000 psig) hydrogen pressure and circulation rate 356
1/N (SCFB2000) and 371℃ (7
The feedstock used was a 1'1exican M
aya) The zAPI degree that was the atmospheric pressure column bottoms, "API
7.5 Sulfur, wt% 4.7 Nickel, ppm 7B Vanadium, ppm The sulfur and metal concentrations for each of the 40B run products are shown in Table 2.

同一の量及び大きさのマクロポア率を有する触媒に対し
て、生成物金属とモリブデン含有量の間には直線関係が
存在するので、また表2の上記生成物データを用いるこ
とにより、反応器の体積100ccあたり、100〜6
00人径細孔内にモリブデン0.50gを有し、かつマ
クロポア率が2000〜6000人範囲番こある触媒に
対し第4図及び第5図の曲線を書くことができる。第4
図及び第5図は、マクロポア率の量が0.03cc/反
応器体積ccより小さい場合、拡散が阻害され、一方0
.08cc/触媒体積ccを超えるマクロポア率は拡散
増大にほとんど影響しないということを示す。0.03
5〜0.07’5cc/触媒体積ccのマクロポア率の
範囲は触媒の所望の拡散特性を最適化する。6000〜
10000人径範囲の細孔に対する同様なプロットは認
められる傾向を示さず、それによりマクロポアとして2
000〜6000人径の細孔の大きさ範囲が好ましいこ
とを支持する。
Since a linear relationship exists between product metal and molybdenum content for catalysts with the same amount and size of macropores, and by using the above product data in Table 2, the reactor 100-6 per 100cc volume
The curves shown in FIGS. 4 and 5 can be drawn for a catalyst having 0.50 g of molybdenum in 0.00 mm diameter pores and having a macropore ratio in the range of 2,000 to 6,000 mm. Fourth
Figures 5 and 5 show that when the amount of macropore fraction is less than 0.03 cc/reactor volume cc, diffusion is inhibited;
.. It is shown that macropore ratios above 0.8 cc/cc of catalyst volume have little effect on diffusion enhancement. 0.03
A macropore ratio range of 5 to 0.07'5 cc/cc of catalyst volume optimizes the desired diffusion properties of the catalyst. 6000~
A similar plot for pores in the 10,000 diameter range shows no discernible trend, thereby indicating that 2 as a macropore.
A pore size range of 000 to 6000 diameters is preferred.

この発明の有効性を証明するため2種の触媒を調製した
。触媒17はか焼0.08cm (1/32インチ)ア
ルミナ押出物の236.0gに七モリブデン酸アンモニ
ウム(81,5%MOO:+ )の103.96 g及
び水酸化アンモニウムの45.4mlを含有する水溶液
の3fiOmlを含浸させて調製した。この素材を12
1°C(250°F)で乾燥器で乾燥し、次いで10時
間、538℃(1000’F)でか焼した。次いでか焼
素材に、(81硝酸ニツケル六水和物の100.0.9
g及び(bl 18.31%Ti0z  TiC1a安
定化アミン水溶液312.69 gを含有する水溶液(
326ml)を含浸させた。素材を121°C(250
°F)で約27時間乾燥器で乾燥し、最後に、10時間
、121℃(1000°F)でか焼した。
Two types of catalysts were prepared to demonstrate the effectiveness of this invention. Catalyst 17 contained 103.96 g of ammonium heptamolybdate (81.5% MOO:+) and 45.4 ml of ammonium hydroxide in 236.0 g of calcined 0.08 cm (1/32 inch) alumina extrudates. It was prepared by impregnating 3fiOml of an aqueous solution. 12 of this material
It was oven dried at 1°C (250°F) and then calcined at 538°C (1000'F) for 10 hours. Then, the calcined material was added (81 nickel nitrate hexahydrate 100.0.9
g and (bl 18.31% TiOz TiC1a stabilized amine aqueous solution 312.69 g).
326 ml) was impregnated. Heat the material to 121°C (250°C)
°F) for approximately 27 hours and finally calcined at 121 °C (1000 °F) for 10 hours.

触媒1日は0.08cm(1/32インチ)か焼アルミ
ナ押出物の187.0gに、七モリブデン酸アンモニウ
ム(81,5%MOO3)の82.17g及び水酸化ア
ンモニウムの35.9mlを含有する水溶液の300m
1を含浸させて調製した。素材を121℃(250’ 
F)で乾燥器にて乾燥し、次いで10時間、538℃(
1000°F)でか焼した。次いで、か焼素材社、(a
)硝酸ニッケル六水和物の79.05g及び(bl 1
B 、 01χTiO□−TiC14安定化水溶液の2
48.22 gを含有する水溶液の275m1を含浸さ
せた。素材を121℃(250°F)で約27時間乾燥
器にて乾燥し、最後に10時間、538℃(1000°
F)でか焼した。
Catalyst 1 day contains 82.17 g of ammonium heptamolybdate (81.5% MOO3) and 35.9 ml of ammonium hydroxide in 187.0 g of 0.08 cm (1/32 inch) calcined alumina extrudate. 300m of aqueous solution
1 was impregnated. The material was heated to 121℃ (250'
F) in a dryer, then dried at 538°C (
Calcined at 1000°F. Next, Calcination Materials Co., Ltd. (a
) 79.05 g of nickel nitrate hexahydrate and (bl 1
B, 2 of 01χTiO□-TiC14 stabilized aqueous solution
275 ml of aqueous solution containing 48.22 g was impregnated. The material was dried in an oven at 121°C (250°F) for approximately 27 hours, and finally at 538°C (1000°C) for 10 hours.
F) Calcined.

次の表3に示すように、調製触媒は、所望量のマクロポ
ア率、それぞれ、0.043及び0.041cc/触媒
体積cc並びにミクロボア率、それぞれ、0.20及び
0.24cc/触媒体積ccを有する。触媒は、0.3
LH3V。
As shown in Table 3 below, the prepared catalysts have the desired amounts of macropore fraction, 0.043 and 0.041 cc/catalyst volume cc, respectively, and micropore fraction, 0.20 and 0.24 cc/catalyst volume cc, respectively. have The catalyst is 0.3
LH3V.

169kg/cnゲージ圧(2400pisg)の水素
圧及び890 N / jl! (SCFB 5000
)の循環速度で、メレイ・カンボ(Merey Cam
po)原油原料を用いて操業する前記パイロットプラン
トで選別した。
Hydrogen pressure of 169 kg/cn gauge pressure (2400 pisg) and 890 N/jl! (SCFB 5000
Merey Cam
po) Sorted at the pilot plant operated using crude oil feedstock.

表   3 角虫ωr省4号                  
     17           18饋 O i M。
Table 3 Hornworm ωr Ministry No. 4
17 18 饋O i M.

i 主糸 表向 手札 全綱 径い [1− 0C 0C 0C 〈 水釦 径範 体虻 全 200〔 400〔 〉1 圧密かさ密度、g/cc        O,653、
0,70400c にえ MoO3グラム/rd         O,0010
00,0012710【 に之 0Or にえ 率、 供給原料の検査並びに運転で製造した生成物油を次の第
4表に示す。触媒17及び18の場合、それぞれ78.
1%及び78.9%の脱硫、それぞれ83.3%及び8
6.9%の脱金属が得られた。
i Main yarn surface hand total rope diameter [1- 0C 0C 0C < Water button diameter range 200 [ 400 [ ] 1 Consolidated bulk density, g/cc O, 653,
0,70400c Nie MoO3g/rd O,0010
00,0012710 [20,0012710] The feedstock examination and product oil produced in the operation are shown in Table 4 below. 78. for catalysts 17 and 18, respectively.
1% and 78.9% desulfurization, 83.3% and 8 respectively
A demetalization of 6.9% was obtained.

表   4 へPI度、’API   17.8  20.9  2
2.5硫黄、重量%   2.28  0.50  0
.48窒素、重量%   0.41  0.34  0
.31ニッケルppm    55   17   1
5バナジウムppm  220   29   21脱
金属−脱硫方法に用いる触媒粒子の形状は、高い幾何学
的表面積及び反応装置に用いるような高い圧密密度を有
することが望ましい。限定するわけではないが、0.0
8cm (1/32インチ)円筒成形押出物が好ましい
Table 4 PI degree, 'API 17.8 20.9 2
2.5 Sulfur, wt% 2.28 0.50 0
.. 48 Nitrogen, weight% 0.41 0.34 0
.. 31 Nickel ppm 55 17 1
5 Vanadium ppm 220 29 21 It is desirable that the shape of the catalyst particles used in the demetalization-desulfurization process have a high geometric surface area and a high compaction density for use in the reactor. Although not limited to, 0.0
8 cm (1/32 inch) cylindrical extrudates are preferred.

この発明の方法に従って行われる脱金属−脱硫反応は、
アスファルト含有炭化水素に対して触媒の存在下、開始
時用いる温度を比較的急速に上昇させた後、約316〜
454℃(600〜850°F)、好ましくは343〜
427℃(650〜800 ’ F)の範囲に維持する
温度で行われる。反応は、35.2〜211kg/ c
aゲージ圧(500〜3000psig) 、好ましく
は105.5〜176kg / adゲージ圧(150
0〜2500psig)の範囲内の、混ぜない水素の分
圧の存在下に行う。水素ガス(少なくとも60%純度)
を反応帯域を経て、供給の159リツトル(ハーレル)
あたす28250〜282000標準リツトル(100
0〜10000標準立方フイート)、好ましくは562
50〜168750標準リツトル(2000〜6000
標準立方フイート)の割合で循環させる(SCFB)。
The demetalization-desulfurization reaction carried out according to the method of this invention is
After relatively rapidly increasing the starting temperature in the presence of a catalyst for asphalt-containing hydrocarbons, from about 316 to
454°C (600-850°F), preferably 343-850°F
It is carried out at a temperature maintained in the range of 427°C (650-800'F). The reaction is 35.2-211 kg/c
a gauge pressure (500-3000 psig), preferably 105.5-176 kg/ad gauge pressure (150
0-2500 psig) in the presence of a partial pressure of neat hydrogen. Hydrogen gas (at least 60% purity)
159 liters (Harrell) of the feed through the reaction zone
Atasu 28,250~282,000 standard liters (100
0 to 10,000 standard cubic feet), preferably 562
50~168750 standard liter (2000~6000
standard cubic feet) (SCFB).

0.1〜5.0、好ましくは0.2〜2.0の範囲内の
時間あたり、触媒体積あたりの油の液体体積(Ll(S
V)の空間速度を反応帯域内で維持する。
The liquid volume of oil per volume of catalyst (Ll(S
V) maintaining the space velocity of V) within the reaction zone.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、生成物硫黄と100〜600人径触媒細孔に
あるモリブデンの濃度との関係を示すグラフ第2図は、
炭化水素生成物のバナジウム濃度とミクロボア中のモリ
ブデン濃度の関係を示すグラフ、 第3図は、炭化水素生成物のニッケル濃度とミ 〈〜 マクロポア体積の関係を示すグラフである。 第1図 !。 第2図 第3図 MlイオkI【tooccあr−、vstm〜mAmz
itrermr=pryaそリブヂソめヂラA響( 第4図 υ51Mo牟4iLR*’++12000〜6000A
m5L’1lIC’A71マグロオーを柔も才賢 第5図 0.5yMo卑asz−IT 2o00〜e;oooA
MJjL411=8にマクロが−r4本オ貧
Figure 1 is a graph showing the relationship between product sulfur and the concentration of molybdenum in catalyst pores of 100 to 600 diameters.
FIG. 3 is a graph showing the relationship between the vanadium concentration in the hydrocarbon product and the molybdenum concentration in the micropores. FIG. 3 is a graph showing the relationship between the nickel concentration in the hydrocarbon product and the micropore volume. Figure 1! . Figure 2 Figure 3 Ml io kI [toocc ar-, vstm~mAmz
itrermr=prya Soribjiso Medilla A Hibiki (Figure 4 υ51Mo4iLR*'++12000~6000A
m5L'1lIC'A71 Tuna is soft and wise Figure 50.5yMoasz-IT 2o00~e;oooA
MJjL411=8 has -r4 macros.

Claims (1)

【特許請求の範囲】 1、アルミナ支持体上に析出したモリブデン及び第VII
I族金属を含んでなる触媒であって、前記触媒が水銀浸
透測定による少なくとも0.4cc/gの全細孔体積、
0.02〜0.20cc/触媒体積ccのマクロポア体
積、及び少なくとも0.12cc/触媒体積ccのミク
ロポア体積を有する触媒。 2、マクロポア体積が0.035〜0.075cc/触
媒体積ccの範囲内であり、マクロポアの細孔径が20
00〜6000Åの範囲内である特許請求の範囲第1項
記載の触媒。 3、モリブデンのアルミナ支持体上への析出を触媒表面
の平方メートルあたり少なくとも0.0005gの三酸
化モリブデンの添加を与えるように行う特許請求の範囲
第2項記載の触媒。 4、添加が触媒表面の平方メートルあたり三酸化モリブ
デンの0.0006〜0.0014gの範囲内である特
許請求の範囲第3項記載の触媒。 5、ミクロポア体積が0.20〜0.32cc/触媒体
積ccの範囲内である特許請求の範囲第3項記載の触媒
。 6、ミクロポア体積の細孔径が100〜400Åの範囲
内である特許請求の範囲第5項記載の触媒。 7、前記アルミナ上に析出した第IVB族金属を含む特許
請求の範囲第3項記載の触媒。 8、硫黄及び金属を含有するアスファルト含有炭化水素
を水素化条件下に水素並びにアルミナ支持体上に析出し
たモリブデン及び第VIII族金属を含んでなる触媒と接触
させ、かつ前記触媒が水銀浸透測定による少なくとも0
.4cc/gの全細孔体積、0.02〜0.20cc/
触媒体積ccのマクロポア体積、及び少なくとも0.1
2cc/触媒体積ccのマクロポア体積を有する触媒で
あることを特徴とする残留炭化水素の脱金属及び脱硫方
法。 9、マクロポア体積が0.035〜0.075cc/触
媒体積ccの範囲内であり、マクロポアの細孔径が20
00〜6000Åの範囲内である特許請求の範囲第8項
記載の方法。 10、モリブデンのアルミナ支持体上への析出を触媒表
面の平方メートルあたり少なくとも0.0005gの三
酸化モリブデンの添加を与えるように行う特許請求の範
囲第9項記載の方法。 11、前記触媒がその上に析出した第IVB族金属をも含
む特許請求の範囲第10項記載の方法。 12、触媒のミクロポア体積が0.20〜0.32cc
/触媒体積ccの範囲内である特許請求の範囲第11項
記載の方法。
[Claims] 1. Molybdenum deposited on an alumina support and VII
a catalyst comprising a Group I metal, wherein said catalyst has a total pore volume of at least 0.4 cc/g by mercury permeation measurements;
A catalyst having a macropore volume of 0.02 to 0.20 cc/cc of catalyst volume and a micropore volume of at least 0.12 cc/cc of catalyst volume. 2. The macropore volume is within the range of 0.035 to 0.075 cc/catalyst volume cc, and the pore diameter of the macropore is 20
The catalyst according to claim 1, wherein the catalyst has a diameter of 00 to 6000 Å. 3. A catalyst according to claim 2, in which the molybdenum is deposited on the alumina support in such a way as to provide a loading of at least 0.0005 g of molybdenum trioxide per square meter of catalyst surface. 4. The catalyst according to claim 3, wherein the addition is in the range of 0.0006 to 0.0014 g of molybdenum trioxide per square meter of catalyst surface. 5. The catalyst according to claim 3, wherein the micropore volume is within the range of 0.20 to 0.32 cc/catalyst volume cc. 6. The catalyst according to claim 5, wherein the pore diameter of the micropore volume is within the range of 100 to 400 Å. 7. The catalyst of claim 3 comprising a Group IVB metal deposited on the alumina. 8. Contacting an asphalt-containing hydrocarbon containing sulfur and metals under hydrogenation conditions with hydrogen and a catalyst comprising molybdenum and Group VIII metals precipitated on an alumina support, and wherein said catalyst was determined by mercury permeation measurements. at least 0
.. Total pore volume of 4cc/g, 0.02-0.20cc/
a macropore volume of catalyst volume cc, and at least 0.1
A method for demetallizing and desulfurizing residual hydrocarbons, characterized in that the catalyst has a macropore volume of 2 cc/cc of catalyst volume. 9. The macropore volume is within the range of 0.035 to 0.075 cc/catalyst volume cc, and the pore diameter of the macropore is 20
9. The method according to claim 8, wherein the thickness is within the range of 00 to 6000 Å. 10. The method of claim 9, wherein the deposition of molybdenum onto an alumina support is carried out in such a way as to provide a loading of at least 0.0005 g of molybdenum trioxide per square meter of catalyst surface. 11. The method of claim 10, wherein said catalyst also includes a Group IVB metal deposited thereon. 12. Micropore volume of catalyst is 0.20~0.32cc
12. The method according to claim 11, wherein the catalyst volume is within the range of cc/catalyst volume.
JP25905584A 1984-07-30 1984-12-07 Hydrogenation catalyst and metal removal and desulfurization of hydrocarbon residue using the same Pending JPS6138629A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US63611784A 1984-07-30 1984-07-30
US636117 1996-04-22

Publications (1)

Publication Number Publication Date
JPS6138629A true JPS6138629A (en) 1986-02-24

Family

ID=24550507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25905584A Pending JPS6138629A (en) 1984-07-30 1984-12-07 Hydrogenation catalyst and metal removal and desulfurization of hydrocarbon residue using the same

Country Status (3)

Country Link
JP (1) JPS6138629A (en)
CA (1) CA1248513A (en)
NL (1) NL8403107A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62201643A (en) * 1986-02-28 1987-09-05 Nippon Oil Co Ltd Production of hydrogenation catalyst
JP2002361100A (en) * 2001-06-08 2002-12-17 Nippon Kecchen Kk Catalyst for hydrogeneation treatment of heavy hydrocarbon oil and method of hydrogeneation treatment
JP2003340281A (en) * 2002-05-24 2003-12-02 Inst Fr Petrole Treatment method for hydro-refining and/or hydro- conversion of hydrocarbon raw material load by using catalyst

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX9305801A (en) 1992-09-29 1994-07-29 Texaco Development Corp A NEW HYDROCONVERSION PROCESS USING A CATALYST WITH A SPECIFIED PORE SIZE DISTRIBUTION.
DE69526181T2 (en) * 1994-11-03 2002-11-14 Shell Int Research Catalyst and hydrogen treatment process
EP0714699B1 (en) * 1994-11-03 2002-04-03 Shell Internationale Researchmaatschappij B.V. Catalyst and hydrotreating process
JP4638610B2 (en) 2001-01-05 2011-02-23 日本ケッチェン株式会社 Hydrotreating catalyst and hydrotreating method
DE102007011471B4 (en) 2006-03-09 2021-09-30 Shell Internationale Research Maatschappij B.V. Catalyst combination for the hydrogenating processing of vacuum gas oils and / or visbreaker gas oils
US20190233741A1 (en) 2017-02-12 2019-08-01 Mag&#275;m&#257; Technology, LLC Multi-Stage Process and Device for Reducing Environmental Contaminates in Heavy Marine Fuel Oil
US10604709B2 (en) 2017-02-12 2020-03-31 Magēmā Technology LLC Multi-stage device and process for production of a low sulfur heavy marine fuel oil from distressed heavy fuel oil materials
US11788017B2 (en) 2017-02-12 2023-10-17 Magëmã Technology LLC Multi-stage process and device for reducing environmental contaminants in heavy marine fuel oil

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54104493A (en) * 1978-01-31 1979-08-16 Exxon Research Engineering Co Manufacture of catalyst having predetermined pore size distribution and pore volume
JPS596946A (en) * 1982-06-17 1984-01-14 ソシエテ・フランセ−ズ・デ・プロデユイ・プ−ル・カタリ−ズ・プロ・カタリ−ズ Supported catalyst for hydrogenating treatment of metal containing hydrocarbon increased in catalyst poison and production thereof
JPS60112888A (en) * 1983-10-31 1985-06-19 シエブロン リサーチ コンパニー Quality improvement for hydrocarbon supply raw material

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54104493A (en) * 1978-01-31 1979-08-16 Exxon Research Engineering Co Manufacture of catalyst having predetermined pore size distribution and pore volume
JPS596946A (en) * 1982-06-17 1984-01-14 ソシエテ・フランセ−ズ・デ・プロデユイ・プ−ル・カタリ−ズ・プロ・カタリ−ズ Supported catalyst for hydrogenating treatment of metal containing hydrocarbon increased in catalyst poison and production thereof
JPS60112888A (en) * 1983-10-31 1985-06-19 シエブロン リサーチ コンパニー Quality improvement for hydrocarbon supply raw material

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62201643A (en) * 1986-02-28 1987-09-05 Nippon Oil Co Ltd Production of hydrogenation catalyst
JP2002361100A (en) * 2001-06-08 2002-12-17 Nippon Kecchen Kk Catalyst for hydrogeneation treatment of heavy hydrocarbon oil and method of hydrogeneation treatment
JP4612229B2 (en) * 2001-06-08 2011-01-12 日本ケッチェン株式会社 Catalyst for hydrotreating heavy hydrocarbon oil and hydrotreating method
JP2003340281A (en) * 2002-05-24 2003-12-02 Inst Fr Petrole Treatment method for hydro-refining and/or hydro- conversion of hydrocarbon raw material load by using catalyst

Also Published As

Publication number Publication date
NL8403107A (en) 1986-02-17
CA1248513A (en) 1989-01-10

Similar Documents

Publication Publication Date Title
US4588709A (en) Catalyst for removing sulfur and metal contaminants from heavy crudes and residues
CA2560925C (en) Catalyst for hydrotreating hydrocarbon oil, process for producing the same, and method for hydrotreating hydrocarbon oil
US7618916B2 (en) Hydrotreating catalyst for gas oil, process for producing the same, and method of hydrotreating gas oil
JPS6265750A (en) Catalyst for hydrogenation treatment of heavy oil, etc. and manufacture thereof
EP0960652B1 (en) Hydrotreating catalyst for heavy hydrocarbon oil, process for producing the catalyst, and hydrotreating method using the same
US3997473A (en) Hydrodesulfurization catalysts supported on carbon
TWI632235B (en) Catalyst for hydrodesulfurization of residuum hydrocarbon feedstocks and preparaton method thereof
US4525472A (en) Process for catalyst preparation for the hydrodemetallization of heavy crudes and residues
JP6432086B2 (en) Heavy hydrocarbon oil hydrotreating catalyst, method for producing heavy hydrocarbon oil hydrotreating catalyst, and method for hydrotreating heavy hydrocarbon oil
US4119531A (en) Large-pore hydrodemetallization catalyst and process employing same
JP2019218556A (en) Hydrotreating method of heavy hydrocarbon oil
US4082652A (en) Process for improved carbon-supported hydrodesulfurization catalysts
JP4864106B2 (en) Method for producing hydrocarbon oil hydrotreating catalyst
JPS6138629A (en) Hydrogenation catalyst and metal removal and desulfurization of hydrocarbon residue using the same
US4642179A (en) Catalyst for removing sulfur and metal contaminants from heavy crudes and residues
US4032435A (en) Hydrodesulfurization of petroleum residuum utilizing a carbon-supported catalyst
JP4689198B2 (en) Hydrocarbon hydrotreating catalyst, process for producing the same, and hydrotreating process for hydrocarbon oil
US5164078A (en) Process for removal of calcium from a hydrocarbon feedstock
US5102852A (en) Catalyst system for removal of calcium from a hydrocarbon feedstock
JPS63123448A (en) Manufacture of hydrogenating treating catalyst from hydrogel
US4814315A (en) Pretreated alumina containing material and process for its preparation
US4620922A (en) Catalyst and process for the hydrotreating of nitrogen-containing feeds
US4778587A (en) Hydrotreating process employing a pretreated alumina containing material
CA1221353A (en) Catalyst for the simultaneous demetallization and desulfurization of heavy hydrocarbon feedstocks
JP7011479B2 (en) Hydrocarbon oil manufacturing method