JPS6138462A - Preparation of packing material for liquid chromatography - Google Patents

Preparation of packing material for liquid chromatography

Info

Publication number
JPS6138462A
JPS6138462A JP59161373A JP16137384A JPS6138462A JP S6138462 A JPS6138462 A JP S6138462A JP 59161373 A JP59161373 A JP 59161373A JP 16137384 A JP16137384 A JP 16137384A JP S6138462 A JPS6138462 A JP S6138462A
Authority
JP
Japan
Prior art keywords
diluent
monomer
glycidyl
polymer particles
aqueous suspension
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59161373A
Other languages
Japanese (ja)
Inventor
Toshiyuki Kobashi
小橋 利行
Utahiro Takagi
高木 唱洋
Hideo Naka
秀雄 中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Exlan Co Ltd
Original Assignee
Japan Exlan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Exlan Co Ltd filed Critical Japan Exlan Co Ltd
Priority to JP59161373A priority Critical patent/JPS6138462A/en
Publication of JPS6138462A publication Critical patent/JPS6138462A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/261Synthetic macromolecular compounds obtained by reactions only involving carbon to carbon unsaturated bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/265Synthetic macromolecular compounds modified or post-treated polymers
    • B01J20/267Cross-linked polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/281Sorbents specially adapted for preparative, analytical or investigative chromatography
    • B01J20/282Porous sorbents
    • B01J20/285Porous sorbents based on polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/50Aspects relating to the use of sorbent or filter aid materials
    • B01J2220/54Sorbents specially adapted for analytical or investigative chromatography

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

PURPOSE:To prepare a packing agent for liquid chromatography (LC) excellent in separation capacity, by subjecting a mixure consisting of glycidyl monovinyl ester and a crosslinkable monomer to aqueous suspension polymerization in the presence of 1,2-dichlorethane being a diluent to split and make an epoxy group hydrophilic. CONSTITUTION:A monomer mixture based on glycidyl monovinyl ester or glycidyl monovinyl ehter and a crosslinkable monomer is subjected to aqueous suspension polymerization in the presence of 1,2-dichloroethane being a diluent. After the diluent in polymer particles are extracted and removed, an epoxy group is split to be made hydrophilic. Because the compatibility of the diluent with the monomer and the formed polymer is excellent, a uniform fine pore size can be formed in each particle and a porous packing agent for LC excellent in separation capacity can be prepared in an industrially benefidial manner.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は、液体クロマトグラフィー(LC)月光m剤の
製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to a method for producing a liquid chromatography (LC) moonlight m agent.

Cロン 従来の技術 現在、LCは不揮発性物質の分析、分離等の分野で欠か
せない手法となっており、その市場は急速に拡大し、そ
れにつれて各社の開発競争も熾烈をきわめている。かか
るLCの分離能を調整する方法の1つとして充填剤中の
空孔の形状や量を変えることが知られており、また空孔
の調整法としては重合体の分子量や架橋密度(架橋剤の
量)を変化させる手段が専ら用いられている。ところが
、架橋密度を上げると重合体粒子が緻密化して孔径が小
さくなって分離能が低下し、また架橋密度を下げると重
合体粒子の機械的強度が低下してLCの高速化に対して
大きな障害となる。
Cron Conventional technology Currently, LC is an indispensable method in the fields of analysis and separation of non-volatile substances, and its market is rapidly expanding, and competition among companies to develop it is becoming fiercer. It is known that one way to adjust the separation power of such LC is to change the shape and amount of pores in the filler. Exclusively means of varying the amount of However, when the crosslinking density is increased, the polymer particles become denser and the pore size becomes smaller, resulting in a decrease in separation ability, and when the crosslinking density is lowered, the mechanical strength of the polymer particles decreases, making it difficult to increase the speed of LC. It becomes an obstacle.

そこで、例えば特公昭57−31925号公報に記載さ
れるように、希釈剤としてニトロメタン、トルエンなど
単量体との相溶性はあるが水との相溶性は乏しい有機溶
剤を存在させて酢酸ビニルを架橋剤と共に水性懸濁重合
し、ケン化、後架橋の工程を経て固く多孔性のポリビニ
ルアルコールゲルを製造する手段が提案されている。
Therefore, as described in Japanese Patent Publication No. 57-31925, for example, vinyl acetate is diluted by using an organic solvent, such as nitromethane or toluene, as a diluent, which is compatible with the monomer but has poor compatibility with water. A method has been proposed for producing a hard and porous polyvinyl alcohol gel through aqueous suspension polymerization together with a crosslinking agent, saponification, and post-crosslinking steps.

また、エポキシ基を含有する単量体を水性懸濁重合させ
て球状重合体を作製した後、該エポキシ基金開環変性さ
せてLC用充填剤として有用な親水性ゲルを製造する手
段が特開昭58−177140号公報に開示されており
、重合時に共存させる希釈剤としてシクロヘキサノール
、クロロペ/ゼ/等が例示されている。
In addition, a method for manufacturing a hydrophilic gel useful as a filler for LC by aqueous suspension polymerization of a monomer containing an epoxy group to prepare a spherical polymer, and then ring-opening modification of the epoxy group has been disclosed in Japanese Patent Application. It is disclosed in Japanese Patent Publication No. 177140/1982, and cyclohexanol, chlorope/se/etc. are exemplified as diluents to be present during polymerization.

e→ 発明が解決しようとする問題点 空孔容積が大きく機械的強度の大きいゲルを製造するた
めには、架橋構造を導入し、かつ重合時に希釈剤を共存
させることが必要であるが、ゲルを構成する単量体の種
類によって好適な希釈剤は異なるものとなる。
e→ Problem to be solved by the invention In order to produce a gel with large pore volume and high mechanical strength, it is necessary to introduce a crosslinked structure and coexist with a diluent during polymerization. Suitable diluents differ depending on the type of monomers constituting the diluent.

特に、エポキシ基含有棹状重合体を形成させた後該エポ
キシ基を開環変性させて親水性ゲルを製造する手段にお
いては、空孔容積の大きい、換ビすれは孔径の小さい空
孔を多量に有する球状体にすることは非常に困難であシ
、事実特開昭58−177140号公報に記載される希
釈剤を用いても満足す′くき結果を与えることはできず
、該公報実施例に示されるゲルの排除限界分子量は数万
〜数十万と非常に大きく、孔径の大きなものとなってい
ることを示している。
In particular, in the method of manufacturing a hydrophilic gel by forming an epoxy group-containing rod-shaped polymer and then ring-opening modification of the epoxy group, a large number of pores with a large pore volume and a small pore diameter are produced. It is very difficult to form a spherical body having a spherical shape, and in fact, even using the diluent described in JP-A-58-177140, it was not possible to give a satisfactory result, and the examples of the publication The exclusion limit molecular weight of the gel shown in is extremely large, ranging from tens of thousands to hundreds of thousands, indicating that the pore size is large.

に)問題点を解決するための手段 機械的強度に潰れ、均一かつ微細多孔性のLC用充填剤
を製造する本発明の目的は、グリシジルモノビニルエス
テル又はグリシジルモノビニルエーテルと架橋性単量体
とを主成分とする単量体混合物を希釈剤として1.2ジ
ク−ロルエタノの存在下に水性懸濁重合させ、得られた
重合体粒子中の希釈剤を抽出除去し友後、エポキシ基を
開環、親水化させる手段により、工業的有利に達成され
る0 以下、本発明を詳述するが、先ず本発明で用いる単量体
は、グリシジルモノビニルエステル又はグリシジルモノ
ビニルエーテルから選ばれる必要がおる。またグリシジ
ルモノビニルエステル又はグリシジルモノビニルエーテ
ルとしては、炭素数3〜12のモノビニルカルボン酸の
グリシジルエステル類又は炭素数3〜12のモノビニル
アルコールのクリシジルエーテル類を挙げることができ
、中でもグリシジルアクリレート、グリシジルメタクリ
レート、アリルグリシジルエーテル、メタリルグリシジ
ルエーテルなどを好適例として挙げることができる。
2) Means for Solving the Problems The purpose of the present invention is to produce a mechanically collapsible, uniform and microporous filler for LC. The monomer mixture as the main component is subjected to aqueous suspension polymerization in the presence of 1.2 dichloroethano as a diluent, the diluent in the obtained polymer particles is extracted and removed, and the epoxy groups are ring-opened. , which can be industrially advantageously achieved by means of hydrophilization.The present invention will be described in detail below. First, the monomer used in the present invention must be selected from glycidyl monovinyl ester or glycidyl monovinyl ether. Examples of glycidyl monovinyl esters or glycidyl monovinyl ethers include glycidyl esters of monovinyl carboxylic acids having 3 to 12 carbon atoms or glycidyl ethers of monovinyl alcohols having 3 to 12 carbon atoms, among which glycidyl acrylate and glycidyl methacrylate. , allyl glycidyl ether, methallyl glycidyl ether, etc. can be mentioned as suitable examples.

また、架橋性単量体としては、ジビニルベンゼ/、エチ
レングリコールジアクリレート、エチレノクリコールジ
メタクリレート、フロビレ/グリコールジアクリレート
、プロピレングリコールジメタクリレート、ポリエチレ
ノグリ」−ルノメグクリレー)−、ポリプロピレノグリ
コールジメタクリレート、グリセリンジアクリレート、
グリセリンジメタクリレート、N、?%−メチレンビヌ
アクリルアミド、コハク酸ジビニル、コハク酸ジアリル
、メタクリル酸ビニル、メタクリル酸ア゛リル、トリア
リルシアヌレート等を挙げることができるが、LC用充
填剤として特異な吸着を惹起する等の問題のない構造と
することが好ましく、かかる観点から、上記架橋性単量
体の中でも多価アルコールのジ−又はトリ−(メタ)ア
クリレートを採択することが望ましい。
In addition, the crosslinkable monomers include divinylbenze/, ethylene glycol diacrylate, ethylene glycol dimethacrylate, flobile/glycol diacrylate, propylene glycol dimethacrylate, polyethylene glycol dimethacrylate, polypropylene glycol dimethacrylate, and glycerin. diacrylate,
Glycerin dimethacrylate, N,? Examples include %-methylenevinacrylamide, divinyl succinate, diallyl succinate, vinyl methacrylate, allyl methacrylate, triallyl cyanurate, etc., but some of them cause specific adsorption as packing materials for LC. It is preferable to have a problem-free structure, and from this point of view, it is desirable to use di- or tri-(meth)acrylates of polyhydric alcohols among the above-mentioned crosslinkable monomers.

なお、主成分である上記単量体と共に該単量体と共重合
し得る他の単量体を適宜併用することは何ら差し支えな
く、このような−他の単量体としては、ハロゲン化ビニ
ル及びハロゲン化ビニリゾ7類、エチレン系不11和カ
ルボン酸及びその塩類、エチレン系不飽和スルホ7酸及
びその塩類、(メタ)アクリル酸メチル、(メタ)アク
リル酸エチル、(メタ)アクリル酸ブチル、ポリオキシ
アルキレノ(メタ)アクリレート等の(メタ)アクリル
酸エステル類、アクリルアミド、酢酸ビニル等を挙げる
ことができる。
In addition, there is no problem in using together with the above-mentioned monomer, which is the main component, other monomers that can be copolymerized with the monomer. Examples of such other monomers include vinyl halides. and halogenated vinyliso 7, ethylenically unsaturated 11-hydrocarboxylic acids and their salts, ethylenically unsaturated sulfohepta acids and their salts, methyl (meth)acrylate, ethyl (meth)acrylate, butyl (meth)acrylate, Examples include (meth)acrylic acid esters such as polyoxyalkyleno(meth)acrylate, acrylamide, vinyl acetate, and the like.

次に、本発明の中心的構成をなす希釈剤は、1、2−ジ
クロルエタンである゛ことが必要である。なお、場合に
よって多孔性構造のコントロール(特に孔径を大きく)
するために他の有機溶剤を併用することは差し支えない
Next, it is necessary that the diluent which forms the central component of the present invention is 1,2-dichloroethane. In some cases, the porous structure may be controlled (especially by increasing the pore size).
There is no problem in using other organic solvents for this purpose.

かかる希釈剤の使用量は、充填剤の適用分野、求められ
る細孔量(多孔度)や細孔径などにより変化させる必要
があp、一義的に規定することは困難であるが、概ね単
量体と希釈剤とが重量比で10/1〜1/1o、より好
ましくは571〜115の範囲内になるように設定する
ことが望ましい。
The amount of such diluent to be used needs to be changed depending on the field of application of the filler, the required pore volume (porosity), pore diameter, etc.Although it is difficult to define it unambiguously, it is generally It is desirable to set the weight ratio of the diluent to the diluent to be in the range of 10/1 to 1/1, more preferably 571 to 115.

また、重合系の単量体濃度としては、一般に単量体と希
釈剤との合計量と水とが重量比で5/100〜120/
100、よシ好ましくは20/100〜l Oo、’i
 00の範囲内に設定することが′i!、tLい。
In addition, the monomer concentration in the polymerization system is generally such that the total amount of monomers and diluent and water are in a weight ratio of 5/100 to 120/
100, preferably 20/100~l Oo,'i
It is important to set it within the range of 00! ,tL.

な七、重合条件としては、温度40〜9゜C1好ましく
け50〜70’c、時間0.5〜5時間の範囲内で適宜
設定することができ、また、重合開始斧jとしてはアゾ
系化合物、有機過酸化物等公知の油溶性ラジカル重合開
始剤を用いることができる。
Seventh, the polymerization conditions can be set as appropriate within the range of temperature 40 to 9 degrees Celsius, preferably 50 to 70 degrees Celsius, and time 0.5 to 5 hours. Known oil-soluble radical polymerization initiators such as compounds and organic peroxides can be used.

このようにして製造された重合体粒子は内部に希釈剤を
含有しているので、抽出除去する必要があり、かかる手
段としてはメタノール、エタノール、プロパツール、ア
セトン等の水に溶解し且つ希釈剤を溶解する溶剤で抽出
除去した後、水洗する。
Since the polymer particles produced in this way contain a diluent inside, it is necessary to extract and remove them, and such methods include dissolving them in water and using a diluent such as methanol, ethanol, propatool, acetone, etc. After extracting and removing with a solvent that dissolves , it is washed with water.

かくして希釈剤を除去した重合体粒子は含有するエポキ
シ基を開環して親水化される。
The polymer particles from which the diluent has been removed are made hydrophilic by ring-opening the epoxy groups they contain.

エポキシ基が親水性基に変換される限りその方法に制約
はなく、用途に応じて下記の様な手段が適宜選択される
There are no restrictions on the method as long as the epoxy group is converted into a hydrophilic group, and the following methods are appropriately selected depending on the application.

例えば硝酸、硫酸、塩酸、りん酸等の無機酸゛;蟻酸、
酢酸、ヒドロキシ酢酸、ぺ/ゼンスルホノ酸、トルエン
スルホノ酸等の有機酸等による加水分解による水酸基へ
の父性、アン−T: = 7 又ハエチルアミン、ジエ
チルアミン、トリエチルアミン、エタノールアミン、ジ
ェタノールアミ/、トリエタノールアミン等のアミンと
の反応によるアミノ基への変性iシュウ酸、コハク酸、
7ジピン酸等のジカルボン酸との反応によるカルボン酸
基への変性;酸性亜硫酸との反応によるスルホン酸基へ
の変性等を挙げることが出来る。
For example, inorganic acids such as nitric acid, sulfuric acid, hydrochloric acid, phosphoric acid; formic acid,
Paternity to hydroxyl group by hydrolysis with organic acids such as acetic acid, hydroxyacetic acid, pen/zenesulfonate, toluenesulfonate, etc., an-T: = 7 Also, haethylamine, diethylamine, triethylamine, ethanolamine, jetanolamine/, Modification to amino groups by reaction with amines such as triethanolamine, oxalic acid, succinic acid,
Examples include modification to a carboxylic acid group by reaction with a dicarboxylic acid such as 7-dipic acid; modification to a sulfonic acid group by reaction with acidic sulfurous acid.

かくして、一般に粒子径5〜300.a、ゲル水分率3
0〜2000%、好ましくは50〜500%の特性を有
し、LC用充填剤として好適な現水性ゲルを工業的有利
に製造することができる。
Thus, particle sizes generally range from 5 to 300. a, gel moisture content 3
A present aqueous gel having properties of 0 to 2000%, preferably 50 to 500% and suitable as a filler for LC can be produced industrially and advantageously.

(ト)作用効果 このような本発明方法に従う(とりわけ希釈βJとして
特定の化合物を用いる)ことにより、希釈剤と単量体及
び生成重合体との相溶性が浸れていることから、生成重
合体粒子中に均一な細孔径を形成させることができ、以
て機械的強度を損うことなく多孔性粒子となすことがで
き、最終的に分離能に浸れたLC用充填剤を提供し得る
ものと考えられる。
(g) Effect: By following the method of the present invention as described above (in particular, using a specific compound as the diluent βJ), the compatibility between the diluent, the monomer, and the produced polymer is improved. It is possible to form a uniform pore size in the particles, thereby making the particles porous without impairing mechanical strength, and finally providing an LC packing material with excellent separation ability. it is conceivable that.

(ハ)実施例 以下に実施例を示し、本発明を更に具体的に説明するが
、本発明はこれらの実施例の記載によってその範囲を何
ら限定されるものではない。なお、実施例中、部及び百
分率は特に断シのない限り重量基準で示す。
(c) Examples The present invention will be explained in more detail by examples below, but the scope of the present invention is not limited in any way by the description of these examples. In the examples, parts and percentages are expressed on a weight basis unless otherwise specified.

なお、ゲル水分率は、脱イオン水と十分平衡にした重合
体粒子を遠心効果2000Gの遠心分離器にかけて粒子
表面に付着してbる水を除去してその重量(Wl)を測
定し、次いで該重合体粒子を乾燥して乾燥後の重量(W
2)を測定し、次式によって求めたものである。
In addition, the gel moisture content is determined by applying the polymer particles sufficiently equilibrated with deionized water to a centrifugal separator with a centrifugal effect of 2000G to remove water attached to the particle surface, and then measuring the weight (Wl). The weight after drying the polymer particles (W
2) was measured and determined by the following formula.

実施例 1 メタクリル酸/p−スチレノスルホン酸ソーダー=70
/80の水溶性重合体20部及びポリビニルアルコール
(重合度i o o o、ケン化度8796)2部を7
78部の水に溶解し、種型攪拌機付き重合槽に仕込んだ
Example 1 Methacrylic acid/sodium p-styrene sulfonate = 70
/80 water-soluble polymer and 2 parts of polyvinyl alcohol (polymerization degree i o o o, saponification degree 8796).
It was dissolved in 78 parts of water and charged into a polymerization tank equipped with a seed type stirrer.

次に、グリシジルメタクリレート(GMA)、エチレン
グリコールジメタクリレート(EGMA)及び1,2−
ジクロルエタ/(DCE)を下記第1表に示す比率で変
化させた調合溶液400部に2.2′−アゾビス−(2
,4−ジメチルバレロニトリル)2部を溶解して重合+
Vに仕込み、 300 r、p、m、の撹拌条件下、6
0で×2時間水性懸濁重合させた。
Next, glycidyl methacrylate (GMA), ethylene glycol dimethacrylate (EGMA) and 1,2-
2.2'-Azobis-(2
, 4-dimethylvaleronitrile) and polymerize +
V, under stirring conditions of 300 r, p, m, 6
Aqueous suspension polymerization was carried out at 0 for 2 hours.

得られた重合体粒子中を濾過、洗浄、脱水した後、メタ
ノールにより重合体粒子中の希釈剤を抽出除去、洗浄し
、更に水で残留メタノールを洗浄した後、5%の蟻酸水
溶液に懸濁させ、90で×3時間反応させることにより
、重合体粒子中のエポキシ基を開環させた。
After filtering, washing, and dehydrating the obtained polymer particles, the diluent in the polymer particles was extracted and removed with methanol, and the remaining methanol was washed with water, and then suspended in a 5% formic acid aqueous solution. The epoxy groups in the polymer particles were ring-opened by reacting at 90°C for 3 hours.

得られた重合体粒子の平均粒子径及びゲル水分率を測定
した結果を第1表に併記する。
Table 1 also shows the results of measuring the average particle diameter and gel moisture content of the obtained polymer particles.

(注) No、l i蟻a処理 省略。(Note) No, l i Ant a treatment omitted.

次に、重合体粒子(No、 2及び4)を夫々面分けし
て150メツシユと350メソシユの中間物を取シ出し
、内径1.5 cm x高さ3 Q cmのガラス製カ
ラムに充填してLC用充填剤としての性能を比較評価し
た。試料として牛血清アルブミン5%及び硫安2.59
6を含有する水溶g!0.5 ccをカラムに仕込み、
溶離剤として脱イオン水を用い、溶出速度50CC/時
間で操作し、第1図及び第2図に示される溶離曲線を作
成した。
Next, the polymer particles (Nos. 2 and 4) were separated into 150-mesh and 350-mesh intermediates, which were packed into a glass column with an inner diameter of 1.5 cm and a height of 3 Q cm. The performance as a filler for LC was comparatively evaluated. Bovine serum albumin 5% and ammonium sulfate 2.59 as samples
Water-soluble g containing 6! Load 0.5 cc into the column,
Using deionized water as the eluent and operating at an elution rate of 50 CC/hour, the elution curves shown in FIGS. 1 and 2 were created.

上表並びに第1図及び第2図より。DCEの量を変化さ
せることにより、ゲル水分率(重合体粒子中の細孔i)
を容易に制御し得る事実が、また、本発明品が優れた分
離能を有している事実が明瞭に理解される。
From the table above and Figures 1 and 2. By varying the amount of DCE, the gel water content (pore i in the polymer particles)
It is clearly understood that the product of the present invention can be easily controlled and that the product of the present invention has excellent separation ability.

ナオ、No、 4につき、ポリエチレングリコールによ
る排除限界分子量を調べた結果5.000であり、粒子
はゲル状構造になっていることが示唆される。
For No. 4, the exclusion limit molecular weight using polyethylene glycol was examined and found to be 5.000, suggesting that the particles have a gel-like structure.

さらに、この重合体粒子を内径25mytφ×1001
のステンレス製カラムに充填して端圧テヌトを行なった
結果、10 K9 / d Gの圧力においても流量と
圧力の関係は直線性を示し、10 K9 / cl G
以上の耐圧性を有することを確認した。
Furthermore, this polymer particle was
As a result of filling a stainless steel column and performing end pressure tenuto, the relationship between flow rate and pressure showed linearity even at a pressure of 10 K9 / d G, and the relationship between flow rate and pressure was 10 K9 / cl G.
It was confirmed that the product had pressure resistance exceeding the above.

実施例 2 GMAの代りにアリルグリシジルエーテルを使用し、重
合時間を60で×8時間とする外は実施例1(No、4
)と同条件で親水性重合体粒子を得た。
Example 2 Example 1 (No. 4) except that allyl glycidyl ether was used instead of GMA and the polymerization time was 60 x 8 hours.
) Hydrophilic polymer particles were obtained under the same conditions.

ゲル水分率は、195%で実施例1(No、4)とほぼ
同様な分離能を有していることを確認した。
The gel moisture content was 195%, and it was confirmed that the gel had almost the same separation ability as Example 1 (No. 4).

実施例 3 実施例1と同様にして、G M A / E G M 
A/DCE= 50150/400で水性懸濁重合を行
ない球状重合体を得た。次にア七トノを使用して希釈剤
を抽出した後よく水洗した。
Example 3 In the same manner as in Example 1, G M A / E G M
Aqueous suspension polymerization was carried out at A/DCE=50150/400 to obtain a spherical polymer. Next, the diluent was extracted using Ashitono, and the mixture was thoroughly washed with water.

この重合体を60′cに維持されたジエチルアミ7z0
%水浴准中に投入し、3時間攪拌下に反応させることに
よってゲル水分率230%の親水性ゲルを得た。このゲ
ルは10 Kq/clG以上の耐圧性を有していた。
This polymer was treated with diethylamide 7z0 maintained at 60'c.
% water bath and reacted with stirring for 3 hours to obtain a hydrophilic gel with a gel moisture content of 230%. This gel had a pressure resistance of 10 Kq/clG or more.

(ト)効果 重合系に存在させる希釈剤の歇を調節することにより、
均一かつ微細多孔性でしかも機械的強度に優れ、以て優
れた分離性能を発揮し得るLC用充填剤を工業的有利に
製造する手段を提供し得た点が、本発明の特筆す−くき
効果である。
(G) Effect By adjusting the amount of diluent present in the polymerization system,
A special feature of the present invention is that it provides an industrially advantageous means for producing an LC filler that is uniform, microporous, has excellent mechanical strength, and can exhibit excellent separation performance. It is an effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例1 (No、 2 )から、また第2図
は実施例1(No、4)から夫々求められた溶離曲線を
示す。 ) ■a うtね)1t″(・す *  z  @ ジを狐)ぎヒ、 仁(=c)
FIG. 1 shows the elution curves obtained from Example 1 (No. 2), and FIG. 2 shows the elution curves obtained from Example 1 (No. 4). ) ■a Utne) 1t'' (・su* z @ Ji wo fox) Gihi, Jin (=c)

Claims (1)

【特許請求の範囲】 1、グリシジルモノビニルエステル又はグリシジルモノ
ビニルエーテルと架橋性単量体とを主成分とする単量体
混合物を希釈剤として1,2−ジクロルエタンの存在下
に水性懸濁重合させ、得られた重合体粒子中の希釈剤を
抽出除去した後、エポキシ基を開環、親水化させること
を特徴とする液体クロマトグラフィー用充填剤の製造法
。 2、架橋性単量体として多価アルコールのジ−又はトリ
−(メタ)アクリレートを使用する特許請求の範囲第1
項記載の製造法。
[Claims] 1. Aqueous suspension polymerization of a monomer mixture containing glycidyl monovinyl ester or glycidyl monovinyl ether and a crosslinkable monomer as a main component in the presence of 1,2-dichloroethane as a diluent, A method for producing a packing material for liquid chromatography, which comprises extracting and removing the diluent in the obtained polymer particles, and then ring-opening the epoxy groups to make them hydrophilic. 2. Claim 1 in which di- or tri-(meth)acrylate of polyhydric alcohol is used as the crosslinking monomer
Manufacturing method described in section.
JP59161373A 1984-07-30 1984-07-30 Preparation of packing material for liquid chromatography Pending JPS6138462A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59161373A JPS6138462A (en) 1984-07-30 1984-07-30 Preparation of packing material for liquid chromatography

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59161373A JPS6138462A (en) 1984-07-30 1984-07-30 Preparation of packing material for liquid chromatography

Publications (1)

Publication Number Publication Date
JPS6138462A true JPS6138462A (en) 1986-02-24

Family

ID=15733851

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59161373A Pending JPS6138462A (en) 1984-07-30 1984-07-30 Preparation of packing material for liquid chromatography

Country Status (1)

Country Link
JP (1) JPS6138462A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01254248A (en) * 1988-04-01 1989-10-11 Mitsubishi Kasei Corp Complex separation agent and manufacture thereof
JP2007057526A (en) * 2005-07-26 2007-03-08 Showa Denko Kk Method for analyzing low-molecular-weight compound in sample containing water-soluble polymer and low-molecular-weight compound
WO2011125674A1 (en) * 2010-03-31 2011-10-13 Jsr株式会社 Filler for affinity chromatography
WO2018155241A1 (en) * 2017-02-27 2018-08-30 昭和電工株式会社 Filler for size exclusion chromatography and method for manufacturing same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58177140A (en) * 1982-04-12 1983-10-17 Showa Denko Kk Porous packing material for liquid chromatography and preparation thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58177140A (en) * 1982-04-12 1983-10-17 Showa Denko Kk Porous packing material for liquid chromatography and preparation thereof

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01254248A (en) * 1988-04-01 1989-10-11 Mitsubishi Kasei Corp Complex separation agent and manufacture thereof
JP2007057526A (en) * 2005-07-26 2007-03-08 Showa Denko Kk Method for analyzing low-molecular-weight compound in sample containing water-soluble polymer and low-molecular-weight compound
WO2011125674A1 (en) * 2010-03-31 2011-10-13 Jsr株式会社 Filler for affinity chromatography
US9162161B2 (en) 2010-03-31 2015-10-20 Jsr Corporation Filler for affinity chromatography
JP5998050B2 (en) * 2010-03-31 2016-09-28 Jsr株式会社 Affinity chromatography packing
WO2018155241A1 (en) * 2017-02-27 2018-08-30 昭和電工株式会社 Filler for size exclusion chromatography and method for manufacturing same
CN110267740A (en) * 2017-02-27 2019-09-20 昭和电工株式会社 Size exclusion chromatograph filler and its manufacturing method
CN110267740B (en) * 2017-02-27 2022-03-15 昭和电工株式会社 Filler for size exclusion chromatography and method for producing same
US11285404B2 (en) 2017-02-27 2022-03-29 Showa Denko K.K. Packing material for size exclusion chromatography and method for producing the same

Similar Documents

Publication Publication Date Title
US5306561A (en) Preparation of surface-functional polymer particles
US5728457A (en) Porous polymeric material with gradients
Prasath et al. Thiol-ene and thiol-yne chemistry in microfluidics: a straightforward method towards macroporous and nonporous functional polymer beads
Kayaman et al. Structure and protein separation efficiency of poly (N‐isopropylacrylamide) gels: Effect of synthesis conditions
JP6733900B2 (en) Separation carrier, method for producing separation carrier, column, and device for liquid chromatography or solid phase extraction
US4565832A (en) Process for producing packing material for use in liquid chromatography
JPH0241526B2 (en)
US4256843A (en) Hydrophilic separating carrier and preparation thereof
US8696901B2 (en) Porous polymer and process for producing the same
JP5292571B2 (en) Method for producing organic porous body, organic porous column and organic porous body
EP2274091A1 (en) Composite material
JPS6210105A (en) Production of hard polyvinyl alcohol gel
JPS648304B2 (en)
JPS6138462A (en) Preparation of packing material for liquid chromatography
EP0266503A1 (en) Cross-linked polymers and process for their preparation
CN111389234B (en) Three-dimensional porous MnO2Nanowire imprinted membrane and preparation method and application thereof
JPH02280833A (en) Compounding and separating agent and its preparation
JPS6139619B2 (en)
JP2811789B2 (en) Carrier for separating catabolic hemoglobin
CN110818836A (en) Vitamin E molecularly imprinted polymer, two-step swelling preparation method and application thereof
EP0115915A1 (en) Steric stabilisation of PVC particles against agglomeration
JP2890481B2 (en) Method for producing hydrophilic crosslinked copolymer particles
CN117964831B (en) Preparation method and application of kavain temperature-sensitive molecularly imprinted polymer
JP3657436B2 (en) Polymer packing material for liquid chromatography and process for producing the same
JPH02284901A (en) Production of porous polymer particles