JPS6138382A - Cooling device - Google Patents
Cooling deviceInfo
- Publication number
- JPS6138382A JPS6138382A JP15978484A JP15978484A JPS6138382A JP S6138382 A JPS6138382 A JP S6138382A JP 15978484 A JP15978484 A JP 15978484A JP 15978484 A JP15978484 A JP 15978484A JP S6138382 A JPS6138382 A JP S6138382A
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- refrigerant
- heater
- water
- thermometer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Devices That Are Associated With Refrigeration Equipment (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
本発明は電子装置に於ける冷却装置、特に結露防止のた
めの温度制御機能を備えた冷却装置区間するものである
。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a cooling device for an electronic device, and particularly to a cooling device section having a temperature control function to prevent condensation.
一般に発熱密度の高い電子装置の冷却においては、空冷
方式では冷却能力不足のため液冷方式を採用する場合が
多い。これには液体冷媒を平板に流し、該平板に発熱素
子を密着させて熱を水に移送する方式や、発熱素子自身
を冷媒に直接浸漬させて冷却する方式等がある。しかし
この液冷方式は冷却能力において優れているものの、液
温と雰囲気温度との関係から結露する問題があシ、この
結露現象を防ぐため温湿度を厳密に制御する必要がある
。%vc水分を嫌う電子部品に重大な障害を起こす結露
は絶対に避けなければならない現象である。一般には装
置が設置される部屋の温湿度条件に制限を加えたり、水
温を狭い範囲に限定する等の方策がとられる。しかしこ
れらは装置が運転後定常状態に達している場合に有効で
あり、装置の運転開始のための準備段階においてはしば
しば結露の現象が発生している。すなわち寒冷地および
冬の室温が低い場合の空調機の運転開始した直後が問題
になっていた。Generally, when cooling electronic devices with high heat generation density, liquid cooling is often used because air cooling lacks cooling capacity. This method includes a method in which a liquid refrigerant is poured onto a flat plate and a heating element is brought into close contact with the flat plate to transfer heat to water, and a method in which the heating element itself is directly immersed in the refrigerant to cool it. However, although this liquid cooling system has excellent cooling ability, it has the problem of condensation due to the relationship between the liquid temperature and the ambient temperature, and it is necessary to strictly control the temperature and humidity to prevent this condensation phenomenon. %vc Condensation, which causes serious damage to electronic components that dislike moisture, is a phenomenon that must be avoided at all costs. Generally, measures are taken such as placing restrictions on the temperature and humidity conditions of the room where the device is installed or limiting the water temperature to a narrow range. However, these methods are effective only when the device has reached a steady state after operation, and dew condensation often occurs during the preparation stage for starting operation of the device. In other words, this has been a problem immediately after the air conditioner starts operating in cold regions and in winter when the room temperature is low.
第1図(a)に従来の空調機運転開始後の部屋の温湿度
と発熱素子や配管部の表面温度の変化を示す。FIG. 1(a) shows changes in the temperature and humidity of a room and the surface temperatures of heating elements and piping after the conventional air conditioner starts operating.
空調機運転開始時刻すの直後、室温は曲線AK示すよう
にT1から規定値T2に向って上昇するが、その傾きは
TCIからTe3へと変化する配管部や発熱素子の温度
上昇の曲線Bより大きい。配管部やその中に充填されて
いる冷媒の熱容量が大きいため、また発熱素子は配管部
に密着しているため、室温の上昇に追従しないのである
。一方、装置の誤動作の原因となる靜重気を防止するた
め、定められた相対湿度を維持するように加湿器が動作
し、水分が部屋に供給され相対湿度は曲線CのようにR
1からR2へ変化する。したがって露点は曲線りの様K
TDIからTD2へと高温に変化する。ところが、配管
部や発熱素子などの温度は前述のととぐ室温に追従1−
ないため露点以下となり、結露現象が発生し、装置に重
大な障害与えていた。同図(a)の時間Cとdの間の領
域が露点以下となり結露する時間帯である。Immediately after the air conditioner operation start time, the room temperature rises from T1 to the specified value T2, as shown by curve AK, but the slope is higher than curve B, which shows the temperature rise of piping and heat generating elements, which changes from TCI to Te3. big. Because the heat capacity of the piping and the refrigerant filled therein is large, and because the heating element is in close contact with the piping, it does not follow the rise in room temperature. On the other hand, the humidifier operates to maintain the specified relative humidity in order to prevent the damp air that causes malfunction of the device, and moisture is supplied to the room and the relative humidity becomes R as shown in curve C.
Changes from 1 to R2. Therefore, the dew point has a curved shape K
The temperature changes from TDI to TD2. However, the temperature of piping and heating elements does not follow the temperature of the above-mentioned temperature.
As a result, the temperature dropped below the dew point, causing condensation and causing serious damage to the equipment. The region between times C and d in FIG. 2A is a time period where the temperature is below the dew point and condensation occurs.
本発明の目的は、冷媒の温度を定められた温度まで上昇
させ装置内に循環させて暖めた後に空調器の運転を開始
し、空調機運転直後は室温より定められた値だけ高く保
つよう制御することにより、前述の欠点を解決した冷却
装置を提供することにある。The purpose of the present invention is to raise the temperature of the refrigerant to a predetermined temperature, circulate it inside the device, and then start operating the air conditioner, and immediately after the air conditioner starts operating, control the air conditioner to maintain the temperature higher than the room temperature by a predetermined value. The object of the present invention is to provide a cooling device that solves the above-mentioned drawbacks.
この目的のために本発明の冷却装置は、冷媒の温度を検
出する冷媒用温度計と、空気温度を検出する雰囲気用温
度計と、冷媒加熱用ヒーターと、このヒーター出力を制
御する制御器とを設け、装置設置場所の空調器、加湿器
の運転前および直後の定められた時間に、前述した両温
度肝の差が定められた値になるようにヒーター出力を制
御器にて保持するようにしたものである。For this purpose, the cooling device of the present invention includes a refrigerant thermometer for detecting the temperature of the refrigerant, an atmosphere thermometer for detecting the air temperature, a heater for heating the refrigerant, and a controller for controlling the output of the heater. The heater output is maintained by the controller so that the difference between the two temperatures mentioned above becomes the specified value at a specified time before and immediately after the operation of the air conditioner and humidifier at the equipment installation location. This is what I did.
次K、本発明を、図面を参照して実施例につき詳細に説
明する。Next, the invention will be explained in detail by way of example embodiments with reference to the drawings.
本発明の実施例を示す第2図において、本発明の冷却装
置は大別して冷水部、フロン冷却部および温度制御部か
ら構成される。まず冷水部は、発熱素子IVc密着した
冷却板2の内部流路に冷水を送りこむポンプ3と、水の
体膨張を吸収するための膨張タンク4と、後述するフロ
ン冷却部を循環しているフロン液熱を放散させる蒸発器
5とKより’fgD父される。フロン冷却部にはフロン
液が循環しており、圧縮機9.凝縮器11.蒸発器5.
膨張弁10より構成されるいわゆる冷凍サイクルにて、
前述1−だ冷水部内の水から熱を奪う。凝縮器11、へ
は送風機12により風が吹き付けられてフロン液中の熱
は全気中に放散される。このように発熱素子1の熱は、
冷却板2→水→蒸発器5→フロン液→凝縮器11→空気
中へと移送され、発熱素子1は所矩の温度に保たれる。In FIG. 2 showing an embodiment of the present invention, the cooling device of the present invention is roughly divided into a cold water section, a fluorocarbon cooling section, and a temperature control section. First, the cold water section consists of a pump 3 that sends cold water into the internal flow path of the cooling plate 2 that is in close contact with the heating element IVc, an expansion tank 4 that absorbs the body expansion of water, and a freon circulating through a freon cooling section that will be described later. 'fgD' is produced by evaporators 5 and K which dissipate liquid heat. Freon liquid is circulated in the Freon cooling section, and the compressor 9. Condenser 11. Evaporator 5.
In a so-called refrigeration cycle composed of an expansion valve 10,
The above-mentioned 1- removes heat from the water in the cold water section. Wind is blown onto the condenser 11 by a blower 12, and the heat in the fluorocarbon liquid is dissipated into the entire atmosphere. In this way, the heat of the heating element 1 is
The cooling plate 2 → water → evaporator 5 → fluorocarbon liquid → condenser 11 → is transferred to the air, and the heating element 1 is maintained at a predetermined temperature.
ここで温度制御部は水温計8と制御器13とから構成さ
れ、水温計8により水温を検出して圧縮機9の出力を制
御して水温を定められた値て維持する。このような構成
は従来よりよく知られているが、本発明の実施例ではさ
らに冷媒(水)の膨張タンク4に設置されたヒーター6
と、室温を検出する室温計(雰囲気用温度計)7と前記
ヒーターの出力を制御するヒーター制御器14とを付加
しである。これらの構成にて前述した空調器運転開始後
あ結露現象を回避できる。第1図(b)にこの場合の温
湿度変化を示す〜空繊祷運転胱剤すより前の時玄11^
に膨張タンク4の内部に設けられたヒーター6に通電し
。Here, the temperature control section is composed of a water thermometer 8 and a controller 13, and the water temperature is detected by the water thermometer 8 and the output of the compressor 9 is controlled to maintain the water temperature at a predetermined value. Although such a configuration is well known in the past, the embodiment of the present invention further includes a heater 6 installed in the refrigerant (water) expansion tank 4.
Additionally, a room temperature meter (atmosphere thermometer) 7 for detecting room temperature and a heater controller 14 for controlling the output of the heater are added. With these configurations, it is possible to avoid the dew condensation phenomenon described above after the air conditioner starts operating. Figure 1(b) shows the changes in temperature and humidity in this case.
Then, the heater 6 provided inside the expansion tank 4 is energized.
水温を上昇させると共に、ポンプ3を運転し水を循環さ
せる。時刻aまでは室温T1に等しかった水や発熱素子
1の温度は、曲線Bに示す如く、規定温度TCIまで上
昇するようにヒーター制御器14Ycより制御される。While raising the water temperature, the pump 3 is operated to circulate the water. The temperatures of the water and the heating element 1, which were equal to the room temperature T1 until time a, are controlled by the heater controller 14Yc so as to rise to the specified temperature TCI, as shown by a curve B.
この規定温度1−i露点の最高値TD2より若干高い温
度を選定すれば最も安全であるが、−室温が極端に低い
場合規定値に達するまで長い時間を要するので、室温よ
りαだけ高い値を規冗値TCIとする。水温がαだけ上
昇した時刻すに空調機の運転を開始する。したがって空
調機運転が可能となる時間(b−a)は室温に無関係に
一定であり、しかも仮に温湿の状態が発生しても絶対に
結露しない。空調機運転開始後は室温が曲線A、温湿度
曲WCに示すようにT1→T2.R1−+R2と上昇変
化すると共に、露点も曲線りのようにTDI→TD2へ
と変化するが、水温は空調機運転前と同様に室温よりα
だけ高く保つ制御を引き続き行う。水温は曲線Bの変化
を示し、いかなる時刻にも露点りより低くなることはな
く、したがって従来のよって結露することはない。時刻
aよりeまでの制御は同一であって、水温を室温よりα
高く維持する制御であり、定常状態罠達した時刻eにて
、水温を定められた値T03に保持するよう制御器13
による制御に移行すれば良い。It is safest to select a temperature slightly higher than the maximum value TD2 of the specified temperature 1-i dew point, but - if the room temperature is extremely low, it will take a long time to reach the specified value, so choose a value α higher than the room temperature. The standard redundancy value is TCI. The air conditioner starts operating at the time when the water temperature rises by α. Therefore, the time (b-a) during which the air conditioner can be operated is constant regardless of the room temperature, and even if a hot and humid condition occurs, there will be no condensation. After the air conditioner starts operating, the room temperature changes from T1 to T2 as shown in curve A and temperature/humidity curve WC. At the same time as R1-+R2 increases, the dew point also changes from TDI to TD2 like a curve, but the water temperature is α below room temperature as before the air conditioner operation.
Continue to control the temperature to keep it high. The water temperature exhibits a curve B variation and is never below the dew point at any time, so there is no conventional condensation. The control from time a to e is the same, and the water temperature is kept at α from room temperature.
The controller 13 maintains the water temperature at a predetermined value T03 at time e when the steady state trap is reached.
All you have to do is shift to control.
本発明は以上説明したように、ヒーター、室温計、およ
びヒーター制御′5を設け、空調機運転開始前に水温を
規定値まで上昇させておき、さらに運転後も菟温より定
めらルた値だけ高い値に保つようにすることにより、配
管部の発熱素子表面が露点以下となることがなく、結露
を防止できるという効果がある。As explained above, the present invention is provided with a heater, a room temperature meter, and a heater control '5, and the water temperature is raised to a specified value before the air conditioner starts operating. By maintaining this value at a high value, the surface of the heating element in the piping section does not fall below the dew point, which has the effect of preventing dew condensation.
第1図は時間に対する温湿度変化を示す図で、同図(a
)は従来の温湿度変化を示し同図(b)は本発明の実施
例の場合の温湿度変化を示した図、第2図は本発明の実
施例に係る冷却装置の構成を概略的に示した図である。
1・・・発熱素子、 2・・・冷却板、 3・・・ポン
プ。
4・・・膨張タンク、 5・・・蒸発器、6・・・
ヒーター、
7・・・室温計(雰囲気用温度計)、
8・・・水温計(冷媒用温度計)、
9・・・圧縮機、 10・・・膨張弁、11・・
・凝縮器、 12・・・送風機、13・・・制御
器、 14・・・ヒーター制御器。Figure 1 is a diagram showing changes in temperature and humidity over time;
) shows the conventional temperature/humidity change; FIG. 2(b) shows the temperature/humidity change in the embodiment of the present invention; FIG. FIG. 1...Heating element, 2...Cooling plate, 3...Pump. 4... Expansion tank, 5... Evaporator, 6...
Heater, 7... Room temperature meter (atmosphere thermometer), 8... Water thermometer (refrigerant thermometer), 9... Compressor, 10... Expansion valve, 11...
- Condenser, 12... Blower, 13... Controller, 14... Heater controller.
Claims (1)
た温度の冷媒を循環供給する冷却装置において、前記冷
媒の温度を検出する冷媒用温度計と、雰囲気温度を検出
する雰囲気用温度計と、前記冷媒の温度を上げるヒータ
ーと、前記冷媒用および雰囲気用の両温度計の検出温度
差を定められた値に保持するよう該温度計の出力を入力
として前記ヒーターの出力を制御する制御器とを有し、
装置設置場所の空調機、加湿器の運転前および運転直後
の所定時間に前記ヒーターの出力を制御することを特徴
とする冷却装置。In a cooling device that includes a pump, a heat exchanger, a refrigerator, etc., and circulates and supplies a refrigerant at a predetermined temperature, a refrigerant thermometer that detects the temperature of the refrigerant and an atmosphere thermometer that detects the ambient temperature. and a heater that raises the temperature of the refrigerant, and control that controls the output of the heater using the output of the thermometer as input so as to maintain the difference in temperature detected by both the refrigerant and atmosphere thermometers at a predetermined value. It has a vessel,
A cooling device characterized in that the output of the heater is controlled at predetermined times before and immediately after the operation of an air conditioner and a humidifier at a location where the device is installed.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59159784A JPH0612209B2 (en) | 1984-07-30 | 1984-07-30 | Cooling system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59159784A JPH0612209B2 (en) | 1984-07-30 | 1984-07-30 | Cooling system |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6138382A true JPS6138382A (en) | 1986-02-24 |
JPH0612209B2 JPH0612209B2 (en) | 1994-02-16 |
Family
ID=15701194
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59159784A Expired - Lifetime JPH0612209B2 (en) | 1984-07-30 | 1984-07-30 | Cooling system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0612209B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63196075U (en) * | 1987-06-05 | 1988-12-16 | ||
JPS63196076U (en) * | 1987-06-05 | 1988-12-16 | ||
US7000416B2 (en) | 2000-11-30 | 2006-02-21 | Tokyo Electron Limited | Cooling apparatus and plasma processing apparatus having cooling apparatus |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007107767A (en) * | 2005-10-12 | 2007-04-26 | Fuji Electric Systems Co Ltd | Water-cooled cooling device |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5315652A (en) * | 1976-07-29 | 1978-02-13 | Mayekawa Mfg Co Ltd | Brine cooler |
JPS53106964A (en) * | 1977-02-28 | 1978-09-18 | Shin Meiwa Ind Co Ltd | Brine system hot-storing and cold-storing apparatus |
-
1984
- 1984-07-30 JP JP59159784A patent/JPH0612209B2/en not_active Expired - Lifetime
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5315652A (en) * | 1976-07-29 | 1978-02-13 | Mayekawa Mfg Co Ltd | Brine cooler |
JPS53106964A (en) * | 1977-02-28 | 1978-09-18 | Shin Meiwa Ind Co Ltd | Brine system hot-storing and cold-storing apparatus |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63196075U (en) * | 1987-06-05 | 1988-12-16 | ||
JPS63196076U (en) * | 1987-06-05 | 1988-12-16 | ||
US7000416B2 (en) | 2000-11-30 | 2006-02-21 | Tokyo Electron Limited | Cooling apparatus and plasma processing apparatus having cooling apparatus |
Also Published As
Publication number | Publication date |
---|---|
JPH0612209B2 (en) | 1994-02-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0505315B1 (en) | Defrost control | |
US4333517A (en) | Heat exchange method using natural flow of heat exchange medium | |
JPH06159738A (en) | Device for cooling heat generating element of air conditioner | |
JPH038921Y2 (en) | ||
US5095711A (en) | Method and apparatus for enhancement of heat pump defrost | |
US6263686B1 (en) | Defrost control method and apparatus | |
ATE96217T1 (en) | COOLING SYSTEM WITH ADDITIONAL HEAT TANK. | |
US5467605A (en) | System for preventing fogging in climate control system | |
JPH04320399A (en) | Cooling device for electronic apparatus | |
FI104131B (en) | Control of indoor air temperature and relative humidity in the unit | |
JPS6138382A (en) | Cooling device | |
US2196473A (en) | Air conditioning | |
JP2680572B2 (en) | Method for controlling cooling water temperature of semiconductor integrated circuit | |
KR101490545B1 (en) | Climate control in a radio network node | |
JPH05157287A (en) | Electric instrument box | |
JPS62139015A (en) | Cooling method for electronic equipment | |
KR19990042257A (en) | Cooling / Heating Control Method of Air Conditioner | |
JPH0114870Y2 (en) | ||
JPH0575284A (en) | Cooling device | |
JPH0317178Y2 (en) | ||
JPS6229894A (en) | Heat pipe type air conditioning system | |
KR100502302B1 (en) | Method for defrosting operation of air-conditioner used both cooler and heater | |
JPS6291772A (en) | Method of controlling refrigerator for thermostatic chamber | |
JPS59224483A (en) | Freezer | |
EP1079182A1 (en) | Cooling method and cooling apparatus |