JPS6138336B2 - - Google Patents

Info

Publication number
JPS6138336B2
JPS6138336B2 JP53094891A JP9489178A JPS6138336B2 JP S6138336 B2 JPS6138336 B2 JP S6138336B2 JP 53094891 A JP53094891 A JP 53094891A JP 9489178 A JP9489178 A JP 9489178A JP S6138336 B2 JPS6138336 B2 JP S6138336B2
Authority
JP
Japan
Prior art keywords
fuel
engine
solenoid valve
timed pulse
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53094891A
Other languages
Japanese (ja)
Other versions
JPS5523337A (en
Inventor
Osamu Ito
Nobushi Yasura
Yoshihiko Tsuzuki
Yutaka Suzuki
Takashi Hasegawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP9489178A priority Critical patent/JPS5523337A/en
Publication of JPS5523337A publication Critical patent/JPS5523337A/en
Publication of JPS6138336B2 publication Critical patent/JPS6138336B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は時限パルスに応動する電磁弁によつて
間欠的に燃料計量を行い、機関の吸気系スロツト
ル弁上流のベンチユリ部に配設されたベンチユリ
部より噴出供給する燃料噴射装置に関し、特には
噴出供給する燃料の霧化特性を向上させたものに
係わる。
DETAILED DESCRIPTION OF THE INVENTION The present invention measures fuel intermittently using a solenoid valve that responds to timed pulses, and supplies fuel that is injected from a vent lily section disposed upstream of an engine's intake system throttle valve. The present invention relates to an injection device, and particularly relates to an injection device with improved atomization characteristics of fuel to be injected and supplied.

電磁弁によつて調整した燃料をスロツトル弁上
流のベンチユリ部に配設された燃料ノズルより噴
出する装置、例えば実公昭52−21404号公報に示
されるような装置では、機関に吸入される空気流
量が大きい運転状態では十分のベンチユリ負圧が
発生するため燃料の微粒化が十分で良好な混合気
が得られる。しかるに吸入空気量が比較的少ない
運転状態ではベンチユリ負圧も少なく燃料の微粒
化が不十分となり、均一な混合気が得られない問
題を生じる。
In a device such as the one shown in Japanese Utility Model Publication No. 52-21404, in which fuel regulated by a solenoid valve is ejected from a fuel nozzle installed in a bench lily upstream of a throttle valve, the flow rate of air taken into the engine is In operating conditions where the fuel is large, sufficient negative pressure is generated in the ventilator, so that the fuel is sufficiently atomized and a good air-fuel mixture is obtained. However, in operating conditions where the amount of intake air is relatively small, the negative pressure at the vent is also low and the atomization of the fuel is insufficient, resulting in the problem that a uniform air-fuel mixture cannot be obtained.

そこで本発明では、電磁弁よりベンチユリ部の
燃料ノズルに至る通路の途中にPTC素子による
燃料加熱ヒーターを介在させ、ベンチユリ負圧の
少ない状態では、このPTCヒータにて電磁弁に
よつて計量された後の燃料を加熱し、蒸気化する
と共に、間欠的な供給による流れの脈動を平滑し
て燃料ノズルより噴出することにより均一な混合
気を得ることを目的とするものである。PTC素
子は材料特性によつてきまるキユーリー温度を有
し、キユーリー温度以下では低い抵抗値を有する
が、キユーリー温度を越えると急激に抵抗値が増
加する特性を示すので、燃料加熱に使つた場合も
大旨キユーリー温度程度の一定の燃料蒸気温度が
得られニクロム線ヒーター等と異なり、過熱によ
る炭化や引火の恐れがない等簡単な構成で安定に
燃料の蒸気化が可能である特色を有する。
Therefore, in the present invention, a fuel heater using a PTC element is interposed in the passage leading from the solenoid valve to the fuel nozzle in the bench lily. The purpose is to heat and vaporize the subsequent fuel, smooth the pulsation of the flow caused by intermittent supply, and eject it from the fuel nozzle to obtain a uniform air-fuel mixture. PTC elements have a Curie temperature that depends on the material properties, and have a low resistance value below the Curie temperature, but exhibit a characteristic that the resistance value increases rapidly when the Curie temperature is exceeded, so when used for fuel heating. Unlike nichrome wire heaters, it is possible to stably vaporize fuel with a simple structure, as there is no risk of carbonization or ignition due to overheating.

以下図面に示す実施例に従つて本発明を詳しく
説明する。第1図は本装置の構成を示す図であり
エンジン1のエアフイルター2より吸入された空
気は吸気系のベンチユリ部4を経てスロツトル弁
3にて流量調節され、吸気マニホールド16をへ
て吸入される。燃料は燃料タンク5より燃料ポン
プ6にて加圧され燃圧調整器8にて圧力調整さ
れ、電磁弁7に印加され、開弁時間幅に応じた間
欠的に計量される。電磁弁7によつて計量された
燃料は、PTC素子を用いてPTCヒーター15を
へてベンチユリ部4のスモールベンチ43に開口
している燃料ノズル44より噴出される機関1の
運転条件のうちクランク軸回転角が回転角検出器
10より検出され、また吸気マニホルド16の圧
力が吸気圧センサ9にて検出され電気的制御回路
11に導かれ、この回路11にて燃料供給量の演
算が行われ、予め計画された燃料計画値を満足す
るための時限パルスが発生され、電磁弁7に印加
される。電磁弁7は若干の応答遅れ時間を無視す
ると基本的には駆動力として印加される時限パル
スの時間幅に等しい期間開弁状態をとるので電磁
弁の1回の計量動作でエンジン側に供給される燃
料量は時限パルスの時間幅即ち時限パルス幅にて
決定される。
The present invention will be described in detail below with reference to embodiments shown in the drawings. FIG. 1 is a diagram showing the configuration of this device. Air taken in from the air filter 2 of the engine 1 passes through the intake system's bench lily section 4, has its flow rate adjusted by the throttle valve 3, and is taken in through the intake manifold 16. Ru. Fuel is pressurized from a fuel tank 5 by a fuel pump 6, pressure regulated by a fuel pressure regulator 8, applied to a solenoid valve 7, and metered intermittently according to the valve opening time width. The fuel metered by the solenoid valve 7 passes through the PTC heater 15 using a PTC element and is ejected from the fuel nozzle 44 opening into the small bench 43 of the bench lily part 4, depending on the crank operating conditions of the engine 1. The rotation angle of the shaft is detected by the rotation angle detector 10, and the pressure of the intake manifold 16 is detected by the intake pressure sensor 9, and is guided to the electrical control circuit 11, which calculates the fuel supply amount. , a timed pulse is generated and applied to the solenoid valve 7 to satisfy a pre-planned fuel plan value. Ignoring the slight response delay time, the solenoid valve 7 basically remains open for a period equal to the time width of the timed pulse applied as the driving force, so that the solenoid valve 7 can supply power to the engine with one metering operation of the solenoid valve. The amount of fuel is determined by the time width of the timed pulse, that is, the timed pulse width.

排気系には排気熱を利用した燃料加熱器が配設
されている。即ち、吸気マニホルド16の底部に
は加熱板13が配設され、この加熱板13の下面
は排気ガスと接しており、機関の暖機が行われれ
ば加熱板13は高温に加熱される。従つて燃料ノ
ズル44より噴出された燃料のうち比較的大きい
粒径の液滴は加熱板13の上面に付着し、加熱板
13の熱により蒸気化される加熱板の温度はバイ
メタル等の感熱駆動手段によつて排気管中に取付
けられたジヤマ杯14の角度を変化させ、加熱板
13の下面にあたる排気流量を調節し、加熱板1
3の温度を燃料加熱に適した温度に制御してい
る。
The exhaust system is equipped with a fuel heater that utilizes exhaust heat. That is, the heating plate 13 is disposed at the bottom of the intake manifold 16, the lower surface of the heating plate 13 is in contact with the exhaust gas, and the heating plate 13 is heated to a high temperature when the engine is warmed up. Therefore, droplets of relatively large particle size among the fuel ejected from the fuel nozzle 44 adhere to the upper surface of the heating plate 13, and the temperature of the heating plate, which is vaporized by the heat of the heating plate 13, is controlled by a heat-sensitive drive such as a bimetal. By changing the angle of the jammer cup 14 installed in the exhaust pipe by a means, the exhaust flow rate hitting the lower surface of the heating plate 13 is adjusted, and the heating plate 1
The temperature of No. 3 is controlled to a temperature suitable for heating the fuel.

機関が始動されてから暖機が不十分の状態では
加熱板13の温度も比較的低く加熱板上面での燃
料液滴の気化能力が小さいわけであるが、この様
な状態ではPTCヒーター15に通電することに
より電熱を発生し、電磁弁7にて計量された燃料
を蒸気化して燃料ノズル44より噴出することが
できる。機関の暖機が完了した時点では排気熱に
より加熱板13は燃料液滴を蒸気化可能となるの
で、PTCヒーター15による燃料加熱機能は不
要となる。そこでPTCヒーター15による燃料
加熱機能は不要となる。そこでPTCヒーター1
5の電源回路を遮断することにより電力節約を計
ることもできる。このPTCヒーター15に対す
る電源制御回路11aの一例を第2a図に示す。
If the engine is not sufficiently warmed up after being started, the temperature of the heating plate 13 will be relatively low and the ability to vaporize fuel droplets on the top surface of the heating plate will be small. By supplying electricity, electric heat is generated, and the fuel metered by the solenoid valve 7 can be vaporized and ejected from the fuel nozzle 44. When the warm-up of the engine is completed, the heating plate 13 can vaporize the fuel droplets due to the exhaust heat, so the fuel heating function by the PTC heater 15 is no longer necessary. Therefore, the fuel heating function by the PTC heater 15 becomes unnecessary. Therefore, PTC heater 1
Power can also be saved by cutting off the power supply circuit No. 5. An example of the power supply control circuit 11a for this PTC heater 15 is shown in FIG. 2a.

第2a図において、31はバツテリ、32はキ
ースイツチ、33は機関の冷却水温判別器で、水
温センサ18としてサーミスタを用い冷却水温が
設定温度以下で暖機不十分の判別信号を生じる温
度比較回路33と機関の始動時にキースイツチ3
2の始動信号を検出し、始動操作より一定時間暖
機不十分の判別信号を発生する時限回路34の論
理和信号によりPTCヒーター15の電源回路の
リレー36の接点を閉成する構成である。
In FIG. 2a, 31 is a battery, 32 is a key switch, and 33 is an engine cooling water temperature discriminator. A thermistor is used as the water temperature sensor 18, and a temperature comparison circuit 33 generates a determination signal that warm-up is insufficient when the cooling water temperature is below a set temperature. and key switch 3 when starting the engine.
2 is detected, and the contact of the relay 36 of the power supply circuit of the PTC heater 15 is closed by the OR signal of the timer circuit 34 which generates a determination signal indicating insufficient warming up for a certain period of time after the starting operation.

PTCヒーター15に対する電源制御回路11
aの他の例としては第2b図に示す如く、加熱板
13付近の温度を検出するバイメタルにて接点を
開閉し、PTCヒーター15への電源回路を開閉
する構成とし、機関の暖機不十分の間だけPTC
ヒーター15による燃料の蒸気化を行うと共に暖
機後はPTCヒーター15への通電を止めること
もできる。
Power control circuit 11 for PTC heater 15
As another example of a, as shown in Fig. 2b, a bimetal that detects the temperature near the heating plate 13 opens and closes the contacts, and the power circuit to the PTC heater 15 is opened and closed, which prevents the engine from warming up insufficiently. PTC only during
While the fuel is vaporized by the heater 15, the power supply to the PTC heater 15 can be stopped after warming up.

この図において、同一番号は第1図及び第2a
図と同一構成であり、37は加熱板13の温度制
御用ジヤマ板14を制御するための配設したバイ
メタルであり、ジヤマ板14の回転軸に係動する
スイツチ38にて設定温度以下でPTCヒーター
15の電源回路が閉成され設定温度以上では開成
されるよう作動する。
In this figure, the same numbers refer to figures 1 and 2a.
It has the same configuration as the figure, and numeral 37 is a bimetal disposed to control the temperature control diaphragm plate 14 of the heating plate 13, and a switch 38 engaged with the rotating shaft of the diaphragm plate 14 switches the PTC at a temperature below the set temperature. The power supply circuit of the heater 15 is closed and opened when the temperature is higher than the set temperature.

電磁弁を駆動するための時限パルスは回転角検
出器10の回転角検出信号と、吸気マニホルドの
圧力検出器9を主制御パラメタとして電気的制御
回路11にて発生される。この実施例では制御回
路11は、機関回転数が設定回転数以下の比較的
低回転域では機関の各気筒の吸入行程作動回数と
同数の計量動作回数で電磁弁を作動させるため、
機関のクランク軸に同期して燃料計量を行なうと
共に設定回転数以上の比較的高回転域では機関回
転数に無関係な一定の繰返し周期で電磁弁を作動
させ計量周波数を一定とし、電磁弁の開弁時間幅
を変えて計量を行う方式の燃量計量を行うもので
ある。
A timed pulse for driving the electromagnetic valve is generated by an electrical control circuit 11 using a rotation angle detection signal from a rotation angle detector 10 and a pressure detector 9 of the intake manifold as main control parameters. In this embodiment, the control circuit 11 operates the solenoid valve with the same number of metering operations as the number of intake stroke operations of each cylinder of the engine in a relatively low engine speed range where the engine speed is below the set rotation speed.
The fuel is metered in synchronization with the engine crankshaft, and in a relatively high rotation range above the set rotation speed, the solenoid valve is operated at a constant repetition cycle independent of the engine speed to keep the metering frequency constant, and the solenoid valve is opened at a constant frequency. This method performs fuel metering by changing the valve time width.

上記方式の電気的制御回路11の構成図は第3
図に示される。第3図で101は機関クランク軸
の回転角センサであり、機関の吸入行程毎に回転
角パルス信号を発生する。102は回転数電圧発
生器で回転角パルス信号のくり返し周波数に応じ
た電圧即ち回転数電圧VNを発生する。103は
機関の吸気管圧力検出器であり、例えば拡散型半
導体圧力計等を用いてスロツトル弁下流の吸気管
圧力PIを検出し、吸気管圧力電圧Vpを発生す
る。104は同期時限パルス発生器で、これより
発生される時限パルスのくり返し周期は対応する
気筒の吸入行程の作動周期TIに等しい。この時
限パルスは機関のクランク軸に同期して発生され
るので同期時限パルスと呼ぶ。同期時限パルスの
時間幅τは基本的には毎回の吸入行程で吸入さ
れる空気量に比例するため、吸気電圧Vpに比例
することになる。105は機関のクランク軸回転
角とは同期せず一定のくり返し周期で時限パルス
発生器である。ここで発生される非同期時限パル
スは機関の回転数に無関係な一定のくり返し周波
数をとるため非同期時限パルスの時間幅はτ
基本的には吸気管圧力PIと機関回転数Nとの間
にτ=k2PI・Nなる関係式が成立する。但し
k2は定数である。106は設定回転数N1に応じ
た設定電圧VSを発生する設定電圧発生器であ
る。107は比較器で回転数電圧VNと設定電圧
Sとを比較し、二つのゲート109,110に
対し、制御信号を発生する。VN≦VSではゲート
109に“H”レベル、ゲート110に“L”レ
ベル信号を供給し、同期時限パルス発生器104
の同期時限パルスが選択される。又、VN>VS
はゲート110に“H”レベル、ゲート109に
“L”レベル信号を供給し、非同期時限パルス発
生器105の生じた非同期時限パルスが選択され
る。108は空燃比関数電圧発生器で、機関の運
転条件に対応して計画された空燃比の目標値を与
える空燃比電圧VMを発生する。オツトー機関の
空燃比の燃費、排ガス特性、ドライバビリテイー
等を総合的に考慮して決定される。
The configuration diagram of the electrical control circuit 11 of the above method is shown in the third diagram.
As shown in the figure. In FIG. 3, reference numeral 101 is a rotation angle sensor for the engine crankshaft, which generates a rotation angle pulse signal every time the engine takes a suction stroke. A rotation speed voltage generator 102 generates a voltage corresponding to the repetition frequency of the rotation angle pulse signal, that is, a rotation speed voltage VN . An engine intake pipe pressure detector 103 detects the intake pipe pressure P I downstream of the throttle valve using, for example, a diffusion type semiconductor pressure gauge, and generates an intake pipe pressure voltage Vp. 104 is a synchronous timed pulse generator, and the repetition period of the timed pulses generated by this is equal to the operation period T I of the intake stroke of the corresponding cylinder. This timed pulse is called a synchronous timed pulse because it is generated in synchronization with the engine's crankshaft. The time width τ 1 of the synchronized timed pulse is basically proportional to the amount of air sucked in each intake stroke, so it is proportional to the intake voltage Vp. Reference numeral 105 denotes a timed pulse generator that repeats at a constant cycle and is not synchronized with the rotation angle of the crankshaft of the engine. The asynchronous timed pulse generated here has a constant repetition frequency that is unrelated to the engine speed, so the time width of the asynchronous timed pulse is τ2 , which is basically between the intake pipe pressure P I and the engine speed N. The relational expression τ 2 =k 2 P I ·N holds true. however
k 2 is a constant. 106 is a set voltage generator that generates a set voltage V S corresponding to the set rotation speed N1 . A comparator 107 compares the rotation speed voltage V N and the set voltage V S and generates control signals for the two gates 109 and 110. When V N ≦ V S , an “H” level signal is supplied to the gate 109 and an “L” level signal is supplied to the gate 110, and the synchronous time pulse generator 104
A synchronized timed pulse is selected. Further, when V N >V S , an "H" level signal is supplied to the gate 110 and an "L" level signal is supplied to the gate 109, and the asynchronous timed pulse generated by the asynchronous timed pulse generator 105 is selected. An air-fuel ratio function voltage generator 108 generates an air-fuel ratio voltage V M that provides a target value of the air-fuel ratio planned in accordance with the operating conditions of the engine. It is determined by comprehensively considering the air-fuel ratio of the engine, fuel efficiency, exhaust gas characteristics, drivability, etc.

本構成図に示す如く、設定回転数以下では機関
の各気筒の吸入行程毎に電磁弁を開弁させ燃料計
量を行うので電磁弁の開弁時間は基本的には吸気
管圧力に応じて定まる。設定回転数以上では機関
回転数に係わりなく一定のくり返し周期で電磁弁
を作動させ、燃料計量を行うので電磁弁の開弁時
間は吸気管圧力と回転数の積に応じて定まる。い
ずれの場合も空燃比は可燃範囲内における適正値
に制御されるが、理論空燃比は混合気の当量比で
定義されるため一定値となる。しかし、機関の暖
機条件排ガス浄化装置、燃費特性等を効果的にす
るために水温センサ、酸素濃度センサ等を検出信
号として空燃比目標値をきめる空燃比電圧VM
空燃比電圧発生器より発生し、よりきめ細い空燃
比制御を行うことができる。
As shown in this configuration diagram, when the rotation speed is below the set speed, the solenoid valve is opened every intake stroke of each cylinder of the engine to measure fuel, so the opening time of the solenoid valve is basically determined according to the intake pipe pressure. . When the engine speed is higher than the set speed, the solenoid valve is operated at a constant cycle to measure fuel regardless of the engine speed, so the opening time of the solenoid valve is determined by the product of the intake pipe pressure and the speed. In either case, the air-fuel ratio is controlled to an appropriate value within the flammable range, but the stoichiometric air-fuel ratio is defined by the equivalence ratio of the air-fuel mixture, so it is a constant value. However, in order to make the engine warm-up condition, exhaust gas purification device, fuel efficiency, etc. effective, the air-fuel ratio voltage V M , which determines the air-fuel ratio target value, is generated by an air-fuel ratio voltage generator using detection signals such as a water temperature sensor and an oxygen concentration sensor. This allows for more precise air-fuel ratio control.

第3図はオツトー機関において機関回転数と吸
気管圧力とを制御パラメータとして基本的な燃料
計量機能を満足するものであり、この具体的な電
気回路は第4図に示される。回転角検出器101
は機関のクランク軸に係動するインダクタ101
aの回転位相を電磁ピツクアツプ101bにて検
出し、機関の吸入行程の作動頻度と同数くり返し
周波数を有する回転角パルスを発生する。101
eはステータ、101c,101dは波形整形用
トランジスタである。回転数電圧発生器102
は、回転角検出器101の生じる回転角パルスの
くり返し周波数に比例した回転数電圧VNを発生
するもので、102a,102bはトランジス
タ、102c,102dはダイオード、102
e,102fはコンデンサ、102gは抵抗であ
る。この発生器102からの回転数電圧VNは比
較器107の差動型演算増幅器107aにより設
定回転数NSに対応して、設定器106のポテン
シヨメータにて定められる設定回転数電圧VS
比較され、比較器107からはその大小に対応し
た判別信号がJ点に発生され出力される。即ちV
N<VSではJ点は高レベルの信号を生じ、VN
SではJ点は低レベルの信号を生じる。吸気管
圧力検出器103は拡散型半導体圧力検出器10
3aを用いており、機関の吸気マニホルド絶対圧
Iに比例した吸気管圧力電圧Vpを発生する。1
03bは増幅用演算増幅器である。同期時限パル
ス発生器104は回転角検出器101の回転角パ
ルスに同期して鋸歯状波電圧を発生する積分型鋸
歯状歯電圧発生器とその鋸歯状波電圧を吸気管圧
力検出器103の生じる吸気管圧力電圧Vpとを
比較する演算増幅器104dよりなる比較器を主
構成要素とし吸気管圧力電圧Vpに応じて時間が
変化する同期時限パルスを発生する。従つて同期
時限パルスの時間幅τは基本的にはτ
k1Vp(k1は完数)で定められる。104aは積
分型鋸歯状波電圧発生器を構成する演算増幅器で
積分時定数はコンデンサ104bと抵抗104c
の積できまり、104eはリセツト用アナログス
イツチで回転角検出器101の回転角パルスに同
期してリセツトされる。
FIG. 3 shows an engine which satisfies the basic fuel metering function in an automatic engine using engine speed and intake pipe pressure as control parameters, and a specific electric circuit for this is shown in FIG. Rotation angle detector 101
is an inductor 101 engaged with the engine crankshaft.
The rotation phase of a is detected by an electromagnetic pickup 101b, and a rotation angle pulse having a repetition frequency equal to the operation frequency of the intake stroke of the engine is generated. 101
e is a stator, and 101c and 101d are waveform shaping transistors. Rotation speed voltage generator 102
generates a rotational speed voltage V N proportional to the repetition frequency of rotational angle pulses generated by the rotational angle detector 101, 102a and 102b are transistors, 102c and 102d are diodes, and 102
e and 102f are capacitors, and 102g is a resistor. The rotational speed voltage V N from the generator 102 is determined by the differential operational amplifier 107a of the comparator 107 in response to the set rotational speed N S by the potentiometer of the setter 106 . The comparator 107 generates and outputs a discrimination signal corresponding to the magnitude at the J point. That is, V
For N <V S , point J produces a high level signal, and for V N >
At V S , point J produces a low level signal. The intake pipe pressure detector 103 is a diffusion type semiconductor pressure detector 10
3a, and generates an intake pipe pressure voltage Vp proportional to the intake manifold absolute pressure P I of the engine. 1
03b is an operational amplifier for amplification. The synchronous timed pulse generator 104 is an integral sawtooth voltage generator that generates a sawtooth voltage in synchronization with the rotation angle pulse of the rotation angle detector 101, and the sawtooth voltage generated by the intake pipe pressure detector 103. The main component is a comparator consisting of an operational amplifier 104d that compares the intake pipe pressure voltage Vp with the intake pipe pressure voltage Vp, and generates a synchronous timed pulse whose time changes according to the intake pipe pressure voltage Vp. Therefore, the time width τ 1 of the synchronous timed pulse is basically τ 1 =
It is determined by k 1 Vp (k 1 is a perfect number). 104a is an operational amplifier that constitutes an integral type sawtooth voltage generator, and its integral time constant is a capacitor 104b and a resistor 104c.
104e is a reset analog switch that is reset in synchronization with the rotation angle pulse of the rotation angle detector 101.

非同期時限パルス発生器105は、機関のクラ
ンク軸回転数とは無関係に一定のくり返し周波数
のクロツクパルスを発生するパルス発生器105
aと、このクロツクパルスによりリセツトされる
積分型鋸歯状波電圧発生器105bと、回転数電
圧VNと吸気管圧力Vpとの積に応じた比較電圧Vr
を発生するための乗算器105cと、鋸歯状波電
圧発生器105bの鋸歯状波と乗算器105cの
生じる比較電圧Vrとを比較する比較器105d
よりなり、比較器105dからは時間幅が比較電
圧Vrに比例して変化する時限パルスを発生させ
出力する。この時限パルスは機関のクランク軸の
回転に同期せず、パルス発生器105aの生じる
クロツクパルスに同期して発生される。
The asynchronous timed pulse generator 105 is a pulse generator 105 that generates clock pulses with a constant repetition frequency regardless of the engine crankshaft rotation speed.
a, an integral sawtooth wave voltage generator 105b that is reset by this clock pulse, and a comparison voltage Vr corresponding to the product of the rotational speed voltage V N and the intake pipe pressure Vp.
and a comparator 105d that compares the sawtooth wave of the sawtooth wave voltage generator 105b and the comparison voltage Vr generated by the multiplier 105c.
The comparator 105d generates and outputs a timed pulse whose time width changes in proportion to the comparison voltage Vr. This timed pulse is generated not in synchronization with the rotation of the engine crankshaft, but in synchronization with the clock pulse generated by the pulse generator 105a.

機関回転数Nが設定回転数NS以下ではゲート
109が開成し、ゲート110は閉成するため同
期時限パルスが電流増幅器111の増幅トランジ
スタ111aのベース信号として印加されるため
電磁弁7の開弁時間は同期時限パルスにて定めら
れる。又、機関回転数Nが設定回転数NSをこえ
るとゲート110が開成し、ゲート109が閉成
するため、非同期時限パルスによつて電磁弁7の
開弁時間が定められる。従つて、電磁弁7は回転
数Nが設定回転数NS以下では機関のクランク軸
の回転に同期し、吸入行程毎に燃料計量を行うと
共に設定回転数NSをこえると機関のクランク軸
の回転とは無関係に一定のくり返し同期で燃料計
量を行う。
When the engine rotation speed N is lower than the set rotation speed N S , the gate 109 opens and the gate 110 closes, so that the synchronous timed pulse is applied as a base signal to the amplification transistor 111a of the current amplifier 111, so that the solenoid valve 7 is opened. The time is determined by a synchronized timed pulse. Further, when the engine speed N exceeds the set speed N S , the gate 110 opens and the gate 109 closes, so the opening time of the electromagnetic valve 7 is determined by the asynchronous timed pulse. Therefore, the solenoid valve 7 synchronizes with the rotation of the engine crankshaft when the rotational speed N is less than the set rotational speed N S and measures the fuel every intake stroke. Fuel metering is performed in a constant, repeated synchronization regardless of rotation.

なお、第4図に示した回路例では、機関に供給
される混合気の空燃比の目標値を決める空燃比電
圧発生器108は、ポテンシヨンメータ108a
にて構成され機関の運転条件等によつて変化せず
一定の空燃比電圧VMを発生するのみであるが、
この空燃比電圧発生器108を第3図の破線に示
す如く機関の冷却水温を検出する水温センサ、排
ガス中の酸素濃度を検出する酸素濃度センサ等を
用い、冷却水温や排ガス中の酸素濃度に応じて目
標空燃比電圧を定める空燃比関数電圧を発生する
ことにより、機関の始動特性暖機特性の向上と三
元触媒の排気浄化効率の向上をはかる事ができる
がこの詳細は従来公知手段が応用可能であるので
省略する。
In the circuit example shown in FIG. 4, the air-fuel ratio voltage generator 108 that determines the target value of the air-fuel ratio of the air-fuel mixture supplied to the engine is connected to the potentiometer 108a.
It only generates a constant air-fuel ratio voltage V M that does not change depending on engine operating conditions, etc.
This air-fuel ratio voltage generator 108 is connected to the cooling water temperature and the oxygen concentration in the exhaust gas by using a water temperature sensor for detecting the cooling water temperature of the engine, an oxygen concentration sensor for detecting the oxygen concentration in the exhaust gas, etc. as shown by the broken line in FIG. By generating an air-fuel ratio function voltage that determines a target air-fuel ratio voltage accordingly, it is possible to improve the starting characteristics of the engine and the warm-up characteristics of the engine and the exhaust purification efficiency of the three-way catalyst. This is omitted as it is applicable.

又、他の実施例の要部示す第5図の構成説明図
の如く、電磁弁7よりベンチユリ部4のノズル4
4に至る燃料流路中にエアプリート系を配するこ
ともできる。この実施例において、45はエマル
ジヨンチユーブ、46はエアジエツト、47はエ
マルジヨンホール、48はエアホーンであり、電
磁弁7により計量された燃料にエマルジヨンエア
が混入されるため、ノズル44より噴出される燃
料の霧化特性の改善が可能である。
Further, as shown in the configuration explanatory diagram of FIG. 5 showing the main part of another embodiment, the nozzle 4 of the bench lily part 4 is
It is also possible to arrange an air pleat system in the fuel flow path leading to No. 4. In this embodiment, 45 is an emulsion tube, 46 is an air jet, 47 is an emulsion hole, and 48 is an air horn. Since emulsion air is mixed into the fuel metered by the solenoid valve 7, the fuel is injected from the nozzle 44. It is possible to improve the atomization characteristics of

以上述べたように本発明では、電磁弁にて計量
して燃料をPTC素子を用いた加熱器により加熱
した後、機関吸気系のベンチユリ部より噴出させ
る構成であるため、機関の比較的低回転領域では
加熱器により燃料を過剰加熱することなく安全に
蒸気化できると共に加熱により燃料流の脈動も比
較的平滑でき、かつ高回転領域ではベンチユリ構
造による霧化能力を利用して良好な噴霧が達成で
きる。また、電源制御手段により加熱の必要な条
件のときだけ加熱器に通電するため耐久性向上、
電力節約効果が期待できる。
As described above, in the present invention, the fuel is metered by a solenoid valve, heated by a heater using a PTC element, and then injected from the vent lily part of the engine intake system. In the high rotation range, the heater can safely vaporize the fuel without overheating the fuel, and heating can also relatively smooth the pulsations in the fuel flow, and in the high rotation range, the atomization ability of the bench lily structure can be used to achieve good atomization. can. In addition, the power supply control means energizes the heater only when heating is necessary, improving durability.
A power saving effect can be expected.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す構成図、第2
a図は第1図に示す電源制御回路の電気回路図、
第2b図は電源制御回路の他の実施例の電気回路
図、第3図は第1図に示す電気的制御回路のブロ
ツク図、第4図は第3図の電気的制御回路の電気
回路図、第5図は本発明の他の実施例の要部を示
す構成図である。 3……スロツトル弁、4……ベンチユリ部、4
4……燃料ノズル、7……電磁弁、11……電気
的制御回路、11a……電源制御回路、15……
燃料加熱器をなすPTCヒーター。
FIG. 1 is a configuration diagram showing one embodiment of the present invention, and FIG.
Figure a is an electrical circuit diagram of the power supply control circuit shown in Figure 1;
Figure 2b is an electric circuit diagram of another embodiment of the power supply control circuit, Figure 3 is a block diagram of the electric control circuit shown in Figure 1, and Figure 4 is an electric circuit diagram of the electric control circuit shown in Figure 3. , FIG. 5 is a block diagram showing the main parts of another embodiment of the present invention. 3... Throttle valve, 4... Bench lily part, 4
4...Fuel nozzle, 7...Solenoid valve, 11...Electrical control circuit, 11a...Power control circuit, 15...
A PTC heater serves as a fuel heater.

Claims (1)

【特許請求の範囲】[Claims] 1 内燃機関のクランク軸に同期して発せられる
同期時限パルスまたは一定周期の非同期時限パル
スに応動して開閉される電磁弁と、前記電磁弁に
供給される所定時間幅の前記時限パルスを発生す
る電気的制御手段と、機関の吸気系スロツトル弁
上流に配設されたベンチユリ部と、前記電磁弁に
て計量された燃料を前記ベンチユリ部に噴出する
ための燃料ノズルと、前記電磁弁より前記燃料ノ
ズルに至る流路の間に配設し、前記電磁弁にて計
量した後の燃料を加熱するPTC素子による燃料
加熱器と、この加熱器の作動を機関の運転条件に
応じて切換制御する電源制御手段とを備えたこと
を特徴とする燃料噴射装置。
1. A solenoid valve that opens and closes in response to a synchronous timed pulse or an asynchronous timed pulse of a constant period that is emitted in synchronization with the crankshaft of an internal combustion engine, and generates the timed pulse of a predetermined time width that is supplied to the solenoid valve. an electric control means; a bench lily portion disposed upstream of an intake system throttle valve of the engine; a fuel nozzle for spouting fuel metered by the solenoid valve to the vent lily portion; A fuel heater using a PTC element that is disposed between the flow path leading to the nozzle and heats the fuel after being measured by the solenoid valve, and a power source that switches and controls the operation of this heater according to engine operating conditions. A fuel injection device comprising a control means.
JP9489178A 1978-08-03 1978-08-03 Fuel injection device Granted JPS5523337A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9489178A JPS5523337A (en) 1978-08-03 1978-08-03 Fuel injection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9489178A JPS5523337A (en) 1978-08-03 1978-08-03 Fuel injection device

Publications (2)

Publication Number Publication Date
JPS5523337A JPS5523337A (en) 1980-02-19
JPS6138336B2 true JPS6138336B2 (en) 1986-08-28

Family

ID=14122655

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9489178A Granted JPS5523337A (en) 1978-08-03 1978-08-03 Fuel injection device

Country Status (1)

Country Link
JP (1) JPS5523337A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58222931A (en) * 1982-06-21 1983-12-24 Aisan Ind Co Ltd Fuel supply device
US4959832A (en) * 1988-12-09 1990-09-25 International Business Machines Parallel pseudorandom pattern generator with varying phase shift
FR2892468A1 (en) * 2005-10-26 2007-04-27 Peugeot Citroen Automobiles Sa Heating element e.g. pre/post heater plug, controlling method for four stroke diesel engine, involves determining parameter for controlling heating element, and activating heating element during starting of admission phase of cylinder

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS48100524A (en) * 1972-03-03 1973-12-19
JPS5118012A (en) * 1974-08-03 1976-02-13 Japan National Railway Bantagurafuno musenzatsuonboshihoho

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS48100524A (en) * 1972-03-03 1973-12-19
JPS5118012A (en) * 1974-08-03 1976-02-13 Japan National Railway Bantagurafuno musenzatsuonboshihoho

Also Published As

Publication number Publication date
JPS5523337A (en) 1980-02-19

Similar Documents

Publication Publication Date Title
US4655182A (en) Method and system for internal combustion engine oxygen sensor heating control which provide maximum sensor heating after cold engine starting
JP4531056B2 (en) Control method and apparatus used in an internal combustion engine fueled with alcohol
CN101240753B (en) Gas sensor controller
US4561402A (en) Method and system for internal combustion engine oxygen sensor heating control, synchronizing heater voltage detection with heater energization, and calculating power loss
US4765298A (en) Air-fuel ratio control system for internal combustion engines
JP2003097323A (en) Control device of heater of exhaust gas sensor
JPS6138336B2 (en)
US5850821A (en) Method and system for estimating air/fuel ratio of an engine having a non-heated fuel vaporizer
JPS649463B2 (en)
JP2929747B2 (en) Fuel supply device
JP2003301749A (en) Fuel vaporization accelerator
RU2719320C2 (en) Engine control method (versions) and engine system
JP3146850B2 (en) Engine control device
JP2511395B2 (en) Control device for internal combustion engine
JP2000192835A (en) Deciding method of fuel/air mixture composition for internal combustion engine in operation having prescribed clearance with respect to a equal to 1
JPH0642434A (en) Fuel injection valve device for internal combustion engine
TWI281530B (en) Auto-choke control device
JPH09264224A (en) Heating control device of injector
JPH06129243A (en) Exhaust emission control device for internal combustion engine
JP3740913B2 (en) Internal combustion engine start assist device
JP2885019B2 (en) Air assist control device
JPH0561446U (en) Diesel engine fuel supply system
JPS6132144Y2 (en)
JPS6027818B2 (en) Electronically controlled fuel injection device
JPS6179855A (en) Intake air heating device for variable venturi type carburetor