JPS6138245B2 - - Google Patents

Info

Publication number
JPS6138245B2
JPS6138245B2 JP15293381A JP15293381A JPS6138245B2 JP S6138245 B2 JPS6138245 B2 JP S6138245B2 JP 15293381 A JP15293381 A JP 15293381A JP 15293381 A JP15293381 A JP 15293381A JP S6138245 B2 JPS6138245 B2 JP S6138245B2
Authority
JP
Japan
Prior art keywords
protrusion
fiber
dogbone
length
concrete
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15293381A
Other languages
Japanese (ja)
Other versions
JPS5855154A (en
Inventor
Takashi Onoyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Yakin Kogyo Co Ltd
Original Assignee
Nippon Yakin Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Yakin Kogyo Co Ltd filed Critical Nippon Yakin Kogyo Co Ltd
Priority to JP15293381A priority Critical patent/JPS5855154A/en
Publication of JPS5855154A publication Critical patent/JPS5855154A/en
Publication of JPS6138245B2 publication Critical patent/JPS6138245B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/06Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
    • B22D11/0611Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars formed by a single casting wheel, e.g. for casting amorphous metal strips or wires

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、コンクリート、不定形耐火物(以下
コンクリート等と云う)を補強するために、これ
らを混入して用いられる短いフアイバーの製造装
置に関するものである。 従来、フアイバー補強コンクリートでは、補強
材として、例えば、直径0.3〜0.5mm、長さ20〜50
mmの鋼フアイバーを混入してコンクリート等中に
均一に分散させている。 かかる鋼フアイバーにより補強されたコンクリ
ート等の引張強さおよび曲げ強さは、フアイバー
混入量が多い程、また、フアイバーとコンクリー
ト等のマトリツクスとの接着強さが大きい程増大
することが知られている。また、フアイバー補強
コンクリート等に加わる引張り力の方向にフアイ
バーを配向させることによつて補強効果が増大す
ることが知られている。 しかし、コンクリート等へのフアイバーの混入
量を増すと、コンクリートミキサー等による混合
時に、フアイバーが相互にからみ合つてフアイバ
ーボールが発生するため、実際上、体積で3%以
上の混入は不可とされている。また、従来、一般
に用いられている補強用フアイバーは、全長にわ
たりほぼ同一直径または断面積を有する線状をな
しており、したがつて、フアイバーとマトリツク
スとの接着強度が大きくない。 最近、フアイバーとマトリツクスとの接着力を
大きくするため、欧州特許出願公開第32482号明
細書により、細長いフアイバーの両端に拡大端部
を有するドツグボーン形状のフアイバーが開示さ
れている。 しかしながら、この欧州特許出願公開明細書に
記載のフアイバー製造装置では、回転デイスク上
の突起が狭幅の外周縁を有し、この狭幅の外周縁
に向け先細のテーパー付断面形状を有することを
前提条件とし、この突起の前後端部を斜切するこ
とによつて広幅の前後端部を設けたものである。
したがつて、突起の前後広幅端部の表面と狭幅中
間部の表面とは同一円周面上に位置していない。
さらに、斜切斜面による傾斜した前側広幅端部の
表面はフアイバー長さを限定する切欠の表面と必
然的に実質的同一傾斜面で形成されることにな
る。 このような表面を有する突起では、溶融金属プ
ール表面への導入によつて形成されるドツグボー
ン状フアイバーは、前後広幅端部の大きさが相違
し、その大小が不揃いで形状的に不安定であり、
厚さも不揃いであり、寸法が一定しない。この結
果、所望の補強効果を得るための最適形状および
寸法のドツグボーン形状のフアイバーを得ること
が難かしく、また単位重量当たりのフアイバー数
が一定せず、したがつて、コンクリートに入れた
場合に、所期の補強効果が得られないという問題
がある。 本発明の目的は、上述した問題をなくし、優れ
た補強効果を有するドツグボーン形状のフアイバ
ーを製造し得る装置を提供することを目的とす
る。 これがため、本発明によれば、外周に円周方向
突条を有する回転デイスクを具え、前記円周方向
突条に円周方向に離間した切欠によつて製造すべ
きフアイバーの長さに対応する円周方向長さを有
する突起が設けられ、回転中の回転デイスクの前
記突起の表面に溶融金属を接触させて急冷凝固さ
せることにより所定長さのフアイバーを溶融材料
から直接に製造するフアイバー製造装置におい
て、前記突起の長さ方向端部を残して少なくとも
一方の突起側面が切除され、これにより前後広幅
端部と狭幅中間部とを有するドツグボーン形状の
突起表面が同一円周面上で設けられていることを
特徴とする。 本発明によれば、円板上の突起が上述した構成
を具えることによつて、突起表面の前後広幅端部
および狭幅中間部は同一円周面上に位置し、さら
に、前記広幅端部の前後端は切欠によつて明確に
限定される。したがつて、形状、長さおよび厚さ
が一定のドツグボーン形状のフアイバーを安定し
て製造することができるばかりでなく、さらに所
望の補強効果を得るための最適形状および寸法の
ドツグボーン形状のフアイバーを製造することが
でき、この結果、所期の補強効果を確実に得るこ
とができる。 以下、本発明を図面につき説明する。 第1図は、本発明による回転デイスク1を示
し、例えば、銅のような熱伝導性の良好な金属
で、直径300mm、幅200mmの円板状に形成され、中
心に回転軸への取付孔2が設けられ、また、円周
方向に適当な間隔で離間して設けられた複数個の
冷却水孔3がデイスク幅方向に貫通して設けら
れ、回転軸への取付時に両側に端板(図示せず)
が取付けられ、この端板の内側に設けられた冷却
水通路を経て冷却水を冷却水孔3に循環して流す
よう構成されている。 回転デイスク1の外周面には円周方向に互に平
行に延びる複数の突条5が設けられ、各突条5に
所要のフアイバー長さに対応する間隔で円周方向
にV字形の分離用刻み目または切欠6が設けら
れ、刻み目6間の突起5′の同一円周面内に位置
する突起表面を第2図に示すように両端の広幅部
7,7とこれらの広幅部7,7間に延びる狭小部
8とを有するドツグボーン形状とする。突起5′
のドツグボーン形状突起表面の寸法は、例えば、
全長が30mmで、広幅部7の幅が1mm、広幅部の長
さが4mm、狭小部8の幅が0.3mm、突起5′の高さ
は3〜6mm、平行に離間する隣接突条5間の間隔
は5mm程度としている。 第3図は、ドツグボーン形状の突起表面を有す
る突起5′の他の変形例を示し、第4図は第2図
に示す突起付回転デイスク1を用いて形成された
ドツグボーン形状のフアイバー10を示す。 第5図は、上述の構成になる回転デイスク1を
用いて、特公昭51−8821号公報に記載の浸漬(デ
イツピング)方式により、回転中のデイスク1の
外周突起5′の突起表面を所定液面レベルおよび
所定温度に維持した溶融材料のプール11の表面
に接触させて外周突起5′の突起表面7,8上に
金属を凝固させて両端に広幅部9を有するドツグ
ボーン形状のフアイバー10を形成する例を示
す。 第6図は、回転デイスク1を用いて、特公昭52
−22898号公報に記載の垂下(ペンダント)方式
により垂下溶融材料12を回転中のデイスク1の
外周突起5′の突起表面7,8上に垂下接触させ
て突起表面7,8上に金属を凝固させてドツグボ
ーン形状のフアイバー10を形成する例を示す。 溶融材料12を突起表面7,8上に垂下供給す
る方法としては、溶融した材料を加圧し、ノズル
から噴射して供給したり、線材を回転デイスクの
外周に供給し、線材供給端をアークトーチにより
加熱溶解して突起表面上に供給することができ
る。 実施例 1 直径300mm、幅200mmの銅製回転デイスク1の外
周表面に第2図に示すドツグボーン形状の突起表
面7,8を有する外周突起5′を形成した。各突
起表面の全長lを30mm、両端における広幅部7の
長さHを4mm、幅を0.7mm、狭小部8の幅を0.3mm
とした。この回転デイスク1を170rpmの回転数
で回転し、1510℃の温度に保持した0.40%Cの溶
鋼プールに回転デイスク上に突起表面を接触さ
せ、厚さ約0.2〜0.3mmの第4図に示すようなドツ
グボーン状フアイバーを製造した。このドツグボ
ーン状フアイバーの寸法形状は回転デイスク上の
突起表面形状に実質的に一致していた。 得られたドツグボーン状フアイバーを第1表に
示す配合のコンクリートに容積で2.0%混合し、
直径10cm、長さ14cmの円柱状供試体を準備し、2
週間水中養生した後、JIS A 1113による割裂引
張試験を行なつた。試験結果を第2表に示す。
The present invention relates to an apparatus for producing short fibers mixed with concrete and monolithic refractories (hereinafter referred to as concrete, etc.) for use in reinforcing concrete and monolithic refractories. Conventionally, in fiber reinforced concrete, the reinforcement material is, for example, 0.3 to 0.5 mm in diameter and 20 to 50 mm in length.
mm steel fibers are mixed in and uniformly dispersed in concrete, etc. It is known that the tensile strength and bending strength of concrete, etc. reinforced with such steel fibers increase as the amount of fibers mixed in increases and as the adhesive strength between the fibers and the matrix of concrete, etc. increases. . It is also known that the reinforcing effect can be increased by orienting the fibers in the direction of the tensile force applied to fiber-reinforced concrete or the like. However, if the amount of fibers mixed into concrete, etc. is increased, the fibers will become entangled with each other and fiber balls will occur when mixed with a concrete mixer, etc., so in practice, mixing more than 3% by volume is prohibited. There is. Furthermore, reinforcing fibers that have been commonly used in the past have a linear shape that has approximately the same diameter or cross-sectional area over the entire length, and therefore the adhesive strength between the fiber and the matrix is not large. Recently, in order to increase the adhesion between the fiber and the matrix, European Patent Application No. 32,482 discloses a dogbone-shaped fiber having enlarged ends at both ends of the elongated fiber. However, in the fiber manufacturing apparatus described in this European patent application, the protrusion on the rotary disk has a narrow outer peripheral edge and a tapered cross-sectional shape that tapers toward the narrow outer peripheral edge. As a prerequisite, wide front and rear ends are provided by obliquely cutting the front and rear ends of this protrusion.
Therefore, the surfaces of the front and rear wide end portions and the surface of the narrow middle portion of the protrusion are not located on the same circumferential surface.
Further, the surface of the front wide end portion which is sloped by the beveled cut surface is necessarily formed with substantially the same slope as the surface of the notch that limits the length of the fiber. In protrusions with such a surface, the dogbone-like fibers formed when introduced into the surface of the molten metal pool have different sizes at the front and rear wide ends, and are irregular in size and unstable in shape. ,
The thickness is also uneven, and the dimensions are not consistent. As a result, it is difficult to obtain dogbone-shaped fibers with optimal shape and dimensions to obtain the desired reinforcing effect, and the number of fibers per unit weight is not constant, so when placed in concrete, There is a problem that the desired reinforcing effect cannot be obtained. SUMMARY OF THE INVENTION An object of the present invention is to eliminate the above-mentioned problems and to provide an apparatus capable of producing a dogbone-shaped fiber having an excellent reinforcing effect. To this end, according to the invention, a rotary disk is provided with circumferential ridges on its outer periphery, the circumferential ridges being provided with circumferentially spaced notches corresponding to the length of the fiber to be produced. A fiber manufacturing device that is provided with a protrusion having a length in a circumferential direction, and that directly produces a fiber of a predetermined length from a molten material by bringing molten metal into contact with the surface of the protrusion of a rotating rotating disk and rapidly solidifying it. At least one side surface of the protrusion is removed, leaving the lengthwise end of the protrusion, so that a dogbone-shaped protrusion surface having front and rear wide end portions and a narrow middle portion is provided on the same circumferential surface. It is characterized by According to the present invention, since the protrusion on the disk has the above-described configuration, the front and rear wide end portions and the narrow middle portion of the protrusion surface are located on the same circumferential surface, and further, the wide end portion is located on the same circumferential surface. The front and rear ends of the section are clearly defined by notches. Therefore, it is not only possible to stably manufacture a dogbone-shaped fiber with a constant shape, length, and thickness, but also to produce a dogbone-shaped fiber with an optimal shape and dimensions to obtain the desired reinforcing effect. As a result, the desired reinforcing effect can be reliably obtained. The invention will now be explained with reference to the drawings. FIG. 1 shows a rotating disk 1 according to the present invention, which is made of a metal with good thermal conductivity, such as copper, and is formed into a disk shape with a diameter of 300 mm and a width of 200 mm, and has a mounting hole for a rotating shaft in the center. 2 are provided, and a plurality of cooling water holes 3 are provided at appropriate intervals in the circumferential direction, and are provided through the disk in the width direction. (not shown)
is attached, and the cooling water is configured to circulate and flow into the cooling water holes 3 through a cooling water passage provided inside the end plate. A plurality of protrusions 5 are provided on the outer circumferential surface of the rotating disk 1 and extend parallel to each other in the circumferential direction. A notch or notch 6 is provided, and the protrusion surface located within the same circumferential surface of the protrusion 5' between the notches 6 and the wide portions 7, 7 at both ends and between these wide portions 7, 7 as shown in FIG. It has a dogbone shape with a narrow portion 8 extending to . Protrusion 5'
The dimensions of the dogbone shape protrusion surface are, for example,
The total length is 30 mm, the width of the wide part 7 is 1 mm, the length of the wide part is 4 mm, the width of the narrow part 8 is 0.3 mm, the height of the protrusion 5' is 3 to 6 mm, and the adjacent protrusions 5 are spaced apart in parallel. The interval between them is approximately 5 mm. FIG. 3 shows another modification of the projection 5' having a dogbone-shaped projection surface, and FIG. 4 shows a dogbone-shaped fiber 10 formed using the rotary disk 1 with projections shown in FIG. . FIG. 5 shows that using the rotary disk 1 having the above-mentioned structure, the surface of the outer peripheral protrusion 5' of the rotating disk 1 is soaked in a predetermined liquid by the dipping method described in Japanese Patent Publication No. 51-8821. The metal is solidified on the projection surfaces 7 and 8 of the outer peripheral projection 5' by contacting the surface of the pool 11 of molten material maintained at a surface level and a predetermined temperature, thereby forming a dogbone-shaped fiber 10 having wide portions 9 at both ends. Here is an example. Figure 6 shows how the rotary disk 1 was used to
By the pendant method described in Publication No. 22898, the hanging molten material 12 is brought into contact with the protrusion surfaces 7 and 8 of the outer circumferential protrusion 5' of the rotating disk 1, and the metal is solidified on the protrusion surfaces 7 and 8. An example of forming a fiber 10 having a dogbone shape will be shown. The molten material 12 can be supplied hanging onto the protrusion surfaces 7 and 8 by pressurizing the molten material and spraying it from a nozzle, or by supplying the wire to the outer periphery of a rotary disk and using an arc torch to connect the wire supply end. can be heated and melted and supplied onto the protrusion surface. Example 1 On the outer peripheral surface of a copper rotary disk 1 having a diameter of 300 mm and a width of 200 mm, an outer peripheral projection 5' having dogbone-shaped projection surfaces 7 and 8 as shown in FIG. 2 was formed. The total length l of each protrusion surface is 30 mm, the length H of the wide part 7 at both ends is 4 mm, the width is 0.7 mm, and the width of the narrow part 8 is 0.3 mm.
And so. This rotary disk 1 was rotated at a rotation speed of 170 rpm, and the protrusion surface on the rotary disk was brought into contact with a 0.40% C molten steel pool maintained at a temperature of 1510°C, and the thickness was approximately 0.2 to 0.3 mm. A dogbone-like fiber was manufactured. The size and shape of this dogbone fiber substantially matched the shape of the protrusion surface on the rotating disk. The obtained dog-bone fiber was mixed with 2.0% volume of concrete having the composition shown in Table 1.
Prepare a cylindrical specimen with a diameter of 10 cm and a length of 14 cm, and
After curing in water for a week, a splitting tensile test according to JIS A 1113 was conducted. The test results are shown in Table 2.

【表】【table】

【表】 の倍数で表わされている。
第2表中、靭性は、破断までに要したエネルギ
ー量で示されるもので、比較例1は補強用フアイ
バーを混入しないもの、比較例2は両端に広幅部
またはふくらみ部をもたない補強用フアイバーに
より補強したものを示す。 第2表から明らかなように、本発明によるドツ
グボーン状フアイバーを用いることによつて、引
張強さがプレーンコンクリートに較べ50%増大
し、ストレートフアイバーにより補強したものに
較べても7%増大した。また、靭性はプレーンコ
ンクリートに較べ20倍以上、ストレートフアイバ
ーにより補強したものに較べ50%以上増加した。 実施例 2 実施例1とは、回転デイスクの突起表面形状を
相違させ、全長lを20mm、広幅部7の長さHを4
mm、幅W1を0.7mm、狭小部8の幅W2を0.3mmとし
た。実施例1と同一条件でドツグボーン状フアイ
バーを形成し、これを第1表の配合割合のコンク
リートに容積で2.0%混合し、JIS A 1113によ
る割裂引張試験を行ないその結果を第3表に示
す。
[Table] Expressed as a multiple of .
In Table 2, toughness is indicated by the amount of energy required to break. Comparative Example 1 is for reinforcement without reinforcing fibers, and Comparative Example 2 is for reinforcement without wide parts or bulges at both ends. Shown is one reinforced with fibers. As is clear from Table 2, by using the dogbone fibers according to the present invention, the tensile strength increased by 50% compared to plain concrete and by 7% compared to that reinforced with straight fibers. In addition, the toughness was increased by more than 20 times compared to plain concrete and by more than 50% compared to that reinforced with straight fibers. Example 2 The protrusion surface shape of the rotary disk was different from Example 1, the total length l was 20 mm, and the length H of the wide part 7 was 4 mm.
mm, the width W 1 was 0.7 mm, and the width W 2 of the narrow portion 8 was 0.3 mm. A dogbone-like fiber was formed under the same conditions as in Example 1, mixed at 2.0% by volume with concrete having the mixing ratio shown in Table 1, and subjected to a splitting tensile test according to JIS A 1113. The results are shown in Table 3.

【表】 第3表から明らかなように本発明によるドツグ
ボーン状フアイバーを用いることによつて、引張
強さがプレーンコンクリートに較べ55%増大し、
ストレートフアイバーにより補強したものに較べ
ても10%増加した。また、靭性はプレーンコンク
リートに較べ25倍以上、ストレートフアイバーに
より補強したものに較べ60%以上増加した。 また、本発明によるドツグホーン状フアイバー
は両端が丸味を有することによつて混合中にから
まりにくく、フアイバーボールの発生が減少し
た。 上述した実施例では、フアイバー材料として
0.40%C鋼を用いたが、ステンレス鋼、Al、Cu
等も用いることができる。
[Table] As is clear from Table 3, by using the dogbone fiber according to the present invention, the tensile strength is increased by 55% compared to plain concrete.
It also increased by 10% compared to the one reinforced with straight fibers. In addition, the toughness was increased by more than 25 times compared to plain concrete and by more than 60% compared to that reinforced with straight fibers. Further, since the doghorn fiber according to the present invention has rounded ends, it is difficult to get tangled during mixing, and the occurrence of fiber balls is reduced. In the embodiments described above, as the fiber material
Although 0.40% C steel was used, stainless steel, Al, Cu
etc. can also be used.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による回転デイスクの斜視図、
第2図は回転デイスクの外周面上のドツグボーン
形状突起表面を有する突起の拡大斜視図、第3図
はドツグボーン形状突起表面を有する突起の変形
例を示す拡大斜視図、第4図aはドツグボーン状
フアイバーの拡大平面図、第4図bは第4図aに
示すドツグボーン状フアイバーの縦断面図、第5
図は浸漬方式によりフアイバーを製造する状態を
示す説面図、第6図は垂下方式によりフアイバー
を製造する状態を示す説明図である。 1……回転デイスク、5……突条、6……分離
用刻み目または切欠、5′……突起、7……突起
表面広幅部、8……突起表面狭小部、9……フア
イバー広幅端部、10……フアイバー、11……
溶融材料プール、12……垂下溶融材料。
FIG. 1 is a perspective view of a rotary disk according to the present invention;
Fig. 2 is an enlarged perspective view of a protrusion having a dogbone-shaped protrusion surface on the outer peripheral surface of the rotary disk, Fig. 3 is an enlarged perspective view showing a modification of the protrusion having a dogbone-shaped protrusion surface, and Fig. 4a is a dogbone-shaped protrusion. An enlarged plan view of the fiber, FIG. 4b is a vertical sectional view of the dogbone fiber shown in FIG.
The figure is an explanatory view showing a state in which a fiber is manufactured by a dipping method, and FIG. 6 is an explanatory view showing a state in which a fiber is manufactured by a hanging method. DESCRIPTION OF SYMBOLS 1...Rotating disk, 5...Protrusion, 6...Separation notch or notch, 5'...Protrusion, 7...Protrusion surface wide part, 8...Protrusion surface narrow part, 9...Fiber wide end , 10... fiber, 11...
Molten material pool, 12... hanging molten material.

Claims (1)

【特許請求の範囲】[Claims] 1 外周に円周方向突条を有する回転デイスクを
具え、前記円周方向突条に円周方向に離間した切
欠によつて製造すべきフアイバーの長さに対応す
る円周方向長さを有する突起が設けられ、回転中
の回転デイスクの前記突起の表面に溶融金属を接
触させて急冷凝固させることにより所定長さのフ
アイバーを溶融材料から直接に製造するフアイバ
ー製造装置において、前記突起の長さ方向両端部
を残して少なくとも一方の突起側面が切除され、
これにより前後広幅端部と狭幅中間部とを有する
ドツグボーン形状の突起表面が同一円周面上に設
けられていることを特徴とするコンクリート等の
補強用フアイバーの製造装置。
1 a protrusion comprising a rotary disk having circumferential ridges on its outer periphery and having a circumferential length corresponding to the length of the fiber to be produced by means of circumferentially spaced notches in said circumferential ridges; In a fiber manufacturing apparatus that directly manufactures a fiber of a predetermined length from a molten material by bringing molten metal into contact with the surface of the protrusion of a rotating rotary disk and rapidly solidifying it, the length direction of the protrusion is At least one side surface of the protrusion is removed, leaving both ends intact;
A manufacturing device for reinforcing fiber for concrete, etc., characterized in that dogbone-shaped projection surfaces having front and rear wide end portions and a narrow middle portion are provided on the same circumferential surface.
JP15293381A 1981-09-29 1981-09-29 Reinforcing fiber for concrete or the like and producing device for said fiber Granted JPS5855154A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15293381A JPS5855154A (en) 1981-09-29 1981-09-29 Reinforcing fiber for concrete or the like and producing device for said fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15293381A JPS5855154A (en) 1981-09-29 1981-09-29 Reinforcing fiber for concrete or the like and producing device for said fiber

Publications (2)

Publication Number Publication Date
JPS5855154A JPS5855154A (en) 1983-04-01
JPS6138245B2 true JPS6138245B2 (en) 1986-08-28

Family

ID=15551309

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15293381A Granted JPS5855154A (en) 1981-09-29 1981-09-29 Reinforcing fiber for concrete or the like and producing device for said fiber

Country Status (1)

Country Link
JP (1) JPS5855154A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106424618A (en) * 2016-11-09 2017-02-22 浙江师范大学 Method and system for preparing winding-free high-efficiency amorphous ribbon

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0147912B2 (en) * 1983-12-14 1994-06-15 Ribbon Technology Corporation Melt overflow system for producing filamentary or fiber products directly from molten materials
US4647511A (en) * 1984-03-28 1987-03-03 Nippon Yakin Kogyo Co., Ltd. Flake like metal chips, a method of and an apparatus for making the same
US6626228B1 (en) * 1998-08-24 2003-09-30 General Electric Company Turbine component repair system and method of using thereof
CN106735267B (en) * 2016-12-14 2018-07-03 厦门大学 The manufacturing device and method of ferromagnetic metal fiber
CN109865807A (en) * 2019-03-27 2019-06-11 西南大学 A kind of magnesium and magnesium alloy ultra-fine silk material and its manufacturing method and equipment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106424618A (en) * 2016-11-09 2017-02-22 浙江师范大学 Method and system for preparing winding-free high-efficiency amorphous ribbon
CN106424618B (en) * 2016-11-09 2019-04-19 浙江师范大学 It is a kind of without winding efficient amorphous faciola preparation method

Also Published As

Publication number Publication date
JPS5855154A (en) 1983-04-01

Similar Documents

Publication Publication Date Title
US4741082A (en) Method for manufacturing and reinforcing a catalytic unit intended for purifying exhaust gases
EP0475917B1 (en) A metal fibre for reinforcing concrete
DE2462388C3 (en) Process for detaching threads or wires to be produced by continuous casting
JPS6138245B2 (en)
DE10206361B4 (en) Method for connecting electrical wires by means of ultrasound
JPH05192761A (en) Method of manufacturing part with abrasion proof face
DE2939538C2 (en)
JPH05192597A (en) Polishing plate having wear resisting surface and method for its production
US3072470A (en) Method of making a cutting apparatus
DE2757903A1 (en) FASTENERS FOR FASTENING INSULATION TO A SURFACE
JPH01317658A (en) Method for continuously casting metal strip and nozzle for continuous casting
JPH10304528A (en) Method for repairing electric wire and cable
JPH11262709A (en) Coating roll
JPS59147753A (en) Production of short metallic fiber for composite material and cooling body for production
JPS58176058A (en) Producing device of foil piece
GB2176724A (en) Breaker core for metal foundry use
JPH0675750B2 (en) Pouring nozzle for metal strip continuous casting machine
JPS59142025A (en) Improved type method and device for surface machining
SE445812B (en) PROCEDURE FOR PREPARING A T-JOINT
DE112015006807T5 (en) Machine component and method for producing the same
JPH0731920A (en) Rod for coating apparatus
JP2978379B2 (en) Flat outer nozzle structure for twin drum type continuous casting
JP2724394B2 (en) Rotor manufacturing method
JPS6169903A (en) Method and device for producing foil-shaped metallic chip
JP3086169B2 (en) Corner only