JPS6138193A - Variable speed water supply system - Google Patents

Variable speed water supply system

Info

Publication number
JPS6138193A
JPS6138193A JP15695084A JP15695084A JPS6138193A JP S6138193 A JPS6138193 A JP S6138193A JP 15695084 A JP15695084 A JP 15695084A JP 15695084 A JP15695084 A JP 15695084A JP S6138193 A JPS6138193 A JP S6138193A
Authority
JP
Japan
Prior art keywords
pressure
pump
rotation speed
rotational speed
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15695084A
Other languages
Japanese (ja)
Other versions
JPH071039B2 (en
Inventor
Kaoru Nakajima
薫 中島
Hironao Hiraiwa
廣直 平岩
Takahisa Akahori
卓央 赤堀
Shinji Aoto
青戸 伸治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Ebara Densan Ltd
Original Assignee
Ebara Corp
Ebara Densan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp, Ebara Densan Ltd filed Critical Ebara Corp
Priority to JP59156950A priority Critical patent/JPH071039B2/en
Publication of JPS6138193A publication Critical patent/JPS6138193A/en
Publication of JPH071039B2 publication Critical patent/JPH071039B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Control Of Non-Positive-Displacement Pumps (AREA)
  • Control Of Positive-Displacement Pumps (AREA)

Abstract

PURPOSE:To enable predicted constant end pressure control by providing the necessary pressure and the rotary speed under shut-off operation of pump and the necessary pressure and rotary speed under maximum water supply to the control section and operating the target pressure for every rotary speed. CONSTITUTION:The delivery pressure of water supply pipe 7 coupled to the pumps 2, 12 to be driven through motors 1, 11 is detected through a pressure detector 8 and fed to the control section 9. The control section 9 will produce frequency signal which is fed to the inverters 13, 23 to produce power of necessary frequency thus to run the motors 1, 11 with necessary speed. The frequency produced through the inverters 13, 23 to be fed to the motors 1, 11 is also fed to the control section 9. The control section 9 is comprised of a microcomputer to operate the relation between the rotary speed and the delivery pressure under shut-off of pump system while to calculate the rotary speed and the target pressure under maximum flow and to perform operation on the basis of particular formula then to store in the memory of the controller 9. With such arrangement, predicted constant end pressure control is realized.

Description

【発明の詳細な説明】 〔発明の目的〕 「産業上の利用分野J 本発明は複数台数のポンプを備えた給水設備の水量調節
を行う制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] "Industrial Field of Application J The present invention relates to a control device for adjusting the amount of water in a water supply facility equipped with a plurality of pumps.

「従来の技術」 給水設備では配管末端における使用者側に右いて所要の
圧力、流量を得たい要請があり、使用流量は変動するが
所要の圧力を保持する必要がある。そして使用水量の変
動に対しては変速モータに、より駆動したターボポンプ
の回転速度を変化させることによって対応していた。こ
のような場合には従来吐出圧力一定或は推定末端圧力一
定等の制御を行っている。
``Prior Art'' In water supply equipment, users at the end of piping are required to obtain the required pressure and flow rate, and it is necessary to maintain the required pressure even though the flow rate used fluctuates. Fluctuations in the amount of water used were responded to by changing the rotational speed of the turbo pump driven by the variable speed motor. In such cases, conventional control such as constant discharge pressure or constant estimated terminal pressure is performed.

第4図は定圧制御の例で横軸に流量、縦軸に圧力を示す
。、2/はポンプ性能曲線である。この場合はポンプの
吐出圧力Pは配管末端必要圧力P、に最大流量時の管路
の圧力損失pcを加えた圧力でポンプの吐出圧力が一定
圧力になるように回転速度を制御している。しかしこの
方法によると流量の二乗に比例して変化する管路の抵抗
のため配管末端必要圧力P、の変動は大きく、図の斜線
で示す範囲ではエネルギーの損失と観念される。
FIG. 4 is an example of constant pressure control, with the horizontal axis showing the flow rate and the vertical axis showing the pressure. , 2/ is the pump performance curve. In this case, the rotational speed is controlled so that the pump discharge pressure P is the sum of the required pressure P at the piping end and the pressure loss pc of the piping at the maximum flow rate, so that the pump discharge pressure becomes a constant pressure. However, according to this method, the required pressure P at the end of the pipe fluctuates greatly because the resistance of the pipe changes in proportion to the square of the flow rate, and the range shown by diagonal lines in the figure is considered to be a loss of energy.

第4図と同座標で示す第S図で示す従来の制御方法は末
端推定圧力が一定になるように管路の圧損を見込んでポ
ンプ吐出圧力Pを定める。
In the conventional control method shown in FIG. S shown in the same coordinates as FIG. 4, the pump discharge pressure P is determined in consideration of the pressure loss in the pipe line so that the estimated terminal pressure is constant.

管路の圧力損失Pcの流量に対応する変化、即ち抵抗曲
線に従ってポンプ吐出圧力を変化させる。第5図ではポ
ンプを用いた給水設備で配管末端において所要の圧力、
流量を流量針を備えて流量計に対応する配管中の圧力損
失を見込んでおいて配管末端必要圧力に該見込みの圧力
損失を加えた分をポンプ吐出圧力としている。
The pump discharge pressure is changed according to a change in the pressure loss Pc of the pipeline corresponding to the flow rate, that is, a resistance curve. Figure 5 shows the required pressure at the end of the pipe in a water supply system using a pump.
The pressure loss in the piping corresponding to the flow meter equipped with a flow rate meter is estimated, and the pump discharge pressure is determined by adding the expected pressure loss to the required pressure at the end of the piping.

このような方法は流量計が必要であるため高価である。Such methods are expensive because they require flow meters.

そしてこの場合配管は個々に異なり、ポンプ特性も個別
に異るため、個別のポンプ装置毎に適用せざるを得す、
大規模のポンプ設備には可能としても大量生産し汎用さ
れるポンプ装置には不向きである。
In this case, since each piping is different and the pump characteristics are also different, it is necessary to apply it to each individual pump device.
Although it is possible for large-scale pump equipment, it is not suitable for mass-produced and general-purpose pump equipment.

又、以上のほかにポンプの性能を記憶させておいて制御
する方法もあるが、データをとるために時間と労力を必
要とし、個別の系にしか適用できない。
In addition to the above, there is also a method of storing pump performance and controlling it, but it requires time and effort to collect data and can only be applied to individual systems.

推定末端圧力一定制御の最新技術としての特願昭5t−
コダざ03/号の可変速給水装置は流量計を備えること
なく推定末端圧力一定となる制御装置を備えている。
Patent application filed in 1973 as the latest technology for constant estimated terminal pressure control
The variable speed water supply system of Kodazawa No. 03/ is equipped with a control device that keeps the estimated end pressure constant without having a flow meter.

「発明が屏決しようとする問題点」 このような推定末端圧力一定制御を行うポンプ装置にお
いて、複数台のポンプを備えた装置で並列運転させよう
とする場合、一台目ポンプにおける目標圧力演算が複雑
になる。−金目追加点とする目標圧力を適切に決定する
ことがむづかしいなどの欠点があった。
"Problems to be solved by the invention" In a pump device that performs such estimated terminal pressure constant control, when trying to operate a device equipped with multiple pumps in parallel, it is difficult to calculate the target pressure in the first pump. becomes complicated. - There were drawbacks such as difficulty in appropriately determining the target pressure for additional points.

本発明は複数台数のポンプを備えポンプ回転速度とポン
プ吐出圧力の関係から推定末端圧力一定制御を行ってい
る可変速給水装置において、ポンプ追加運転を行う時点
における制御目標圧力を算出するための追加ポンプの回
転速度を算定する機能を備えた制御装置を有する可変速
給水装置を提供することを目的とする。
The present invention provides an additional system for calculating a control target pressure at the time of additional pump operation in a variable speed water supply system that includes a plurality of pumps and performs constant estimated terminal pressure control based on the relationship between pump rotational speed and pump discharge pressure. It is an object of the present invention to provide a variable speed water supply device having a control device having a function of calculating the rotational speed of a pump.

〔発明の構成〕[Structure of the invention]

「問題点を解決するための手段」 本願第一発明は複数台のポンプをもち、ポンプの回転速
度制御手段を設け吐出圧力を検出する圧力検出器及びポ
ンプ回転速度検出手段を備えて、ポンプしめ切時の必要
圧力と回転速度と、最大給水時の必要圧力と、必要回転
速度を入力し、各回転速度毎の制御目標圧力を演算する
ことにより、推定末端圧力一定制御をする可変速給水装
置で、並列運転時の回転速度H2iをHZi=H2θ+
(H2J−H2A) ただし HZX :制御に用いる回転速度 HZO:1台目の・最高回転速度 HZコ:2台目の回転速度 HZA :最大給水時の必要圧力をしめ切時に出すため
に必要な回転速度 なる式により演算変換し、演算変換した後の回転速度を
制御上の回転速度として制御目標圧力を演算する制御装
置を設けたことを特徴とする可変速給水装置である。
"Means for Solving the Problems" The first invention of the present application has a plurality of pumps, and is equipped with a pump rotation speed control means, a pressure detector for detecting the discharge pressure, and a pump rotation speed detection means. A variable speed water supply device that controls the estimated end pressure at a constant level by inputting the required pressure and rotational speed when the water is turned off, the required pressure and rotational speed at maximum water supply, and calculates the control target pressure for each rotational speed. Then, the rotation speed H2i during parallel operation is HZi=H2θ+
(H2J-H2A) However, HZX: Rotation speed used for control HZO: Maximum rotation speed of the first unit HZ: Rotation speed of the second unit HZA: Rotation required to produce the required pressure at maximum water supply at the time of tightening This variable speed water supply device is characterized in that it is provided with a control device that calculates a control target pressure by calculating and converting the rotational speed using an equation called speed and using the rotational speed after the calculation and conversion as the rotational speed for control.

本願第二発明は複数台のポンプをもち、ポンプの回転速
度制御手段を設け、吐出圧力を検出する圧力検出器及び
ポンプ回転速度検出手段を備えて、ポンプしめ切時の必
要圧力と回転速度と、最大給水時の必要圧力と、必要回
転速度を入力し、各回転速度毎の制御目標圧力を演算す
ることにより、推定末端圧力一定制御をする可変速給水
装置で、並列運転時の回転速度HZiをHZi=HZθ
+(Hl2− HZB )ただし nzi :制御に用いる回転速度 HZO:1台目の最高回転速度 HZ、2 :2台目の回転速度 HZB :ポンプしめ切時の必要圧力を出すために必要
な回転速度 なる式により演算変換し、演算変換した後の回転速度を
制御上の回転速度として制御目標圧力を演算する制御装
置を設けたことを特徴とする可変速給水装置である。
The second invention of the present application has a plurality of pumps, is provided with pump rotational speed control means, is equipped with a pressure detector for detecting discharge pressure, and pump rotational speed detection means, and is equipped with a pressure detector for detecting the discharge pressure and a pump rotational speed detection means, so that the required pressure and rotational speed at the time of pump tightening are determined. , by inputting the required pressure at maximum water supply and the required rotational speed and calculating the control target pressure for each rotational speed, the rotational speed HZi during parallel operation is HZi=HZθ
+ (Hl2- HZB) where nzi: Rotational speed used for control HZO: Maximum rotational speed of the first unit HZ, 2: Rotational speed of the second unit HZB: Rotational speed necessary to generate the necessary pressure when the pump is closed This variable speed water supply device is characterized in that it is provided with a control device that calculates a control target pressure by calculating and converting the rotational speed using the following formula and using the rotational speed after the calculation and conversion as the rotational speed for control.

本願第三発明は複数台のポンプをもち、ポンプの回転速
度制御手段を設け吐出圧力を検出する圧力検出器及びポ
ンプ回転速度検出手段を備えて、ポンプしめ切時の必要
圧力と回転速度と、最大給水時の必要圧力と、必要回転
速度を入力し、各回転速度毎の制御目標圧力を演算する
ことにより、推定末端圧力一定制御をする可変速給水装
置で、並列運転時の回転速度HZiをHZ i = H
ZO十(H2J−HZO)ただし HZ1:制御に用いる回転速度 Hl:1台目の最高回転速度 HZコニ2台目の回台目度 HZO:目標圧力演算で1台目のポンプの最高回転数の
時の目標圧力となった圧力を 2台目のポンプがしめ切時に出すため に必要な回転速度 なる式により演算変換し、演算変換した後の回転速度を
制御上の回転速度として制御目標圧力を演算する制御装
置を設けたことを特徴とする可変速給水装置である。
The third invention of the present application has a plurality of pumps, and is equipped with a pump rotation speed control means, a pressure detector for detecting the discharge pressure, and a pump rotation speed detection means, and the required pressure and rotation speed when the pump is closed, By inputting the required pressure at the maximum water supply and the required rotational speed and calculating the control target pressure for each rotational speed, the rotational speed HZi during parallel operation can be controlled with a variable speed water supply device that controls the estimated terminal pressure at a constant level. HZ i = H
ZO 10 (H2J-HZO) However, HZ1: Rotation speed used for control Hl: Maximum rotation speed of the first pump HZO: Maximum rotation speed of the second pump HZO: Maximum rotation speed of the first pump in target pressure calculation The pressure that became the target pressure at the time is calculated and converted using the formula that is the rotation speed required for the second pump to output when it closes, and the rotation speed after calculation conversion is used as the control rotation speed to determine the control target pressure. This is a variable speed water supply device characterized by being provided with a control device that performs calculations.

「作用」 2台目のポンプの回転速度H2,23Fを回転速度検出
手段により検出し、制御装置に入力し、制御装置に記憶
しである常数HZA 、H2B 、HZOの何れかをデ
ータとし、H2iを求める上述した式の演算命令を用い
て制御目標圧力を求める計算上の回転速度を求める。
"Operation" The rotational speed H2, 23F of the second pump is detected by the rotational speed detection means, inputted to the control device, any of the constants HZA, H2B, HZO stored in the control device is used as data, and H2i The rotational speed calculated to obtain the control target pressure is determined using the calculation command of the above-mentioned formula.

「実施例」 先ず、ポンプが1台の場合又は同一性能ポンプが複数台
同一回転速度で運転されている可変速給水装置のポンプ
の回転速度とポンプの制御目標圧力(吐出圧力)の関係
から末端推定圧力一定制御の一方法をのべれば次のとお
りである。
"Example" First, when there is only one pump or multiple pumps with the same performance are operated at the same rotation speed, the relationship between the pump rotation speed and the pump control target pressure (discharge pressure) will be explained. One method of constant estimated pressure control is as follows.

流量が一定とするとあらかじめポンプの各回転速度にお
ける圧力値を記憶したデータテーブルと、使用最大流量
時に必要末端圧力を出しているときのポンプ回転速度と
圧力値のデータを用いて各ポンプ回転速度毎の制御目標
圧力を決定することができる。このような制御目標圧力
の決定方法はポンプしめ幼時のポンプの各回転速度にお
いて行うと流量計を用いないで行うことができるので好
都合である。
Assuming that the flow rate is constant, the data for each pump rotation speed is calculated using a data table that stores the pressure values at each rotation speed of the pump in advance, and the data of the pump rotation speed and pressure value when the required end pressure is being produced at the maximum flow rate. control target pressure can be determined. This method of determining the control target pressure is advantageous if it is performed at each rotational speed of the pump when the pump is closed, since it can be performed without using a flow meter.

次にか\る各回転速度に対応する制御目標圧力を決定す
る方法を示す。
Next, a method for determining the control target pressure corresponding to each rotational speed will be described.

HZX :ポンプの回転速度 Px:圧力 HZX=: f(PX) : L、め幼時の回転速度と
圧力の関係 PA:必要最大水量時の必要圧力 HZMAX :必要最大水量時の回転速度H2A : 
PA時のしめ切における必要回転速度PBニジめ幼時必
要圧力 H2B : PB Lめ幼時必要圧力を出すのに必要な
回転速度 としたとき必要最大水量時の回転速度HZMAXとPA
時しめ切における必要回転速度の差ΔHZはΔHZ=H
ZMAX−H7A 必要最大水量時の必要圧力FAとしめ幼時必要圧力FB
の差ΔPは ΔP=PA−PB であり、圧力FA 、PBの中間の点の制御目標圧力S
Vの基準をPMとすると p%=ΔPXα+IPB(θ≦α≦l)そして基準の制
御目標圧力PMに対応した流量を生ずる回転速度をHZ
Mとすると HZM=ΔHZ Xβ+f(pm)(O≦β≦l)ここ
で に/=(PM−PE)/(HZM−HZB)KJ==(
PA−PM)/(HZMAX−HZM)とKl、に2を
求め、あるポンプ回転速度HZXに対する制御目標圧力
BV¥1− HZX≦HZB   5V=FB      、 −、
−(1)HZB(HZX≦HZM  8V’=に/X(
HZX、HZB)−l−FB   ・・・・(2) HZM<HZX≦HZMAX   SV=に、2X(H
ZX−HZM)+PM     拳 −・ ・(3) HZMAX<HZX  BV=PA      −−−
、(41上記(1)#(2)、(31,(41式にした
がって決定する。
HZX: Pump rotational speed Px: Pressure HZX=: f(PX): L, relationship between rotational speed and pressure at pumping PA: Required pressure at maximum required water flow HZMAX: Rotational speed at required maximum water flow H2A:
Required rotational speed at tightening at PA time PB Required pressure at early stage H2B: PB Rotational speed at required maximum water flow HZMAX and PA when the rotational speed is set as required to produce the required pressure at PB L stage
The difference ΔHZ in required rotational speed at time tightening is ΔHZ=H
ZMAX-H7A Required pressure FA at the required maximum water amount and required pressure FB at the time of infancy
The difference ΔP is ΔP=PA−PB, and the control target pressure S at the midpoint between pressures FA and PB is
If the reference for V is PM, then p%=ΔPXα+IPB (θ≦α≦l), and the rotation speed that produces the flow rate corresponding to the reference control target pressure PM is HZ.
If M, then HZM=ΔHZ
Find 2 for PA-PM)/(HZMAX-HZM) and Kl, and calculate the control target pressure BV for a certain pump rotational speed HZX: HZX≦HZB 5V=FB, -,
-(1) HZB(HZX≦HZM 8V'=/X(
HZX, HZB)-l-FB...(2) HZM<HZX≦HZMAX SV=, 2X(H
ZX-HZM) + PM fist --- (3) HZMAX<HZX BV=PA ---
, (41 Determined according to the above equations (1) #(2), (31, (41).

上述した処はポンプのしめ幼時の回転数を変化させ必要
最大水量時の必要圧力FAをしめ幼時に出し得るポンプ
回転速度HZAの点とポンプのしめ幼時に必要圧力(=
末端必要圧力) FBを出しているときのポンプ回転速
度HZBの点を圧力−回転速度座標にとり、これら画点
間を中間点(PM、H2M)座標を介して折線で結び近
似させたものである。このような方法は制御目標圧力の
基準PMが適当であれば実際のポンプ性能に近似し、実
用上適切な制御目標圧力が得られるものである。
The above-mentioned points change the rotational speed of the pump when the pump is closed to obtain the required pressure FA at the required maximum water flow, and the point of the pump rotational speed HZA that can be produced at the initial stage and the required pressure when the pump is closed (=
Terminal required pressure) The point of the pump rotation speed HZB when outputting FB is taken as a pressure-rotation speed coordinate, and these points are approximated by connecting them with a broken line via the intermediate point (PM, H2M) coordinates. . If the reference PM of the control target pressure is appropriate, such a method approximates the actual pump performance, and a practically appropriate control target pressure can be obtained.

第1図はポンプ装置を示すフローシートである。周波数
を変えて回転速度の制御をされるモータi、liにより
駆動されるポンプ−、/Jは水源3から吸込管ダ、/4
(を通じて水を汲み上げ、該水を昇圧して吐出管よ、/
3に吐出され、逆止弁6,16を経由して送水管りに合
流する。送水管り中の圧力は圧力検出器ざにて圧力を検
出されて需要側へ送られる。
FIG. 1 is a flow sheet showing the pump device. Pumps -, /J are driven by motors i and li whose rotational speeds are controlled by changing the frequency.
(Pump up water through the pipe, increase the pressure of the water, and discharge the pipe. /
3 and flows through check valves 6 and 16 into the water pipe. The pressure in the water pipe is detected by a pressure detector and sent to the demand side.

圧力検出器ざにて検出した吐出圧力の信号は制御部ヂに
送られるようになっている。制御部?からは周波数信号
が出力され、例えばサイリスタ変換方式の周波数電源を
得るインバータi、iiを所要速度で運転する。インバ
ータ/ J。
A signal of the discharge pressure detected by the pressure detector is sent to the control section. Control part? A frequency signal is outputted from, for example, inverters i and ii, which obtain a frequency power source using a thyristor conversion method, are operated at a required speed. Inverter/J.

λ3で発生しモータt、iiへ送られる周波数は制御部
デヘ送られるようになっている。
The frequency generated at λ3 and sent to the motors t and ii is sent to the control unit DE.

制御部デはマイクロコンピュータが用いられており、予
め、ポンプ装置の締切り時のポンプ回転速度とポンプ吐
出圧力の関係、必要最大流量時のポンプの回転速度及び
制御目標圧力の算出を行う命◆が記憶された記憶装置を
備えている。
A microcomputer is used in the control section, and it is designed to calculate in advance the relationship between the pump rotation speed and pump discharge pressure at the pump device's shut-off time, the pump rotation speed at the required maximum flow rate, and the control target pressure. It has a stored storage device.

このようなポンプ装置において以下では説明の便宜上ポ
ンプlが先ず運転され、ポンプlの最大回転速度で末端
推定圧力一定制御をしている状態で流量増加によりポン
プ/lが追加運転されるものとするが、実際にはポンプ
は交互を行うので当然この逆の順序でポンプ/、l/が
運転される場合もある。
In such a pump device, in the following, for convenience of explanation, it is assumed that pump l is operated first, and pump l is additionally operated as the flow rate increases while the end estimated pressure is controlled to be constant at the maximum rotational speed of pump l. However, in reality, the pumps alternate, so naturally pumps / and l/ may be operated in the reverse order.

このようなポンプ装置において1金目のポンプlが単独
運転されている場合の制御目標圧力は式+11 !2)
 (3) (4)により求めることができる。
In such a pump device, when the first pump l is operated independently, the control target pressure is expressed by the formula +11! 2)
(3) It can be obtained from (4).

今例えばポンプlが最高回転数HZθで回転している場
合に給水負荷が増大すれば制御目標圧力に追従できなく
なり、ポンプl/が追加運転される。ポンプllの追加
運転における回転速度の求め方を以下に説明する。
For example, if pump l is rotating at the maximum rotational speed HZθ and the water supply load increases, it will no longer be able to follow the control target pressure, and pump l/ will be additionally operated. The method of determining the rotational speed during the additional operation of pump 11 will be explained below.

第2図はポンプの回転速度と制御目標圧力の関係を示す
線図であって、横軸に制御目標圧力を、縦軸にポンプ回
転速度を示す。図中Sは2台運転制御目標圧力を決定す
る曲線であり、回転速度HZθ以下では単独運転時の制
御目標圧力が算出され、HZθ以上ではa台運転時の制
御目標圧力が算出される。本曲線Sより2台目ポンプの
追加点における制御目標圧力をHZi=HZθのとき算
出される制御目標圧力として決定することができる。曲
線S1は単独運転ポンプの回転速度と制御目標圧力の関
係を示している。
FIG. 2 is a diagram showing the relationship between pump rotational speed and control target pressure, with the horizontal axis showing the control target pressure and the vertical axis showing the pump rotational speed. In the figure, S is a curve that determines the control target pressure for two-unit operation, and when the rotation speed is below HZθ, the control target pressure during single operation is calculated, and when it is above HZθ, the control target pressure during a-unit operation is calculated. From this curve S, the control target pressure at the addition point of the second pump can be determined as the control target pressure calculated when HZi=HZθ. A curve S1 shows the relationship between the rotational speed of the independently operating pump and the control target pressure.

図において Pl:回転数がHZlのときの制御目標圧力の2、値 HZMAX :必要最大水量時の回転速度HZθ:1台
目のポ台目の最大回転速度PO:/台目の台目プの最高
回転数の時の制御目標圧力 である。第一図を用いれば回転速度がHZiのときは縦
座標のEZiからの水平線が曲線Sを切る点から垂下し
た垂線が横座標を切る点P1が制御目標圧力として求め
ることができる。
In the figure, Pl: 2, value of the control target pressure when the rotation speed is HZl HZMAX: Rotation speed at the required maximum water flow HZθ: Maximum rotation speed of the 1st unit PO: / of the 1st unit This is the control target pressure at the maximum rotation speed. Using FIG. 1, when the rotation speed is HZi, the control target pressure can be determined as the point P1 where a perpendicular line hanging down from the point where the horizontal line from EZi on the ordinate cuts the curve S cuts the abscissa.

ここで並列運転時の回転速度を演算変換して制御目標圧
力を演算する場合の制御に用いる回転速度H2iについ
てのべる。−金目のポンプ/lの制御目標圧力を算出す
るための回転速度HZiを HZi=H2θ十(HZJ −HZA )     −
−−”(5)にて計算するものである。ただし、 HZ
Jはa台目のポンプ//の回転速度である。
Here, the rotation speed H2i used for control when calculating the control target pressure by calculating the rotation speed during parallel operation will be described. - Rotational speed HZi for calculating the control target pressure of the gold-pump pump/l HZi = H2θ0 (HZJ - HZA) -
--" (5). However, HZ
J is the rotation speed of the a-th pump //.

第コの方法は HZi=、HZθ+(HZ2−HZB )     −
−−−(6)として計算するものである。
The third method is HZi=, HZθ+(HZ2−HZB) −
--- It is calculated as (6).

第3の方法は目標圧力演算で1台目のポンプの最高回転
速度の時の目標圧力となった圧力を2台目のポンプがし
め切時に出すために必要な回転速度をH2Oとした場合 HZ i =、HZθ+(HZ2−HZO)     
−−−−(7)として計算するものである。
The third method is to calculate the target pressure, and if the rotational speed required for the second pump to output the pressure that became the target pressure at the maximum rotational speed of the first pump when it is closed is H2O, then HZ i =, HZθ+(HZ2−HZO)
--- It is calculated as (7).

これらの関係を用いて第2図のaSSを用い縦軸上のH
Ziを変数として横軸上の制御目標圧力SVを求めるこ
とができる。
Using these relationships, we can calculate H on the vertical axis using aSS in Figure 2.
The control target pressure SV on the horizontal axis can be determined using Zi as a variable.

第3図はポンプ装置の流量と圧力の関係を示す線図であ
って横軸に流量Q、縦軸に圧力を示す。曲線Rは並列運
転時ポンプ1,1/を併せた合成ポンプ性能曲線であり
その時の回転速度はHZMAXである。曲線Iはポンプ
lの性能曲線でありその時の回転速度はH2θである。
FIG. 3 is a diagram showing the relationship between the flow rate and pressure of the pump device, with the horizontal axis showing the flow rate Q and the vertical axis showing the pressure. Curve R is a composite pump performance curve combining pumps 1 and 1/ during parallel operation, and the rotational speed at that time is HZMAX. Curve I is the performance curve of pump I, and the rotational speed at that time is H2θ.

Fは抵抗曲線とすると合成ポンプ性能曲線Rと抵抗曲線
rの交点1gで最大給水量となり、その点の必要圧力は
PAとなる。単独ポンプの性能曲線工と抵抗曲線Fの交
点/9の縦座標は1金目ポンプlの最高回転速度のとき
の制御目標圧力pcであり、ポンプ制御目標圧力演算で
1台目のポンプlの最高回転数の時の制御目標圧力とな
った圧力をa台目のポンプ/lがしめ切り時に出すため
に必要な回転速度では1金目のポンプlの性能曲線と抵
抗曲線Rとの交点/?から始まる性能曲線Reとして示
される。
If F is a resistance curve, the maximum water supply amount is at the intersection point 1g of the composite pump performance curve R and the resistance curve r, and the required pressure at that point is PA. The ordinate of the intersection of the individual pump's performance curve and the resistance curve F/9 is the control target pressure pc at the maximum rotational speed of the first pump l, and the maximum rotational speed of the first pump l is determined by pump control target pressure calculation. At the rotational speed required for the a-th pump/l to output the pressure that became the control target pressure at the time of tightening, the intersection of the performance curve of the first pump l and the resistance curve R is /? It is shown as the performance curve Re starting from .

ポンプしめ切時の回転速度はH2Bであり、その圧力は
FBである。その性能曲線はよりとして示される。ポン
プ/、//の並列運転した場合の最大流量時の必要圧力
FAをしめ切り時に出す回転速度1(ZAの場合のポン
プ性能は曲線RAで示される。
The rotational speed when the pump is closed is H2B, and its pressure is FB. Its performance curve is shown as . The pump performance in the case of rotation speed 1 (ZA), which produces the required pressure FA at the maximum flow rate when pumps / and // are operated in parallel, is shown by the curve RA.

この線図で見るようにFA)PO)FBであるから2台
目のポンプ//追加点の回転速度はHZA)HZO)H
2B の関係にあり、式(5)によるものが2台目のポ
ンプ//の制御目標圧力の計算に用いる回転速度HZ1
が最も小さく、式(6)による同回転速度H2iが最も
大きく、式(7)による同回転速度HZiは式(5)、
(61にて求めた制御目標圧力を計算する回転速度HZ
iの間にある。
As seen in this diagram, since FA)PO)FB, the rotation speed of the second pump//additional point is HZA)HZO)H
2B, and the rotation speed HZ1 used for calculating the control target pressure of the second pump // is based on equation (5).
is the smallest, the rotational speed H2i according to equation (6) is the largest, and the rotational speed HZi according to equation (7) is equation (5),
(Rotation speed HZ for calculating the control target pressure obtained in step 61)
It is between i.

式(51,(6)ではa金目ポンプiiの追加点の計算
上の制御目標圧力と1台目ポンプlの最大回転速度時の
制御目標圧力との間に多小の差が出る。
In equations (51, (6)), there is a slight difference between the calculated control target pressure at the additional point of the first pump ii and the control target pressure at the maximum rotational speed of the first pump l.

式(7)ではこの差は出ない。Equation (7) does not show this difference.

これらで得られた回転速度は式(1)〜(4)を用いて
制御目標圧力が演算される。モしてHZiとSVの関係
はN−図のように線図の関数として制御装置り中の記憶
装置に記憶される。
The control target pressure is calculated from the rotational speed obtained by these using equations (1) to (4). Furthermore, the relationship between HZi and SV is stored in a storage device in the control device as a function of a diagram such as the N-diagram.

ポンプが3台並列運転できるようになっている可変速給
水装置においても同様に3台目のポンプの制御目標圧力
の演算に用いる回転速度を求めることができる。
Even in a variable speed water supply system in which three pumps can be operated in parallel, the rotational speed used to calculate the control target pressure of the third pump can be similarly determined.

次にa台以上運転時の推定末端圧力一定制御方法をのべ
れば次のとおりである。
Next, the estimated terminal pressure constant control method when operating a number of units or more is as follows.

HZ、7 ;並列運転時3台目のポンプ回転速度HZ2
MAX :並列運転時2台目のポンプの最高回転速度 同じく3金目ハHZ、7MAI HZsa  :後述の方法で決定される定数同じく3台
目はHZ、70 とすると ■ 並列運転時の最大回転速度HZMAXの決め方ボン
プコ台運転時HZMAX=HZθ+(HZ2MA!−H
Z20) ポン13台運転時 HZMAX : HZθ+(HZO
−HZA0 )+(H2,7MAI−HZJO)こ\で
有頂第1項目のHZOは1台目のポンプの最大回転速度
、第2項目のHZOは2台目のポンプの最大回転速度で
例えば商用電源周波数の60HZである。
HZ, 7; Third pump rotation speed HZ2 during parallel operation
MAX: The maximum rotational speed of the second pump during parallel operation. Same as the third pump HZ, 7 MAI. HZsa: Constant determined by the method described below. The third pump also has HZ, 70. ■ Maximum rotational speed during parallel operation HZMAX. How to decide When operating a Bonpco machine HZMAX=HZθ+(HZ2MA!-H
Z20) When operating 13 units HZMAX: HZθ+(HZO
-HZA0)+(H2,7MAI-HZJO)The first item, HZO, is the maximum rotational speed of the first pump, and the second item, HZO, is the maximum rotational speed of the second pump. The power frequency is 60Hz.

■ 制御目標圧力の計算に用いる回転速度HZiの決め
方 ボンプコ台運転時 H2i==HZθ+(HZJ−HZ
Jc)ポン13台運転時 HZi:HZQ+(HZO−
H2I)+(HZj −HZ、IC) 以上のようにして並列運転時は演算式決定用の最高回転
速度HZMAXにので算出される値を用い、制御目標圧
力SVの演算の時は@で算出される回転速度HZiを用
いるようにする。
■ How to determine the rotational speed HZi used to calculate the control target pressure When operating the Bonpco table H2i = = HZθ + (HZJ - HZ
Jc) When operating 13 units HZi: HZQ+ (HZO-
H2I) + (HZj - HZ, IC) As described above, during parallel operation, use the value calculated as the maximum rotational speed HZMAX for determining the calculation formula, and use the value calculated with @ when calculating the control target pressure SV. The rotational speed HZi is used.

常数H2,2C、HZIOの決定方法は次のとおりであ
る。
The method for determining the constants H2, 2C and HZIO is as follows.

■ 常数HZ、20の決定方法 ステップl 制御目標圧力E3VHZeは 5VHZe =KJ (HZO−HZM)−)−PMた
だしHZθ≧HZM 又は BVH26=に/(HZO−H2B)−4−PRただし
HZO(HZM ステップλ ゛ 制御目標圧力8VBZsをしめ幼時圧力とするしめ切屑
波数をHZJOとする。しめ切り時特性を示す関数形を
T、+H2EIIとすればHZJO=LH28I (B
VmZe )で求まる。
■ How to determine constant HZ, 20 Step 1 Control target pressure E3VHZe is 5VHZe =KJ (HZO-HZM)-)-PM However, HZθ≧HZM Or BVH26=to/(HZO-H2B)-4-PR However, HZO(HZM Step λ ゛HZJO is the wave number of cutting chips when the control target pressure 8VBZs is tightened to the initial pressure.If the function form showing the tightening characteristics is T and +H2EII, HZJO=LH28I (B
VmZe).

■ 常数HZ30の決定方法 ステップl 並列運転時追加された2台目のポンプの最高回転速度が
1台目のポンプの最高回転速度HZθ以上となった時、
制御−目標圧力SVHZ2MA:¥は SVnz2MAx =に2 (H2JMAX−HZM 
) 十PMただし、HZJMAX ≧H2M 又は BVHZtMhx=Kt (HZJMAX−H2B )
 −1−FBただし、HZt2MAI (HZM としてもとめる。
■ How to determine constant HZ30 Step 1 When the maximum rotational speed of the second pump added during parallel operation is greater than or equal to the maximum rotational speed HZθ of the first pump,
Control-Target pressure SVHZ2MA: ¥ is SVnz2MAX = 2 (H2JMAX-HZM
) 10PM However, HZJMAX ≧H2M or BVHZtMhx=Kt (HZJMAX-H2B)
-1-FB However, it is also referred to as HZt2MAI (HZM).

ステップλ 制御目標圧力8VBzIM*Xをしめ幼時圧力とするし
め切り時の回転速度をHZJCとするとH730=LH
2B工(SVH22MAl )により求まる。
Step λ If the rotation speed at the time of tightening the control target pressure 8VBzIM*X and the initial pressure is HZJC, then H730=LH
Determined by 2B engineering (SVH22MAl).

尚、常数H2,201(: HZBを用い、常数HZ3
0にHZAを用いてもよい。
In addition, constant H2, 201 (: HZB is used, constant HZ3
HZA may be used for 0.

〔発明の効果〕〔Effect of the invention〕

本発明は複数台のポンプをもち、ポンプの回転速度制御
手段を設け吐出圧力を検出する圧力検出器及びポンプ回
転速度検出手段を備えて、ポンプしめ切時の必要圧力と
回転速度と、最大給水時の必要圧力と、必要回転速度を
入力し、各回転速度毎の制御目標圧力を演算することζ
こより、推定末端圧力一定制御をする可変速給水装置で
、並列運転時の回転速度HZ1をHZ i == HZ
θ+(HZ2−HZconst )ただし nzi :制御に用いる回転速度 HZθ:1台目のポンプの最高回転速度HZコニ追加さ
れたλ金目のポンプの回転速度H2aonst :常数
で次に示す内の1つすために必要な回転速度 HZB :ポンプしめ切時の必要圧力を出すためlこ必
要な回転速度 HZC:目標圧力演算で1台目の最高回転数の時の目標
圧力となった圧力をλ金目の ポンプがしめ切時に出すために必要な 回転速度 なる式により演算変換し、演算変換した後のポンプ回転
速度を制御上のポンプ回転速度として制御目標圧力を演
算する制御装置を設けた可変速給水装置としたから、制
御目標圧力をポンプの台数に無関係に演算できるので演
算式を減少させることができるばかりでなく、ポンプの
追加点の制御目標圧力を適切に決定できるようになった
The present invention has a plurality of pumps, and is equipped with a pump rotation speed control means, a pressure detector for detecting the discharge pressure, and a pump rotation speed detection means. Input the required pressure at each rotation speed and the required rotation speed, and calculate the control target pressure for each rotation speedζ
From this, in a variable speed water supply system that performs constant estimated terminal pressure control, the rotation speed HZ1 during parallel operation is HZ i == HZ
θ+(HZ2-HZconst) However, nzi: Rotational speed used for control HZθ: Maximum rotational speed of the first pump HZConi added λ Rotational speed of the second pump H2aonst: One of the following constants Required rotational speed HZB: Required rotational speed to generate the required pressure when the pump is closed HZC: The pressure that became the target pressure at the highest rotational speed of the first pump when calculating the target pressure. A variable speed water supply device equipped with a control device that calculates a control target pressure by calculating and converting the rotational speed required to output at the time of closing, and using the pump rotational speed after the calculation and conversion as the pump rotational speed for control. Therefore, the control target pressure can be calculated regardless of the number of pumps, which not only reduces the number of calculation equations, but also makes it possible to appropriately determine the control target pressure at the point where the pumps are added.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例のポンプ装置のフローシート、第2図は
ポンプの回転速度と制御目標圧力の関係を示す線図、第
3図はポンプ性能曲線を示す線図、第ダ図、第5図は従
来例の給水圧力の制御を説明するための線図である。 特許出願人  株式会社荏原製作所 株式会社荏原電産
Fig. 1 is a flow sheet of the pump device of the example, Fig. 2 is a diagram showing the relationship between pump rotational speed and control target pressure, Fig. 3 is a diagram showing the pump performance curve, Fig. The figure is a diagram for explaining control of water supply pressure in a conventional example. Patent applicant Ebara Corporation Ebara Electric Co., Ltd.

Claims (1)

【特許請求の範囲】 1、複数台のポンプをもち、ポンプの回転速度制御手段
を設け、吐出圧力を検出する圧力検出器及びポンプ回転
速度検出手段を備えて、ポンプしめ切時の必要圧力と回
転速度と、最大給水時の必要圧力と、必要回転速度を入
力し、各回転速度毎の制御目標圧力を演算することによ
り、推定末端圧力一定制御をする可変速給水装置で、並
列運転時の回転速度HZiを HZi=HZθ+(HZ2−HZA) ただし HZi:制御に用いる回転速度 HZθ:1台目のポンプの最高回転速度 HZ2:追加された2台目のポンプの回転速度 HZA:最大給水時の必要圧力をしめ切時に出すために
必要な回転速度 なる式により演算変換し、演算変換した後の回転速度を
制御上の回転速度として制御目標圧力を演算する制御装
置を設けたことを特徴とする可変速給水装置。 2、複数台のポンプをもち、ポンプの回転速度制御手段
を設け、吐出圧力を検出する圧力検出器及びポンプ回転
速度検出手段を備えて、ポンプしめ切時の必要圧力と回
転速度と、最大給水時の必要圧力と、必要回転速度を入
力し、各回転速度毎の制御目標圧力を演算することによ
り、推定末端圧力一定制御をする可変速給水装置で、並
列運転時の回転速度HZiを HZi=HZθ+(HZ2−HZB) ただし HZi:制御に用いる回転速度 HZθ:1台目のポンプの最高回転速度 HZ2:追加された2台目のポンプの回転速度 HZB:ポンプしめ切時の必要圧力を出すために必要な
回転速度 なる式により演算変換し、演算変換した後の回転速度を
制御上の回転速度として制御目標圧力を演算する制御装
置を設けたことを特徴とする可変速給水装置。 3、複数台のポンプをもち、ポンプの回転速度制御手段
を設け吐出圧力を検出する圧力検出器及びポンプ回転速
度検出手段を備えて、ポンプしめ切時の必要圧力と回転
速度と、最大給水時の必要圧力と、必要回転速度を入力
し、各回転速度毎の制御目標圧力を演算することにより
、推定末端圧力一定制御をする可変速給水装置で、並列
運転時の回転速度BZiをBZi=BZθ+(BZ2−
BZC) ただし HZi:制御に用いる回転速度 HZθ:1台目のポンプの最高回転速度 HZ2:追加された2台目のポンプの回転速度 HZC:目標圧力演算で1台目のポンプ最高回転数の時
の目標圧力となつた圧力 を2台目のポンプがしめ切時に出す ために必要な回転速度 なる式により演算変換し、演算変換した後の回転速度を
制御上の回転速度として制御目標圧力を演算する制御装
置を設けたことを特徴とする可変速給水装置。
[Claims] 1. It has a plurality of pumps, is provided with pump rotation speed control means, is equipped with a pressure detector for detecting discharge pressure, and pump rotation speed detection means, and is equipped with a pressure detector for detecting discharge pressure and a pump rotation speed detection means to detect the required pressure when the pump is closed. By inputting the rotation speed, the required pressure at maximum water supply, and the required rotation speed, and calculating the control target pressure for each rotation speed, this variable speed water supply device controls the estimated end pressure at a constant level. Rotation speed HZi is HZi = HZθ + (HZ2 - HZA) where HZi: Rotation speed used for control HZθ: Maximum rotation speed of the first pump HZ2: Rotation speed of the added second pump HZA: At maximum water supply The invention is characterized in that it is equipped with a control device that calculates a control target pressure by calculating and converting the rotational speed according to an equation of the rotational speed necessary to produce the necessary pressure at the time of tightening, and using the rotational speed after the calculation and conversion as the control rotational speed. Variable speed water supply device. 2. It has multiple pumps, is equipped with a pump rotation speed control means, is equipped with a pressure detector for detecting the discharge pressure, and a pump rotation speed detection means, and is equipped with a pressure detector for detecting the discharge pressure and a pump rotation speed detection means to determine the required pressure and rotation speed when the pump is closed, and the maximum water supply. In a variable speed water supply system that performs constant estimated terminal pressure control by inputting the required pressure and required rotational speed at each rotational speed and calculating the control target pressure for each rotational speed, the rotational speed HZi during parallel operation can be calculated as HZi= HZθ+(HZ2-HZB) HZi: Rotation speed used for control HZθ: Maximum rotation speed of the first pump HZ2: Rotation speed of the added second pump HZB: To generate the necessary pressure when the pump is closed 1. A variable speed water supply device comprising: a control device which calculates a control target pressure by calculating and converting the rotational speed according to a formula representing the rotational speed necessary for the rotational speed, and using the rotational speed after the calculation and conversion as the rotational speed for control purposes. 3. It has a plurality of pumps, and is equipped with a pump rotation speed control means, a pressure detector for detecting the discharge pressure, and a pump rotation speed detection means, and is equipped with a pressure detector for detecting the discharge pressure and a pump rotation speed detection means. In a variable speed water supply system that performs constant estimated terminal pressure control by inputting the required pressure and required rotational speed and calculating the control target pressure for each rotational speed, the rotational speed BZi during parallel operation can be calculated as BZi = BZθ + (BZ2-
BZC) However, HZi: Rotation speed used for control HZθ: Maximum rotation speed of the first pump HZ2: Rotation speed of the added second pump HZC: When the maximum rotation speed of the first pump is determined by target pressure calculation The pressure that has become the target pressure is calculated and converted using the formula of the rotation speed required for the second pump to output when it closes, and the control target pressure is calculated using the rotation speed after calculation conversion as the control rotation speed. A variable speed water supply device characterized by being provided with a control device that
JP59156950A 1984-07-27 1984-07-27 Variable speed water supply device Expired - Lifetime JPH071039B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59156950A JPH071039B2 (en) 1984-07-27 1984-07-27 Variable speed water supply device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59156950A JPH071039B2 (en) 1984-07-27 1984-07-27 Variable speed water supply device

Publications (2)

Publication Number Publication Date
JPS6138193A true JPS6138193A (en) 1986-02-24
JPH071039B2 JPH071039B2 (en) 1995-01-11

Family

ID=15638875

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59156950A Expired - Lifetime JPH071039B2 (en) 1984-07-27 1984-07-27 Variable speed water supply device

Country Status (1)

Country Link
JP (1) JPH071039B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02221698A (en) * 1989-02-21 1990-09-04 Ebara Corp Method of detecting abnormality in rotation speed of turbo molecular pump
JPH0430295U (en) * 1990-07-03 1992-03-11
JPH0988836A (en) * 1995-09-19 1997-03-31 Teraru Kyokuto:Kk Variable pressure water supply device
JP2011010925A (en) * 2009-07-03 2011-01-20 Fujifilm Corp Balloon control apparatus and control method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02221698A (en) * 1989-02-21 1990-09-04 Ebara Corp Method of detecting abnormality in rotation speed of turbo molecular pump
JPH0430295U (en) * 1990-07-03 1992-03-11
JPH0988836A (en) * 1995-09-19 1997-03-31 Teraru Kyokuto:Kk Variable pressure water supply device
JP2011010925A (en) * 2009-07-03 2011-01-20 Fujifilm Corp Balloon control apparatus and control method thereof

Also Published As

Publication number Publication date
JPH071039B2 (en) 1995-01-11

Similar Documents

Publication Publication Date Title
US7349814B2 (en) Measurement method and arrangement
KR100354457B1 (en) Vacuum system exhaust method and apparatus
CN101627532B (en) Control method and motor starter device
US11898532B2 (en) Hydropower generation system and power generator control method
JPS6138193A (en) Variable speed water supply system
JPH0599201A (en) Method and device for limiting capacity of hydraulic system
JPH03210091A (en) Operating method for multiple pumps
JPS60142097A (en) Variable speed water feed device
JPS60156995A (en) Variable speed water supply device
JP3291007B2 (en) Variable speed water supply
CN109058214A (en) A kind of load contact force control device and method based on hydraulic-driven
JPS6277081A (en) Controlling device for 3-phase induction motor
JPH0412483B2 (en)
JPS5823294A (en) Pumping condition supervisory system
US20230193913A1 (en) Method of determining delivery flow or delivery head
JPH0439689B2 (en)
KR970011214A (en) Engine-pump control method of hydraulic construction machine
JP3516113B2 (en) Variable-speed pumped storage generator
JPH10339272A (en) Pumping device
JPS59200096A (en) Method of controllng number of pumps to be operated
JP2752075B2 (en) Control devices for hydraulic machines
RU2238433C1 (en) Pumping plants
JPH0264279A (en) Pump control device
SALIH et al. ENERGY SAVING MECHANISM FOR PUMP’S DRIVE USING MATLAB PROGRAM
JPS5896190A (en) Control device for pump operation

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term