JPS6138156B2 - - Google Patents

Info

Publication number
JPS6138156B2
JPS6138156B2 JP56125345A JP12534581A JPS6138156B2 JP S6138156 B2 JPS6138156 B2 JP S6138156B2 JP 56125345 A JP56125345 A JP 56125345A JP 12534581 A JP12534581 A JP 12534581A JP S6138156 B2 JPS6138156 B2 JP S6138156B2
Authority
JP
Japan
Prior art keywords
carbon
refractory
fibers
fiber bundle
graphite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56125345A
Other languages
Japanese (ja)
Other versions
JPS5832080A (en
Inventor
Ichiro Takita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Krosaki Harima Corp
Original Assignee
Kurosaki Refractories Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurosaki Refractories Co Ltd filed Critical Kurosaki Refractories Co Ltd
Priority to JP56125345A priority Critical patent/JPS5832080A/en
Publication of JPS5832080A publication Critical patent/JPS5832080A/en
Publication of JPS6138156B2 publication Critical patent/JPS6138156B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、炭素含有の塩基性耐火物に関するも
のである。 炭素含有耐火物は溶融スラグに対する濡れ難さ
および優れた耐熱的スポーリング性を有すことか
ら、近年その使用範囲は急速に拡大しつつある
が、特にマグネシアに代表される塩基性原料に黒
鉛等の炭素質原料を配合してなる炭素含有塩基性
耐火物は、高耐食性でかつ耐スポーリング性を兼
備した材質として注目され、電気炉、転炉、取
鍋、二次製煉炉等の内張り耐火物として良好な実
績を得ていることは周知のところである。 しかしながら、かかる炭素含有塩基性耐火物
は、その結合形態がフエノール類樹脂、ピツチ等
に由来する炭素結合であるから結合力に乏しく、
機械的な衝撃を受ける箇所や溶鋼摩耗の激しい箇
所においては、耐火物の結合組織が破壊され、耐
火物中に内部キレツを生じ、剥離損耗をもたらす
現象が認められている。このような炭素含有塩基
性耐火物の強度特性を向上せしめる目的で、アル
ミニウム、珪素等の金属類を添加することが試み
られている。確かにこれらの金属の添加により、
熱間の強度特性が向上し、耐衝撃、耐摩耗性は改
良されるが、金属類が僅かでも酸化された際に
は、急激に熱間強度は低下し、耐衝撃、耐摩耗性
の向上効果はほとんど消失する。 本発明者は、かかる炭素含有塩基性耐火物が機
械的衝撃等で発生するキレツを介在して剥離する
現象を防止する手法に関して種々の検討を加えた
結果、耐火物内部に炭素あるいは黒鉛繊維束を配
設することによつて、上記剥離損耗が著しく低減
することを見いだした。 従来、耐火物中にセラミツクフアイバーを含有
させる例はあつたが、フアイバーの分散が困難で
あること、さらにはフアイバーが引張られた状態
で配合中に固定されにくゝ、任意の方向へ配向性
を持たせて含有させることができず、応力に対し
て必ずしも適切な配設にならず、フアイバー添加
の効果を充分上げていなかつた。これらは単繊維
の状態で使用されていたため、避け難い問題点で
あつた。 本発明に使用される繊維束とは、ポリアクリル
ニトリル、ポリビニルアルコール、コールタール
ピツチ等から製造される炭素あるいは黒鉛長繊維
を収束して得られる二次繊維径が0.1〜3m/m
の範囲にあるものである。二次繊維径が0.1m/
m未満では効果を充分上げ得ず、また3m/mを
超えると、充填性、組織上劣化をきたし好ましく
ない。 かかる繊維の添加量は、耐火物断面積当りの本
数で表わすのが適当であるが、本発明による炭素
含有塩基性耐火物の場合には、断面積100cm2当り
5〜100本が良好である。5本より少ない領域で
は、耐火物の性能を向上せしめるのに充分ではな
く、また100本より多い領域は、製造上の問題を
生じ、良好な組織を有する耐火物を得ることがで
きない。 耐火物内部への繊維束の配設は、一端が溶融金
属接触面等炉および容器内側にあり、かつ他端が
耐火物冷端側末端部まで到達する例が補強効果上
好ましく、網状の物でもよい。また繊維束は、一
端から他端までの連続した物でなくても、炉内側
から冷端側方向軸線に対してほゞ平行に介在させ
れば、途中で切れたものを複層させた方式でもよ
い。 本発明による長繊維束の効果は、耐火物の曲げ
強さあるいは引つ張り強さを向上せしめ、機械的
応力によるキレツの発生を抑制すると共に、繊維
部において応力を緩和し、キレツの伝播を防ぐこ
とが考えられる。 したがつて、上記効果を充分に発揮せしめるた
めには、耐火骨材と繊維が強固に結合することが
必要であり、これを満足するには、炭素あるいは
黒鉛繊維と結合性を有するフエノール類樹脂、コ
ールタールピツチ類を結合剤として使用すること
が前提である。ここでフエノール類樹脂とは、フ
エノール、クレゾール、キシレノール、レゾルシ
ノール等のフエノール類とアルデヒド類としてホ
ルムアルデヒド等を酸あるいはアルカリ触媒下で
反応せしめることによつて得られるものである。 本発明に使用される骨材は、マグネシア、カル
シア、ドロマイト、スピネル等塩基性原料の1種
以上に、りん状黒鉛、土状黒鉛、無煙炭、カーボ
ンブラツク等の炭素原料の一種以上を配合してな
るが、炭素原料の配合比率としては5〜40重量部
の範囲が耐火物性能上の面からは好ましい。 本発明は、上記骨材をフエノール類樹脂あるい
はコールタールピツチ等の炭素質結合剤を用いて
常法で混練し、成形時に炭素あるいは黒鉛繊維束
を添加する。成形は従来から行なわれている一軸
成形でも、あるいはアイソスタテイツクプレスに
おいても、本発明による耐火物を得ることができ
る。 本発明は、上記成形体を150〜400℃で乾燥する
か、またはそれ以上の温度で焼成することによつ
て得られ、炊成過程を経るものについては、公知
の方法によりタールピツチ類を含浸せしめること
もなんらさしつかえない。 本発明をさらに詳細に説明するため、以下に実
施例を挙げる。 実施例 1 表1の配合比率のマグネシア―黒鉛質材料を常
法で混練し、フリクシヨンプレスで450m/m×
150〜130m/m×150m/mのれんがを成形する
際に、単繊維径12.5μの炭素繊維を収束した二次
繊維径1m/mの繊維束(長さ450m/m)を所
定の数添加した。
The present invention relates to carbon-containing basic refractories. Carbon-containing refractories are difficult to wet with molten slag and have excellent heat-resistant spalling properties, so the scope of their use has been rapidly expanding in recent years. Carbon-containing basic refractories made by blending carbonaceous raw materials are attracting attention as materials with high corrosion resistance and spalling resistance, and are used as linings for electric furnaces, converters, ladles, secondary smelting furnaces, etc. It is well known that it has a good track record as a refractory. However, such carbon-containing basic refractories have poor bonding strength because their bond form is carbon bonds derived from phenolic resins, pitch, etc.
It has been observed that in locations subject to mechanical shock or severe abrasion of molten steel, the connective tissue of the refractory is destroyed, causing internal cracks in the refractory, resulting in peeling and wear. In order to improve the strength characteristics of such carbon-containing basic refractories, attempts have been made to add metals such as aluminum and silicon. It is true that the addition of these metals
The hot strength properties are improved, and the impact and abrasion resistance are improved, but when the metal is even slightly oxidized, the hot strength decreases rapidly, and the impact and abrasion resistance are improved. The effect almost disappears. The present inventor conducted various studies on methods for preventing the phenomenon in which carbon-containing basic refractories peel off due to cracks caused by mechanical shock, etc., and found that carbon or graphite fiber bundles were added inside the refractories. It has been found that by disposing the above-mentioned peeling wear and tear, the above-mentioned peeling wear and tear is significantly reduced. Conventionally, there have been examples of incorporating ceramic fibers into refractories, but it is difficult to disperse the fibers, and furthermore, the fibers are difficult to be fixed during blending in a stretched state, and they cannot be oriented in any direction. It was not possible to incorporate the fibers with the same amount of fiber, and the arrangement was not necessarily appropriate for stress, and the effect of adding the fibers was not sufficiently enhanced. Since these were used in the form of single fibers, this was an unavoidable problem. The fiber bundle used in the present invention is obtained by converging carbon or graphite long fibers manufactured from polyacrylonitrile, polyvinyl alcohol, coal tar pitch, etc., and has a secondary fiber diameter of 0.1 to 3 m/m.
It is within the range of Secondary fiber diameter is 0.1m/
If it is less than 3 m/m, the effect cannot be sufficiently improved, and if it exceeds 3 m/m, the filling property and structure will deteriorate, which is not preferable. It is appropriate to express the amount of such fibers added in terms of the number of fibers per cross-sectional area of the refractory, but in the case of the carbon-containing basic refractory according to the present invention, it is preferably 5 to 100 fibers per 100 cm 2 of cross-sectional area. . A region of less than 5 fibers is not sufficient to improve the performance of the refractory, and a region of more than 100 fibers causes manufacturing problems and does not allow a refractory with good texture to be obtained. When arranging fiber bundles inside the refractory, it is preferable for one end to be located inside the furnace and container, such as on the molten metal contact surface, and for the other end to reach the cold end of the refractory, from the viewpoint of reinforcing effect. But that's fine. In addition, even if the fiber bundle is not continuous from one end to the other, if it is interposed from the inside of the furnace almost parallel to the cold end direction axis, it can be cut in the middle and made into multiple layers. But that's fine. The effect of the long fiber bundle according to the present invention is that it improves the bending strength or tensile strength of refractories, suppresses the occurrence of cracks due to mechanical stress, and also relieves stress in the fiber part and prevents the propagation of cracks. It is possible to prevent this. Therefore, in order to fully exhibit the above effects, it is necessary to have a strong bond between the fireproof aggregate and the fibers, and to satisfy this, a phenolic resin that has bonding properties with carbon or graphite fibers is required. , it is assumed that coal tar pitches are used as a binder. Here, the phenolic resin is obtained by reacting a phenol such as phenol, cresol, xylenol, resorcinol, etc. with an aldehyde such as formaldehyde under an acid or alkali catalyst. The aggregate used in the present invention is made by blending one or more basic raw materials such as magnesia, calcia, dolomite, and spinel with one or more carbon raw materials such as phosphorous graphite, earthy graphite, anthracite, and carbon black. However, the blending ratio of the carbon raw material is preferably in the range of 5 to 40 parts by weight from the viewpoint of refractory performance. In the present invention, the above-mentioned aggregate is kneaded by a conventional method using a carbonaceous binder such as a phenolic resin or coal tar pitch, and carbon or graphite fiber bundles are added during molding. The refractory according to the present invention can be formed by conventional uniaxial forming or isostatic press. The present invention is obtained by drying the above-mentioned molded product at 150 to 400°C or firing it at a temperature higher than that, and in the case of a molded product that undergoes a cooking process, it is impregnated with tar pit by a known method. There is nothing wrong with that. Examples are given below to explain the present invention in more detail. Example 1 Magnesia-graphite materials having the compounding ratio shown in Table 1 were kneaded using a conventional method, and then mixed using a friction press at 450 m/m×
When forming bricks of 150 to 130 m/m x 150 m/m, add a predetermined number of fiber bundles (length 450 m/m) with a secondary fiber diameter of 1 m/m, which are made by converging carbon fibers with a single fiber diameter of 12.5 μ. did.

【表】 成形後250℃で一昼夜乾燥し、不焼成MgO―C
質れんがを製造した。乾燥後の品質は、無添加品
との差はみられないが、150℃還元焼成後の品
質、特に曲げ強さが大幅に改良されている。また
苛酷なスポーリングテストにおいても、本発明に
よる繊維添加品は良好な結果が得られている。
[Table] After molding, dry at 250℃ for a day and night to produce unfired MgO-C.
Made quality bricks. Although there is no difference in quality after drying compared to additive-free products, the quality after reduction firing at 150°C, especially the bending strength, has been greatly improved. Further, even in severe spalling tests, the fiber additives according to the present invention have obtained good results.

【表】 実施例 2 表3からなるピツチボンドマグネシア―カーボ
ン質配合を常法で加熱混練し、混練後冷却した。
[Table] Example 2 The Pitchbond magnesia-carbon mixture shown in Table 3 was heated and kneaded in a conventional manner, and after the kneading was cooled.

【表】 レゾール型フエノール樹脂を外掛け2.5%添加
し、上記配合を常温で二次混練した。混練後フリ
クシヨンプレスで成形する際(れんがナイズ:
450m/m×150〜130m/m×150m/m)、単繊
維径10.5μの黒鉛繊維を収束して二次繊維径0.5
m/mの繊維束を所定量添加した。成形後還元雰
囲気中1400℃で焼成して、焼成後タール含浸処理
を施した。 本発明による繊維添加品の強度特性が格段に優
れ、衝撃等の機械的応力に対する抵抗性の優れる
ことを立証した。
[Table] 2.5% of resol type phenolic resin was added to the outside, and the above formulation was secondarily kneaded at room temperature. When molding with a friction press after kneading (brick nizing:
450m/m x 150~130m/m x 150m/m), converging graphite fibers with a single fiber diameter of 10.5μ to create a secondary fiber with a diameter of 0.5
A predetermined amount of fiber bundles of m/m were added. After molding, it was fired at 1400°C in a reducing atmosphere, and then subjected to tar impregnation treatment. It has been demonstrated that the fiber additive according to the present invention has significantly superior strength properties and excellent resistance to mechanical stress such as impact.

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】[Claims] 1 溶融金属処理炉および容器内張り用耐火物で
あつて、粒度調整されたマグネシア、カルシア、
ドロマイト、スピネル等の塩基性原料60〜95重量
部に対し、リン状黒鉛、無煙炭、カーボンブラツ
ク等の炭素原料を5〜40重量部加えてなる炭素含
有塩基性耐火物において、内部に単繊維を収束し
た二次繊維径0.1〜3mmの炭素あるいは黒鉛繊維
束または該繊維束からなる網状のものを、その繊
維束の長さ方向または網状の平面が前記耐火物の
炉内側から冷端側方向軸線に対してほゞ平行の態
様になるように、耐火物断面積100cm2当り繊維束
にして5〜100本配設してなることを特徴とする
耐火物。
1. Refractories for molten metal processing furnaces and container linings, including particle size-adjusted magnesia, calcia,
A carbon-containing basic refractory made by adding 5 to 40 parts by weight of a carbon raw material such as phosphorous graphite, anthracite, or carbon black to 60 to 95 parts by weight of a basic raw material such as dolomite or spinel, which has single fibers inside. A converged secondary fiber bundle of carbon or graphite fibers with a diameter of 0.1 to 3 mm or a net made of the fiber bundle is placed so that the longitudinal direction of the fiber bundle or the plane of the net is the axis from the inside of the furnace to the cold end side of the refractory. A refractory characterized in that 5 to 100 fiber bundles are arranged per 100 cm 2 of cross-sectional area of the refractory so that they are substantially parallel to each other.
JP56125345A 1981-08-12 1981-08-12 Basic refractories Granted JPS5832080A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56125345A JPS5832080A (en) 1981-08-12 1981-08-12 Basic refractories

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56125345A JPS5832080A (en) 1981-08-12 1981-08-12 Basic refractories

Publications (2)

Publication Number Publication Date
JPS5832080A JPS5832080A (en) 1983-02-24
JPS6138156B2 true JPS6138156B2 (en) 1986-08-27

Family

ID=14907812

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56125345A Granted JPS5832080A (en) 1981-08-12 1981-08-12 Basic refractories

Country Status (1)

Country Link
JP (1) JPS5832080A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63222998A (en) * 1987-03-12 1988-09-16 Nippon Hikoki Kk Non-powered underwater craft

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5328044A (en) * 1976-08-27 1978-03-15 Rotsukou Kougiyou Kk Means for racking columnar works in electrolytic surface treatment
JPS55109271A (en) * 1979-02-10 1980-08-22 Nippon Steel Corp Inside wall refractories for melt iron treating vessel

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5328044A (en) * 1976-08-27 1978-03-15 Rotsukou Kougiyou Kk Means for racking columnar works in electrolytic surface treatment
JPS55109271A (en) * 1979-02-10 1980-08-22 Nippon Steel Corp Inside wall refractories for melt iron treating vessel

Also Published As

Publication number Publication date
JPS5832080A (en) 1983-02-24

Similar Documents

Publication Publication Date Title
EP0096508B1 (en) Magnesia-carbon refractory
JPS6138156B2 (en)
JPH0118030B2 (en)
JP3053225B2 (en) Magnesia carbon refractory brick
JPH0881256A (en) Brick containing compressed and pulverized expanded graphite
JP2599428B2 (en) Method for producing unburned MgO-C brick
JP6361705B2 (en) Lining method of converter charging wall
JPH11322405A (en) Low carbon refractory and its production
JP3197680B2 (en) Method for producing unburned MgO-C brick
JPH01305849A (en) Magnesia-carbon brick
JPS5815072A (en) Magnesia-carbon low temperature baking refractory brick
JP2006021972A (en) Magnesia-carbon brick
JPS629553B2 (en)
JP6978677B2 (en) Refractory lining for secondary refractory equipment with decompression
JP7100278B2 (en) Stainless Steel Ladle Magnesia-Spinel-Carbon Brick for Slag Line
JPH0585805A (en) Carbon-containing fire-resistant material
JPH04280858A (en) Production of unburned magnesia-carbon brick
JP2003171182A (en) Carbon-containing unburned brick
CN109020573B (en) Preparation method for toughening and shaping carbon-containing refractory material by using steel fibers
JPS6243948B2 (en)
JP3159430B2 (en) Spinel-carbonaceous blast furnace refractories
JP3201678B2 (en) High spalling resistant magnesia carbonaceous brick and method for producing the same
KR840001242B1 (en) A lining structure of converter
JP4471254B2 (en) Magnesia-carbon brick
JPH0578180A (en) Carbon fiber-containing refractory