JPS6137963B2 - - Google Patents

Info

Publication number
JPS6137963B2
JPS6137963B2 JP54053625A JP5362579A JPS6137963B2 JP S6137963 B2 JPS6137963 B2 JP S6137963B2 JP 54053625 A JP54053625 A JP 54053625A JP 5362579 A JP5362579 A JP 5362579A JP S6137963 B2 JPS6137963 B2 JP S6137963B2
Authority
JP
Japan
Prior art keywords
ion exchange
exchange resin
membrane
cellulose acetate
resin powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54053625A
Other languages
Japanese (ja)
Other versions
JPS55145541A (en
Inventor
Kanji Sasaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP5362579A priority Critical patent/JPS55145541A/en
Publication of JPS55145541A publication Critical patent/JPS55145541A/en
Publication of JPS6137963B2 publication Critical patent/JPS6137963B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • External Artificial Organs (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、特に血液浄化用透析膜として好適に
使用しうる新規なイオン選択吸着複合半透膜及び
その製法に関するものである。 近年、医療機器の分野において透析膜を利用し
た種々の人工臓器の開発、改良に関する研究が盛
んに行われ、例えば人工腎臓に関しても、これま
で多量の水で血液を透析する形式の大型装置を、
小型化、軽量化するために吸着剤を用いた透折液
浄化器が開発されている。 この浄化器の出現により、必要透折液量を大幅
に減少することができたとはいえ、着用型、さら
には究極の目標となる人体埋込型の装置を実現す
るには容積的、重量的にもなお不十分である。そ
して、これらの目標を実現するためには、吸着剤
によつて血液中の老廃物を除去する、いわゆる直
接血液潅流法の完成が望まれている。 本発明者らは、これらの要望にこたえて、先に
特殊な半透膜と少量の高濃度水溶液を用いた直接
血液潅流法による吸着除水型血液浄化装置を提案
した。しかし、その後の研究により、この装置は
血液中の過剰水分の除去は円滑に行われるが、血
液中の電解質除去に関して、まだ不十分な点があ
ることが分つた。 すなわち、血液中の主な電解質にはカチオン系
として、ナトリウム、カリウム、カルシウム、マ
グネシウム、プロトンなどが、アニオン系として
塩素、無機リン、重炭酸、水酸イオンなどがあ
り、これらは常に恒常的濃度を保ち、かつPHは
7.4±0.1近辺で一定であるが、慢性腎不全患者は
一般的にナトリウム、カリウム、無機リンが過剰
でカルシウム、重炭酸が不足しがちであるといわ
れている。従つて電解質吸着剤としてはカルシウ
ム、重炭酸は吸着しないで、ナトリウム、カリウ
ム、無機リン、塩素などを選択的に吸着し、かつ
PH変動を最小限にとどめる機能を持つことが必要
である。 ところで、生体にとつて水をはじめこれら電解
質の急激な変化は好ましくなく、場合によつては
致命的となるため、その目的に適合した材料の開
発には非常な困難を伴うことが予想される。 他方、電解質吸着剤としては古くからイオン交
換体が用いられ、水処理をはじめ各種工業に広く
実用に供され、医薬品分野においても経口剤とし
て崩壊剤や酸塩基調節剤として使用されている。
人工臓器分野においても以前に血液との接触によ
るPH変動などが検討されている(例えば堀源一
ら、「高分子」、第9巻、第129ページ)。また、人
工腎臓の透折液の再生吸着剤の一部として、アン
モニウム吸着などにリン酸ジルコニウムや酸化ジ
ルコニウムなどのイオン交換体が用いられている
ものも知られている。 しかしながら、一般にイオン交換体が血液と直
接に接触すると、イオン価の大きい電解質を選択
的に吸着する傾向があるため、カルシウムが優先
的に除去されるという好ましくない結果になる上
に、市販のイオン交換樹脂のような球形状のもの
を充てんした層に血液を通すと血栓形成や溶血、
タンパク吸着などを起すおそれがある。 本発明者らは、これらの難点を克服し、カルシ
ウムの吸着性が小さく、十分な機械的強度を有
し、かつ水透過性の大きい半透膜を開発すべく
種々研究を重ねた結果、酢化度45%以上、特に50
%を越える酢酸セルロース膜においては塩化ナト
リウム、塩化カリウムに比べて塩化カルシウムの
透過性が著しく低く、これでイオン交換樹脂を被
覆すればカルシウムイオンの吸着を抑制しうるこ
と、またイオン交換樹脂を粉末としてポリヒドロ
キシエチルメタクリレート中に分散させると機械
的強度の向上がなされるとともに、湿潤時におい
てしばしばしられる酢酸セルロース膜の破壊を防
止しうることを見出し、この知見に基づいて本発
明をなすに至つた。 すなわち、本発明は、強酸性イオン交換樹脂粉
末と塩基性イオン交換樹脂粉末とを均一に分散さ
せたポリヒドロキシエチルメタクリレート層の上
下を、酢化度45%以上の酢酸セルロース膜で被覆
した多層構造を有するイオン選択吸着複合半透膜
を提供するものである。 本発明における強酸性イオン交換樹脂として
は、各種水溶液中に存在するアルカリ金属イオン
の除去に慣用されているもの、例えばスルホン酸
基や硫酸基をもつイオン交換樹脂が用いられる。
また塩基性イオン交換樹脂としては、ハロゲンイ
オンその他の陰イオンの除去に慣用されているも
の、例えば第四級アンモニウム塩基をもつイオン
交換樹脂が用いられる。これらのイオン交換樹脂
は、粒径100μm以下の粉末として使用される。
また、これらの強酸性イオン交換樹脂と塩基性イ
オン交換樹脂とは、ほぼ等しい交換容量を示す割
合で混合して使用される。 これらのイオン交換樹脂は、せつかく乾燥時に
酢酸セルロースで被覆しても、湿潤時にその皮膜
の湿潤伸度が小さいために皮膜が破壊され、カル
シウムイオン吸着抑制効果が失われるので、本発
明においては、これを親水性、透過性の高分子化
合物であるポリヒドロキシエチルメタクリレート
中に分散含有させて使用される。このポリヒドロ
キシエチルメタクリレートは、メチルセロソルブ
中での極限粘度〔η〕が1〜1.5の範囲にあるも
のが適当である。ポリヒドロキシエチルメタクリ
レートに類似の親水性高分子化合物として、ポリ
ビニルアルコールの架橋化物やポリアクリルアミ
ドの架橋化物が知られているが、前者は柔軟性が
不十分であり、後者は膨潤性が大きすぎる上に接
着性が低いため本発明において用いることはでき
ない。 本発明においては、カルシウムイオンの除去を
抑制するために、酢酸セルロース膜で、前記した
イオン交換樹脂含有ポリヒドロキシエチルメタク
リレート層を被覆する必要があるが、この酢酸セ
ルロース膜は、酢化度45%以上、好ましくは50%
以上のものが用いられ、膜厚は12〜30μmの範囲
が適当である。 さらに、イオン交換樹脂含有ポリヒドロキシエ
チルメタクリレート層に血液を流すときの溶血、
血栓形成などの防止、急激な電解質濃度変化を避
けるための血液と吸着剤との接触確率の減少、吸
着剤の半透膜上への積層複合化による機械的強度
の増大及び作業性の向上、さらに吸着と半透性の
一体化等の効果に関連して酢酸セルロース半透膜
とイオン交換樹脂含有ポリヒドロキシエチルメタ
クリレート層との複合化条件を検討した結果、本
発明においては、ポリヒドロキシエチルメタクリ
レートと粉末状イオン交換樹脂との混合割合を重
量比で1:1ないし1:2の範囲にするのが好ま
しいことが分つた。このようにすると、本発明の
半透膜の機械的強度を高くすることができ、かつ
複合膜の接着性を湿潤時においても剥離すること
がないほど向上させることができる。 次に添付図面に従い、本発明のイオン選択吸着
複合半透膜の構造を説明する。図1はこの半透膜
の断面の模式図であり、酢酸セルロース半透膜1
の上に、強酸性イオン交換樹脂粉末3及び塩基性
イオン交換樹脂粉末4を分散したポリヒドロキシ
エチルメタクリレート層5が設けられ、さらにそ
の上を酢酸セルロース膜2で被覆した構造となつ
ている。 本発明に従えば、このような構造を有するイオ
ン選択吸着複合半透膜は、以下の方法によつて製
造することができる。 すなわち、ポリヒドロキシエチルメタクリレー
トを適当な溶媒例えば2−メトキシエタノールに
溶解して得た溶液に、粒径100μm以下の強酸性
イオン交換樹脂粉末と塩基性イオン交換樹脂粉末
の混合物をポリヒドロキシエチルメタクリレート
1重量部当り1〜2重量部の割合で加え、固形分
濃度20〜35重量%の原液を調製する。 別に、所定の酢酸セルロースを適当な溶媒例え
ばアセトンに15〜20重量%の濃度で溶解し、この
溶液を平面上に流延し、乾燥することによつて厚
さ12〜30μmの酢酸セルロース半透膜を形成さ
せ、この上に前記原液を流延したのち、50〜60℃
の温度で乾燥し、室温に冷却する。次いでその表
面を、濃度1〜2重量%の酢酸セルロース溶液を
流延し、乾燥することにより、酢酸セルロース膜
で被覆する。 このようにして得られるイオン選択吸着複合半
透膜は、カルシウムイオンの吸着性が低く、水透
過速度が大きいという利点を示し、特に水透過速
度はイオン交換樹脂の比率が大きくなるとともに
急激に分散する。 次に実施例によりさらに詳細に説明する。 参考例 1 粉末状の強酸性イオン交換樹脂1gと塩基性イ
オン交換樹脂1gを、血清の電解質濃度に近い水
溶液(Na+:160meq/,K+:6meq/,
Ca2+:5.5meq/,Mg2+:2.4meq/,Cl-
141meq/、酢酸イオン:33meq/、無機リ
ン:1.3mmol/、その他非電解質少量を含む。
以下、テスト溶液と呼ぶ。)0.1に投入し、37℃
バツチ法で当該溶液中の各電解質濃度の経時変
化、及びPH変化を測定した。第1表にはNa+
Ca2+及びPH変化を示す。電解質濃度は原液に対
する%で示す。
The present invention relates to a novel ion-selective adsorption composite semipermeable membrane that can be particularly suitably used as a dialysis membrane for blood purification, and a method for producing the same. In recent years, in the field of medical equipment, research has been actively conducted on the development and improvement of various artificial organs using dialysis membranes. For example, in the field of artificial kidneys, large-scale devices that dialyze blood using large amounts of water have been developed.
Diafiltration liquid purifiers using adsorbents have been developed to make them smaller and lighter. Although the advent of this purifier has made it possible to significantly reduce the amount of diafiltration fluid required, it is difficult to realize a wearable device or even an implantable device, which is the ultimate goal, due to the volume and weight. However, it is still insufficient. In order to achieve these goals, it is desired to complete a so-called direct blood perfusion method in which waste products in blood are removed using an adsorbent. In response to these demands, the present inventors have previously proposed an adsorption water removal type blood purification device using a special semipermeable membrane and a direct blood perfusion method using a small amount of a highly concentrated aqueous solution. However, subsequent research has revealed that although this device smoothly removes excess water from the blood, it is still insufficient in removing electrolytes from the blood. In other words, the main electrolytes in the blood include cations such as sodium, potassium, calcium, magnesium, and protons, and anions such as chlorine, inorganic phosphorus, bicarbonate, and hydroxide ions, and these are always at constant concentrations. and PH is
Although it remains constant at around 7.4±0.1, it is said that patients with chronic renal failure generally tend to have excess sodium, potassium, and inorganic phosphorus and a deficiency in calcium and bicarbonate. Therefore, as an electrolyte adsorbent, it does not adsorb calcium or bicarbonate, but selectively adsorbs sodium, potassium, inorganic phosphorus, chlorine, etc.
It is necessary to have the ability to minimize PH fluctuations. By the way, rapid changes in water and other electrolytes are unfavorable for living organisms, and in some cases can be fatal, so it is expected that it will be extremely difficult to develop materials suitable for this purpose. . On the other hand, ion exchangers have been used as electrolyte adsorbents since ancient times and have been widely used in various industries including water treatment, and are also used in the pharmaceutical field as oral preparations as disintegrants and acid-base regulators.
In the field of artificial organs, changes in pH due to contact with blood have been previously investigated (for example, Genichi Hori et al., "Polymers", Vol. 9, p. 129). Furthermore, as part of the regenerating adsorbent for the filtration fluid of an artificial kidney, it is known that an ion exchanger such as zirconium phosphate or zirconium oxide is used for ammonium adsorption. However, in general, when ion exchangers come into direct contact with blood, they tend to selectively adsorb electrolytes with high ionic valences, leading to the undesirable result of preferential removal of calcium. When blood passes through a layer filled with a spherical material such as exchange resin, blood clot formation, hemolysis,
There is a risk of protein adsorption. The present inventors have conducted various studies to overcome these difficulties and develop a semipermeable membrane with low calcium adsorption, sufficient mechanical strength, and high water permeability. degree of 45% or more, especially 50
%, the permeability of calcium chloride is significantly lower than that of sodium chloride and potassium chloride, and it is possible to suppress the adsorption of calcium ions by coating the ion exchange resin with this membrane. We have discovered that when dispersed in polyhydroxyethyl methacrylate, mechanical strength can be improved and the destruction of cellulose acetate membranes, which is often observed when wet, can be prevented.Based on this knowledge, we have developed the present invention. Ivy. That is, the present invention has a multilayer structure in which the upper and lower sides of a polyhydroxyethyl methacrylate layer in which strongly acidic ion exchange resin powder and basic ion exchange resin powder are uniformly dispersed are covered with cellulose acetate membranes having a degree of acetylation of 45% or more. The present invention provides an ion-selective adsorption composite semipermeable membrane having the following properties. As the strongly acidic ion exchange resin in the present invention, those commonly used for removing alkali metal ions present in various aqueous solutions, such as ion exchange resins having sulfonic acid groups or sulfuric acid groups, are used.
As the basic ion exchange resin, those commonly used for removing halogen ions and other anions, such as ion exchange resins having a quaternary ammonium base, are used. These ion exchange resins are used as powders with a particle size of 100 μm or less.
Further, these strongly acidic ion exchange resins and basic ion exchange resins are used in a mixed manner at a ratio showing approximately equal exchange capacity. Even if these ion exchange resins are carefully coated with cellulose acetate during drying, the film will be destroyed when wet due to its low wet elongation and the calcium ion adsorption suppressing effect will be lost. This is used by dispersing it in polyhydroxyethyl methacrylate, which is a hydrophilic and permeable polymer compound. The polyhydroxyethyl methacrylate suitably has an intrinsic viscosity [η] in the range of 1 to 1.5 in methyl cellosolve. Cross-linked polyvinyl alcohol and cross-linked polyacrylamide are known as hydrophilic polymer compounds similar to polyhydroxyethyl methacrylate, but the former has insufficient flexibility, and the latter has too much swelling and It cannot be used in the present invention because of its low adhesiveness. In the present invention, in order to suppress the removal of calcium ions, it is necessary to cover the above-mentioned ion exchange resin-containing polyhydroxyethyl methacrylate layer with a cellulose acetate membrane. or more, preferably 50%
The above materials are used, and the appropriate film thickness is in the range of 12 to 30 μm. Furthermore, hemolysis when blood is passed through the polyhydroxyethyl methacrylate layer containing ion exchange resin,
Prevention of thrombus formation, etc., reduction of the probability of contact between blood and adsorbent to avoid sudden changes in electrolyte concentration, increase of mechanical strength and workability due to composite lamination of adsorbent on semipermeable membrane, Furthermore, as a result of examining the conditions for combining the cellulose acetate semipermeable membrane and the ion exchange resin-containing polyhydroxyethyl methacrylate layer in relation to the effects of integrating adsorption and semipermeability, we found that in the present invention, polyhydroxyethyl methacrylate It has been found that it is preferable to adjust the mixing ratio of the powder and the powdered ion exchange resin to a weight ratio of 1:1 to 1:2. In this way, the mechanical strength of the semipermeable membrane of the present invention can be increased, and the adhesion of the composite membrane can be improved to the extent that it does not peel off even when wet. Next, the structure of the ion selective adsorption composite semipermeable membrane of the present invention will be explained according to the accompanying drawings. Figure 1 is a schematic diagram of the cross section of this semipermeable membrane.
A polyhydroxyethyl methacrylate layer 5 in which a strongly acidic ion exchange resin powder 3 and a basic ion exchange resin powder 4 are dispersed is provided on top of the polyhydroxyethyl methacrylate layer 5, and the layer is further covered with a cellulose acetate membrane 2. According to the present invention, an ion selective adsorption composite semipermeable membrane having such a structure can be manufactured by the following method. That is, in a solution obtained by dissolving polyhydroxyethyl methacrylate in a suitable solvent such as 2-methoxyethanol, a mixture of strongly acidic ion exchange resin powder and basic ion exchange resin powder with a particle size of 100 μm or less was added to polyhydroxyethyl methacrylate 1. It is added at a ratio of 1 to 2 parts by weight per part by weight to prepare a stock solution with a solid content concentration of 20 to 35% by weight. Separately, a predetermined cellulose acetate is dissolved in a suitable solvent such as acetone at a concentration of 15 to 20% by weight, and this solution is cast on a flat surface and dried to form semipermeable cellulose acetate with a thickness of 12 to 30 μm. After forming a membrane and casting the stock solution on top of it, the temperature is 50~60°C.
Dry at temperature and cool to room temperature. The surface is then coated with a cellulose acetate membrane by casting a cellulose acetate solution with a concentration of 1 to 2% by weight and drying. The ion-selective adsorption composite semipermeable membrane obtained in this way exhibits the advantages of low adsorption of calcium ions and high water permeation rate, and in particular, the water permeation rate rapidly disperses as the ratio of ion exchange resin increases. do. Next, the present invention will be explained in more detail with reference to Examples. Reference example 1 1 g of powdered strongly acidic ion exchange resin and 1 g of basic ion exchange resin were mixed into an aqueous solution (Na + : 160 meq/, K + : 6 meq/,
Ca 2+ : 5.5meq/, Mg 2+ : 2.4meq/, Cl - :
Contains 141meq/, acetate ion: 33meq/, inorganic phosphorus: 1.3mmol/, and small amounts of other non-electrolytes.
Hereinafter, this will be referred to as the test solution. ) 0.1 and 37℃
Changes in the concentration of each electrolyte in the solution over time and changes in pH were measured using the batch method. Table 1 shows Na + ,
Shows Ca 2+ and PH changes. Electrolyte concentration is expressed as a percentage of the stock solution.

【表】 中性塩分解吸着反応は素早く進み5分以内に平
衡に達し、かつカルシウムイオンが8割近く吸着
される。従つてこのようなイオン交換樹脂を直接
血液と接触することはできない。 参考例 2 粉末状の強酸性イオン交換樹脂0.8g、同様に塩
基性イオン交換樹脂0.8gを、3.2gの酢酸セルロー
ス(酢化度:55%)をアセトン溶液として混合し
膜状に流延、乾燥したのちさらに上記酢酸セルロ
ースの2重量%溶液に浸漬、乾燥して得た吸着剤
(E2−1)と、同様に各1.85gの粉末状の強酸性
及び塩基性イオン交換樹脂と7.4gのポリヒドロキ
シエチルメタクリレートとをメチルセルソルブ溶
液として混合し、膜状に流延、乾燥したのち上記
のE2−1と同じ処理をした吸着剤(E2−2)に
ついて、参考例1のテスト溶液各々0.1及び0.2
中に投入して、37℃バツチ法で参考例1と同様
な測定をした。その結果を第2表に示す。
[Table] The neutral salt decomposition and adsorption reaction proceeds rapidly, reaching equilibrium within 5 minutes, and nearly 80% of calcium ions are adsorbed. Therefore, such ion exchange resins cannot be brought into direct contact with blood. Reference Example 2 0.8g of a powdered strongly acidic ion exchange resin, 0.8g of a similarly basic ion exchange resin, and 3.2g of cellulose acetate (degree of acetylation: 55%) were mixed as an acetone solution and cast into a film. After drying, the adsorbent (E2-1) obtained by immersing and drying in a 2% by weight solution of cellulose acetate, 1.85 g each of powdered strong acidic and basic ion exchange resins, and 7.4 g of Regarding the adsorbent (E2-2), which was prepared by mixing polyhydroxyethyl methacrylate as a methyl cellosolve solution, casting it into a film, drying it, and then treating it in the same way as E2-1 above, 0.1% of each of the test solutions of Reference Example 1 was used. and 0.2
The same measurement as in Reference Example 1 was carried out using the batch method at 37°C. The results are shown in Table 2.

【表】 酢酸セルロースの被膜処理によつて、カルシウ
ムの吸着抑制効果が若干現われた。しかし、この
吸着剤は強度が弱くかつ柔軟性に欠けるため操作
中に破損しやすく表面被覆膜は破れることが考え
られる。E2−2の例は特にこの現象が強く現わ
れたためカルシウム吸着が大きくなつたものと考
えられる。 実施例 1 酢化度55%の酢酸セルロースの15.5重量%のア
セトン溶液を作り、過、脱泡後基板上に300μ
mのブレードで8cm/secの速度で流延し乾燥し
た。この膜の上に、粒径100μm以下となるよう
メツシユを通した粉末状強酸性イオン交換樹脂1
重量部に対し、同様処理した塩基性イオン交換樹
脂1.2重量部の割合で混合し、これを混合イオン
交換樹脂1重量部に対し0.7重量部のポリヒドロ
キシエチルメタクリレートを含むメチルセロソル
ブ溶液に混合し、固形分重量で20%の混合原液を
500μmブレードを通して同様な速度で流延し、
50℃で乾燥した積層膜に、さらに酢化度55%の酢
酸セルロースの1重量%のアセトン溶液を積層膜
表面に流して乾燥しイオン選択吸着複合半透膜を
作製した。 この膜を12cm×32cmの有効面積を持つ枠に平板
状に組みたて、テスト溶液0.3をさらに蒸留水
で0.9に希釈し、ローラポンプでこの溶液を50
ml/minで循環接触させたときのテスト溶液の電
解質濃度とPHの経時変化を測定した。本実験は室
温中で行いテスト溶液の温度は20±1℃であつ
た。この結果を第3表に示す。
[Table] The cellulose acetate film treatment slightly suppressed calcium adsorption. However, since this adsorbent has low strength and lacks flexibility, it is likely to be damaged during operation and the surface coating film may be torn. In the case of E2-2, this phenomenon was particularly strong, and it is thought that calcium adsorption was increased. Example 1 A 15.5% by weight acetone solution of cellulose acetate with a degree of acetylation of 55% was made, and after filtering and defoaming, a 300μ thick solution was prepared on a substrate.
The cast film was cast at a speed of 8 cm/sec using a blade of 1.5 cm and dried. Powdered strong acidic ion exchange resin 1 is passed through a mesh onto this membrane so that the particle size is 100 μm or less.
Mix 1.2 parts by weight of a similarly treated basic ion exchange resin per part by weight, and mix this with a methyl cellosolve solution containing 0.7 parts by weight of polyhydroxyethyl methacrylate per 1 part by weight of the mixed ion exchange resin. Mixed stock solution with a solid content of 20% by weight
Cast through a 500 μm blade at a similar speed,
A 1% by weight acetone solution of cellulose acetate with a degree of acetylation of 55% was poured onto the surface of the laminated membrane dried at 50°C and dried to produce an ion-selective adsorption composite semipermeable membrane. This membrane was assembled into a flat plate in a frame with an effective area of 12 cm x 32 cm, the test solution 0.3 was further diluted to 0.9 with distilled water, and a roller pump was used to dilute this solution to 50
Changes in electrolyte concentration and pH of the test solution over time were measured when the test solution was brought into contact with circulation at a rate of ml/min. This experiment was conducted at room temperature and the temperature of the test solution was 20±1°C. The results are shown in Table 3.

【表】 第3表の数値はテスト溶液の処理前に対する%
である。強酸性イオン交換樹脂と塩基性イオン交
換樹脂の混合比が交換容量比において差があるた
め、PH変動が大きいが、カルシウムの吸着抑制効
果は現われている。表面被膜の酢酸セルロースが
1%であるため膜の部分に欠陥が考えられる。 実施例 2 ポリヒドロキシエチルメタクリレートに対する
実施例1と同様の混合粉末イオン交換樹脂量を
0.6対1の割合とし、これの流延ブレードに1mm
を用い、酢酸セルロースの表面被覆処理を1%溶
液で2回行つた複合半透膜について、実施例1と
同様な測定を行つた結果を第4表に示す。
[Table] The values in Table 3 are percentages of the test solution before treatment.
It is. Since the mixing ratio of the strongly acidic ion exchange resin and the basic ion exchange resin differs in exchange capacity ratio, the pH fluctuation is large, but the effect of suppressing calcium adsorption is evident. Since the surface coating contains 1% cellulose acetate, there may be defects in the membrane. Example 2 The same amount of mixed powder ion exchange resin as in Example 1 was applied to polyhydroxyethyl methacrylate.
The ratio is 0.6:1, and the casting blade is 1 mm.
Table 4 shows the results of the same measurements as in Example 1 performed on a composite semipermeable membrane whose surface was coated with cellulose acetate twice with a 1% solution.

【表】 実施例 3 実施例2の表面被覆処理を2重量%の酢酸セル
ロースアセトン溶液で行い、同様な測定を行つ
た。その結果、2次処理でPHは6.42から6.22に、
Na+は92%、K+は86%、Ca2+は90%、Cl-は88%
を示した。 実施例 4 本発明における複合半透膜の湿潤強度がポリヒ
ドロキシエチルメタクリレートと粉末イオン交換
樹脂の混合比に強く依存するため、この混合比を
変えて複合半透膜の強力、伸度の測定をはじめ実
施例2及び3と同様な測定を行つた。この場合の
表面被覆処理は実施例3と同じ2%溶液で行つ
た。また、テスト溶液と3mol/の塩化カルシ
ウムを介しての浸透による透水速度も測定した。
電解質濃度の時間変化は、大略、実施例3に類似
していた。第5表に、強度、伸度、透水速度など
の測定結果を示す。
[Table] Example 3 The surface coating treatment of Example 2 was carried out using a 2% by weight cellulose acetate acetone solution, and similar measurements were carried out. As a result, the PH decreased from 6.42 to 6.22 after secondary treatment.
Na + is 92%, K + is 86%, Ca2 + is 90%, Cl- is 88%
showed that. Example 4 Since the wet strength of the composite semipermeable membrane in the present invention strongly depends on the mixing ratio of polyhydroxyethyl methacrylate and powdered ion exchange resin, the strength and elongation of the composite semipermeable membrane were measured by changing this mixing ratio. First, measurements similar to those in Examples 2 and 3 were performed. The surface coating treatment in this case was carried out using the same 2% solution as in Example 3. The rate of water permeation through osmosis through the test solution and 3 mol/calcium chloride was also measured.
The time variation of electrolyte concentration was generally similar to Example 3. Table 5 shows the measurement results of strength, elongation, water permeation rate, etc.

【表】 第5表中、Cは強酸性イオン交換樹脂、Aは塩
基性イオン交換樹脂を示す。ちなみに基膜を持た
ないポリヒドロキシエチルメタクリレートと混合
樹脂比1/0.7からなるそれ自体の強力は552μm
厚さで5mm幅当りわずかに5gであつた。
[Table] In Table 5, C indicates a strongly acidic ion exchange resin, and A indicates a basic ion exchange resin. By the way, the strength of itself is 552 μm, which is made of polyhydroxyethyl methacrylate without a base film and a mixed resin ratio of 1/0.7.
The thickness was only 5 g per 5 mm width.

【図面の簡単な説明】[Brief explanation of the drawing]

図1は本発明のイオン選択吸着複合半透膜の断
面の模式図、であり、図中符号1は酢酸セルロー
ス半透膜、2は酢酸セルロース表面被覆薄膜、3
は強酸性イオン交換樹脂粉末、4は塩基性イオン
交換樹脂粉末、5はポリヒドロキシエチルメタク
リレート層、である。
FIG. 1 is a schematic cross-sectional view of the ion-selective adsorption composite semipermeable membrane of the present invention, in which reference numeral 1 is a cellulose acetate semipermeable membrane, 2 is a cellulose acetate surface-coated thin film, and 3
4 is a strong acidic ion exchange resin powder, 4 is a basic ion exchange resin powder, and 5 is a polyhydroxyethyl methacrylate layer.

Claims (1)

【特許請求の範囲】 1 強酸性イオン交換樹脂粉末と塩基性イオン交
換樹脂粉末とを均一に分散させたポリヒドロキシ
エチルメタクリレート層の上下を、酢化度45%以
上の酢酸セルロース膜で被覆した多層構造を有す
る血液浄化用イオン選択吸着複合半透膜。 2 ポリヒドロキシエチルメタクリレート溶液中
に、粒径100μm以下の強酸性イオン交換樹脂粉
末及び塩基性イオン交換樹脂粉末を加え、十分に
分散させたのち、これを酢化度45%以上の酢酸セ
ルロース半透膜上に流延し、乾燥後さらにその上
を酢酸セルロース膜で被覆することから成る血液
浄化用イオン選択吸着複合半透膜の製法。
[Scope of Claims] 1. A multilayer in which the upper and lower sides of a polyhydroxyethyl methacrylate layer in which strongly acidic ion exchange resin powder and basic ion exchange resin powder are uniformly dispersed are covered with cellulose acetate membranes having a degree of acetylation of 45% or more. Ion-selective adsorption composite semipermeable membrane for blood purification with a structured structure. 2. Add strongly acidic ion exchange resin powder and basic ion exchange resin powder with a particle size of 100 μm or less to a polyhydroxyethyl methacrylate solution, thoroughly disperse them, and then add this to a semipermeable cellulose acetate with an acetylation degree of 45% or more. A method for producing an ion-selective adsorption composite semipermeable membrane for blood purification, which comprises casting the membrane onto the membrane, drying it, and then covering the membrane with a cellulose acetate membrane.
JP5362579A 1979-05-01 1979-05-01 Ion selective adsorption compound semipermeable membrane and its production Granted JPS55145541A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5362579A JPS55145541A (en) 1979-05-01 1979-05-01 Ion selective adsorption compound semipermeable membrane and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5362579A JPS55145541A (en) 1979-05-01 1979-05-01 Ion selective adsorption compound semipermeable membrane and its production

Publications (2)

Publication Number Publication Date
JPS55145541A JPS55145541A (en) 1980-11-13
JPS6137963B2 true JPS6137963B2 (en) 1986-08-27

Family

ID=12948082

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5362579A Granted JPS55145541A (en) 1979-05-01 1979-05-01 Ion selective adsorption compound semipermeable membrane and its production

Country Status (1)

Country Link
JP (1) JPS55145541A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01110951U (en) * 1988-01-19 1989-07-26

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0611316B2 (en) * 1984-08-13 1994-02-16 旭化成工業株式会社 Improved blood purification membrane and method for producing the same
JPH0611317B2 (en) * 1984-08-13 1994-02-16 旭化成工業株式会社 Improved blood purification membrane and method for producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01110951U (en) * 1988-01-19 1989-07-26

Also Published As

Publication number Publication date
JPS55145541A (en) 1980-11-13

Similar Documents

Publication Publication Date Title
CN105992599B (en) Cylindrantherae for cleaning dialysis solutions
JP3956363B2 (en) Cartridge useful for washing dialysate
US3725113A (en) Blood compatible microencapsulated detoxicants and method for making
CA2741572C (en) Portable peritoneal dialysis system
US4720343A (en) Macroporous asymmetrical hydrophilic membrane made of a synthetic polymer
JP5199252B2 (en) Use of a colloidal suspension of a cationic polymer to treat a support for medical use
JP2004525747A5 (en)
AU2013349977A1 (en) Liver support system
KR101081640B1 (en) Surface treatment of the membrane and associated product
WO2011130528A1 (en) Anticoagulant-free dialysis systems and methods
CS226188B2 (en) Dialysing diaphragm in the form of flat foil,tubular foil or hollow filament made of cellulose regenerated by using cuoxam process
US20150335807A1 (en) Removal of carbon dioxide via dialysis
JPS645908B2 (en)
US20220401889A1 (en) Porous membranes comprising sorbent particles for improved urea capture
JPS5825465B2 (en) Adsorption water removal type blood purification device
JPS6137963B2 (en)
JPH0510104B2 (en)
JPH0852209A (en) Multiple function device for blood processing
JPS58169458A (en) Abdominal membrane dialytic liquid containing absorbent
Mori et al. Permeability of heparinized hydrophilic polymer (H‐RSD): Application to semipermeable membrane for microencapsulation of activated charcoal
JPS6259605B2 (en)
JPS6139825B2 (en)
JPH03109930A (en) Filter membrane for ultrafiltration
GB2083761A (en) A combination sorbent, dialyser
JP5226587B2 (en) High performance blood purifier