JPS6137945A - Amorphous magnetism actuating material - Google Patents

Amorphous magnetism actuating material

Info

Publication number
JPS6137945A
JPS6137945A JP15556284A JP15556284A JPS6137945A JP S6137945 A JPS6137945 A JP S6137945A JP 15556284 A JP15556284 A JP 15556284A JP 15556284 A JP15556284 A JP 15556284A JP S6137945 A JPS6137945 A JP S6137945A
Authority
JP
Japan
Prior art keywords
magnetic
rare earth
amorphous
magnetic field
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15556284A
Other languages
Japanese (ja)
Other versions
JPH0545663B2 (en
Inventor
Kazuaki Fukamichi
和明 深道
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Research Development Corp of Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Development Corp of Japan filed Critical Research Development Corp of Japan
Priority to JP15556284A priority Critical patent/JPS6137945A/en
Priority to PCT/JP1985/000422 priority patent/WO1986000936A1/en
Priority to DE8585903709T priority patent/DE3585321D1/en
Priority to EP85903709A priority patent/EP0191107B1/en
Publication of JPS6137945A publication Critical patent/JPS6137945A/en
Priority to US07/401,545 priority patent/US5060478A/en
Publication of JPH0545663B2 publication Critical patent/JPH0545663B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To develop a magnetism actuating material having superior magnetism actuating property utilizing both spin grass property and large magnetic moment, by forming amorphous state alloy by melting or spattering method with specified materials and rare earth elements. CONSTITUTION:Amorphous alloy contg. >=1 kind among Eu, Gd, Tb, Dy, Ho Er, Tm having larger magnetic moment in rare earth elements, 1 kind or >=2 kinds among Al, Ga, Ni, Cu, Ag, Au, Ru, Rh, Pd, Pt, Fe, Co or further or >=2 kinds among the other rare earth elements such as La, Y, Sm, Ce, Nd, or 1 or >=2 kinds of Si, B, C is manufactured by melting method of ribbon method, anvil method or spattering method. The alloy compsn. is adjusted so that desired magnetic transition point is possessed over high to low temp. range, and magnetism actuating amorphous material having superior magnetism actuating property over wide actuating temp. range is manufactured by heat insulating degaussing under weak electric field.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、アモルファス合金からなる磁気作動物質に係
り、より詳細には、アモルファス合金のスピングラス性
と磁気モーメントの大きさとを併せて利用した優れた磁
気作動性(例、磁気冷凍乃至冷却)を有する希土類金属
含有アモルファス磁気作動物質に関する。
[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to a magnetically actuated material made of an amorphous alloy, and more specifically, the present invention relates to a magnetically actuated material made of an amorphous alloy, and more specifically, a magnetically actuated material made of an amorphous alloy. The present invention relates to a rare earth metal-containing amorphous magnetically actuated material having excellent magnetically actuated properties (eg, magnetic refrigeration or cooling).

(従来技術) 従来、磁気作動物質としては、例えば、Dy2Ti20
7、DyPO4、Gd(OH)、、Gd2 (S O,
)・8H20などの酸化物乃至酸素含有化合物が磁気冷
凍材料として考えられており、ヘリウム液化温度近傍の
超低温冷凍用に期待されている。
(Prior Art) Conventionally, as a magnetically actuating material, for example, Dy2Ti20
7, DyPO4, Gd(OH),, Gd2 (S O,
)・8H20 and other oxides or oxygen-containing compounds are considered as magnetic refrigeration materials, and are expected to be used for ultra-low temperature refrigeration near the helium liquefaction temperature.

しかし、これらの化合物は、(1)磁性を担う元素(D
y、Gdなど)の1分子当りの含有量が少ないために、
磁気冷凍効率が悪い、(2)そのキュリ一温度乃至ネー
ル温度が低く、高々10T(K)程度であるために、室
温等の高い温度からの冷凍は無理である、(3)これら
の化合物はキュリ一温度乃至ネール温度を有しており、
その温度付近での単純冷凍のみが比較的効率がよいだけ
で、狭範囲での作動しか期待できない、(4)これらの
物質は化合物であるために熱伝導が小さく、冷凍効率や
冷凍出力を低下させる、(5)磁気作動に当たっては、
数テスラ〜]0テスラの如く強磁場を必要とし、近年開
発されるようになった超伝導マグネットの出現の下での
み磁気作動が可能である等々、各種の制約乃至欠点があ
った。
However, these compounds contain (1) an element responsible for magnetism (D
y, Gd, etc.), the content per molecule is small.
(2) Their Curie temperature to Neel temperature is low, about 10 T (K) at most, so it is impossible to freeze them from high temperatures such as room temperature. (3) These compounds have low magnetic refrigeration efficiency. It has a Curi temperature to a Neel temperature,
Only simple refrigeration around that temperature is relatively efficient and can only be expected to operate in a narrow range. (4) Since these substances are compounds, heat conduction is low, reducing refrigeration efficiency and refrigeration output. (5) For magnetic operation,
It has various limitations and drawbacks, such as requiring a strong magnetic field of several Tesla to 0 Tesla, and magnetic operation is only possible with the advent of superconducting magnets, which have been developed in recent years.

(発明の課題) 本発明は、前述の従来技術の有する制約乃至欠点を解消
し、通常の電磁石を用いた弱磁場下での断熱消磁により
極めて高い効率の磁気作動を可能とし、以ってM )I
 D発電、核融合、エネルギー貯蔵などの超大型プラン
トへの適用から、リニアモータ、コンピュータ周辺機器
などに至る幅広い分野への適用を可能にする新規で独創
的な磁気作動物質を提供することを目的とするものであ
る。
(Problems to be solved by the invention) The present invention eliminates the limitations and drawbacks of the prior art described above, and enables extremely highly efficient magnetic operation by adiabatic demagnetization under a weak magnetic field using a normal electromagnet. )I
Our aim is to provide new and original magnetically actuated materials that can be applied to a wide range of fields, from ultra-large plants such as power generation, nuclear fusion, and energy storage to linear motors and computer peripherals. That is.

(発明の構成) かメる目的達成のため、本発明者は、まず、酸化物等々
の従来の磁気作動物質の有する欠点をもたらす諸因につ
いて種々分析、検討を加えた。
(Structure of the Invention) In order to achieve the above object, the present inventor first conducted various analyzes and studies on various factors that cause the drawbacks of conventional magnetically actuating materials such as oxides.

その結果、作動温度を超低温冷凍の如く磁気作動目的に
適合するようヘリウム液化温度近傍の超低温に設定し、
この超低温域にキュリ一温度またはネール温度など磁気
転移温度を有するべく酸化物乃至酸素含有化合物の形態
をとらざるを得なかった状況に鑑み、このような制約の
下では、か\る化合物形態の磁気転移を厳しい条件下で
利用することになり、延いてはその磁気作動物質として
の特性が効率よく利用実現し得ないことを知見した。
As a result, the operating temperature was set to an ultra-low temperature near the helium liquefaction temperature to suit magnetic operation purposes such as ultra-low temperature refrigeration.
In view of the situation where it was necessary to take the form of oxides or oxygen-containing compounds in order to have magnetic transition temperatures such as the Curie temperature or the Neel temperature in this ultra-low temperature range, it is difficult to take the form of such compounds under these constraints. It was discovered that the magnetic transition must be used under severe conditions, and that its properties as a magnetically active material cannot be utilized efficiently.

そのため、本発明者は、磁気作動物質としてのその特性
の利用を根本的に見直すことを想到し、磁気作動の基本
的原理の解明に鋭意努めた。
Therefore, the inventor of the present invention came up with the idea of fundamentally reconsidering the use of its properties as a magnetically active substance, and made an earnest effort to elucidate the basic principle of magnetically active material.

その結果、磁気作動如何は、第1図に示すように、外部
磁場による磁気エントロピーの変化量ΔSmとその温度
依存性の関係に依拠し、この68mはキュリ一温度また
はネール温度など磁気転移温度近傍で最大値を示す点に
着目するに至り、アモルファス合金のスピングラスの性
質を利用し、その磁気転移点の広域化に代えることによ
って、磁気作動温度の広領域化を図り得ることを見い出
した。加えて、前記ΔSmは物質の有する磁気モーメン
トに左右されることを利用し、アモルファス合金への着
眼を契機に希土類金属を含有利用することにより、磁気
作動温度の広領域化と68mの大きさを共に満たし得る
との知見を得た。
As a result, as shown in Figure 1, the magnetic operation depends on the relationship between the amount of change in magnetic entropy ΔSm due to the external magnetic field and its temperature dependence, and this 68 m is near the magnetic transition temperature such as the Curie temperature or the Neel temperature. They focused their attention on the point where the maximum value is , and discovered that by utilizing the spin glass properties of an amorphous alloy and instead widening its magnetic transition point, it is possible to widen the magnetic operating temperature range. In addition, taking advantage of the fact that ΔSm depends on the magnetic moment of a substance, and by focusing on amorphous alloys and incorporating rare earth metals, we have expanded the magnetic operating temperature range and increased the size of 68 m. We have obtained the knowledge that both can be satisfied.

そして、か〜る希土類金属を含むアモルファス合金は、
外部磁場の強さに応じて特異な磁化温度依存性を有し、
特に、第2図に示すように、弱磁場下においては原子の
スピンが揃い易くて準安定状態を呈しくA)、これが消
磁状態または極東磁場下においてあたかも常磁性の如く
スピンがバラバラになるスピングラス性(B)を顕現す
る点の利用を見い出し、これにより希土類金属含有アモ
ルファス合金の磁気作動が、従来の磁気作動物質におけ
る強磁場付与と相反し、弱磁場を加える利用前=4一 様にて可能であることを知見するに至り、ここに本発明
を完成したものである。
The amorphous alloy containing these rare earth metals is
It has a unique magnetization temperature dependence depending on the strength of the external magnetic field,
In particular, as shown in Figure 2, under a weak magnetic field, the spins of atoms tend to align and exhibit a metastable state (A), but under a demagnetized state or a far east magnetic field, the spins become disjointed as if they were paramagnetic. We discovered the use of the point that manifests glassiness (B), and as a result, the magnetic operation of rare earth metal-containing amorphous alloys is contrary to the application of a strong magnetic field in conventional magnetically actuated materials, and before use, when a weak magnetic field is applied = 4 uniformly. We have now discovered that this is possible, and have hereby completed the present invention.

すなわち、本発明の要旨とするところは、次の点にある
; (1)磁気モーメントが大きく、かつ、スピングラス性
を顕現し得る希土類金属を含有したアモルファス合金で
あって、その組成を、高温乃至低温に亙る所望の磁気転
移点を具備するように調整してなり、これを通常の電磁
石を用いた弱磁場下での断熱消磁により、広作動温度領
域において優れた磁気作動性をもたらすよう構成したこ
とを特徴とするアモルファス磁気作動物質であり、また
(2)磁気モーメントが大きく、かつ、スピングラス性
を顕現し得る希土類金属を含有したアモルファス合金の
組合わせ体であって、その組成を、高温乃至低温に亙り
相異なる磁気転移点を連続的に具備するように調整して
なり、これを通常の電磁石を用いた弱磁場下での断熱消
磁により、広作動温度領域において優れた磁気作動性を
もたらすよう構成したことを特徴とするアモルファス磁
気作動物質である。
That is, the gist of the present invention is as follows: (1) An amorphous alloy containing a rare earth metal having a large magnetic moment and capable of exhibiting spin glass properties, the composition of which is heated at high temperatures. It is adjusted to have a desired magnetic transition point ranging from low temperature to low temperature, and is configured to provide excellent magnetic operability over a wide operating temperature range by adiabatic demagnetization under a weak magnetic field using an ordinary electromagnet. (2) It is a combination of an amorphous alloy containing a rare earth metal having a large magnetic moment and capable of exhibiting spin glass properties, the composition of which is: It is adjusted to continuously have different magnetic transition points from high to low temperatures, and by adiabatic demagnetization under a weak magnetic field using an ordinary electromagnet, it has excellent magnetic operability over a wide operating temperature range. This is an amorphous magnetically active material characterized by being configured to provide the following effects.

以下に本発明の詳細な説明する。The present invention will be explained in detail below.

第1図は、磁気作動物質を外部磁場H内におき、断熱消
磁した際の外部磁場による磁気エントロピーの変化量Δ
Smの温度依存性を示した説明図であり、同図(A)は
本発明に係るアモルファス合金の場合、(B)は従来の
酸化物の場合である。
Figure 1 shows the amount of change Δ in magnetic entropy due to the external magnetic field when a magnetically active substance is placed in an external magnetic field H and adiabatically demagnetized.
FIG. 2 is an explanatory diagram showing the temperature dependence of Sm, in which (A) is the case of the amorphous alloy according to the present invention, and (B) is the case of the conventional oxide.

従来の酸化物は、同図(B)に示すように、鋭いキュリ
一温度Tcまたはネール温度Tn(通常、ヘリウム液化
温度近傍)の一つの温度でしか効率的な磁気冷凍が期待
できないのに対し、本発明においては、広範囲に分布す
る磁気転移点Tmの領域で効率的な磁気作動が可能であ
り、その48mは、例えば1次式で表わすことができる
As shown in Figure (B), with conventional oxides, efficient magnetic refrigeration can only be expected at one temperature: the sharp Curie temperature Tc or the Neel temperature Tn (usually near the helium liquefaction temperature). , in the present invention, efficient magnetic operation is possible in the region of the magnetic transition point Tm distributed over a wide range, and the 48 m can be expressed, for example, by a linear equation.

ΔSm=RQog(2J+1)  ・・−・(1)ここ
で、R:常数 JAM子の持つ角運動量 同図(A)において、スピングラスであるため、Tm以
下では比較的弱い磁場でもスピンは揃い易いため、他の
温度域よりも大きな48mを得ることができる。
ΔSm=RQog(2J+1)...(1) Here, R: Constant angular momentum of the JAM child In the same figure (A), since it is a spin glass, the spins are easily aligned even in a relatively weak magnetic field below Tm. Therefore, it is possible to obtain 48 m, which is larger than other temperature ranges.

この点、従来の酸化物では、同図(B)に示すように、
キュリ一温度Tcまたはネール温度Tnよりも低い温度
T′を作動温度としていたが、TcまたはTn以下であ
っても熱攪乱のためにスピンは完全な平行状態ではなく
、これを平行な配列に近づけるには通常の電磁石を用い
た磁場では不可能であって、数テスラー10テスラの如
く超伝導マグネットを用いた強い外部磁場を必要として
いたのである。しかも、得られる48mは、ヘリウム液
化温度近傍での作動を狙ったため、TcまたはTnより
かなり低い温度で作動させたことから、小さな値しか得
られなかったのである。
In this respect, with conventional oxides, as shown in the same figure (B),
The operating temperature was T' lower than the Curie temperature Tc or the Neel temperature Tn, but even below Tc or Tn, the spins are not in a completely parallel state due to thermal disturbance, and the spins are brought closer to a parallel arrangement. This is impossible with a magnetic field using an ordinary electromagnet, and requires a strong external magnetic field using a superconducting magnet, such as several Teslas or 10 Tesla. Furthermore, the obtained value of 48m was only a small value because the aim was to operate near the helium liquefaction temperature and the operation was performed at a temperature considerably lower than Tc or Tn.

本発明では、この48mが大きな値を有する作動温度を
広領域化せしめるためにアモルファス合金を利用したも
のであり、しかも、前述の如く、48mの大きさが含有
成分の有する磁気モーメン)−M(μB)の太きさしこ
比例するという知見に基づいて、アモルファス合金であ
って希土類金属含有のものを磁気作動物質とするもので
ある。
In the present invention, an amorphous alloy is used in order to widen the operating temperature range where this 48 m has a large value, and as mentioned above, the size of 48 m is the magnetic moment ()-M( Based on the knowledge that the thickness of μB) is proportional to the width of the magnetic field, an amorphous alloy containing a rare earth metal is used as the magnetically actuating substance.

磁気モーメントMは、次式 %式%(2) ここで、gニスビンSと角運動量、■との関係 μB:ボーアマグネトン で表わすことができ、希土類金属の実測磁気モーメント
は第1表に示すとうりである。
The magnetic moment M can be expressed by the following formula % formula % (2) Here, the relationship between gnisbin S and angular momentum, μB: Bohr magneton, and the actually measured magnetic moments of rare earth metals are shown in Table 1. It's tori.

第1表 同表より、E u ” T mの諸元素の磁気モーメン
トが大きいので、これらを含有せしめるのが好ましい。
As shown in Table 1, the magnetic moments of the various elements E u '' T m are large, so it is preferable to include them.

なお、希土類金属含有のアモルファス合金は、周知の溶
融法(リボン法、アンビル法)やスパッタ法により製造
することができ、その成分組合わせは、例えば、上記製
造決別に列挙するならば、以下のとうりである。
The amorphous alloy containing rare earth metals can be manufactured by the well-known melting method (ribbon method, anvil method) or sputtering method, and the component combinations are, for example, as listed below in the manufacturing process above. It's tori.

[A]溶融法による成分組合わせ例: (1)GdとC,AI、Ga、 Ni、 Cu、 Ag
、 Au、Ru、Rh、 Pd、 Pt、 Fe、 C
o、 Mnのうちの1種または2種以上との合金 (2)AlとGd、  Dy、  Tb、  Pr、 
 Ho、  Er、  Euのうちの1種または2種以
上との合金 (3)NjとGd、 Dy、 Tb、 Pr、 Ho、
 Er、 Euのうちの1種または2種以上との合金 (4)AuとGd、  Dy、  Tb、  Pr、 
 Ho、  Er、  Euのうちの1種または2種以
上との合金 (5) (2) 〜(4)の合金に、La、Y、Sm、
Ce、Ndのうちの1種または2種以上を添加した合金 (6) (2)〜(4)の合金に、Si、B、Cのうち
の1種または2種以上を添加した合金 [B]スパッタ法による成分組合わせ鮭上(])Gdと
Cu、AI、Mg、  Tj−1V、Cr、Nb。
[A] Example of component combination by melting method: (1) Gd and C, AI, Ga, Ni, Cu, Ag
, Au, Ru, Rh, Pd, Pt, Fe, C
(2) Al and Gd, Dy, Tb, Pr,
Alloy with one or more of Ho, Er, Eu (3) Nj and Gd, Dy, Tb, Pr, Ho,
Alloy with one or more of Er, Eu (4) Au and Gd, Dy, Tb, Pr,
Alloy (5) with one or more of Ho, Er, and Eu (2) to (4), La, Y, Sm,
Alloy (6) in which one or more of Ce and Nd is added Alloy (6) in which one or more of Si, B, and C is added to the alloys of (2) to (4) [B ] Component combination on salmon by sputtering method (]) Gd, Cu, AI, Mg, Tj-1V, Cr, Nb.

Ge、Si、Au、Fe、Co、Nj、Mnのうちの1
種または2種以上との合金 (2)AgとGd、  Dy、Tb、  Pr、  H
o、  Er、  Euのうちの1種または2種以上と
の合金 (3)AuとGd、  Dy、  Tb、  Pr、 
Ho、  Er、  Euのうちの1種または2種以上
との合金 (4)CuとGd、  Dy、  Tb、Pr、  H
o、  Er、  Euのうちの1種または2種以」二
との合金(5)NjとGd、 、Dy、 Tb、 Pr
、 Ho、 Er、 Euのうちの1種または2種以上
との合金 また、希土類金属含有アモルファス合金の磁気転移点T
mは組成依存性を有しており、その−例を第3図〜第9
図に示す。これらの例に示す如く、本発明においては、
種々の元素を3元、4元などの合金系とすることにより
、磁気転移点Tmは殆どの温度領域を磁気作動温度とし
てカバーすることができる。したがって、複数の組成の
異なるアモルファス合金を1つのユニットに組み込むこ
とができ、その際、組成を連続的に変化させることによ
り、磁気転移点Tmも連続的に変化させ、第1図(A)
に示すような68mの温度依存性曲線における山が連続
的に連なるようにすることができる。
One of Ge, Si, Au, Fe, Co, Nj, Mn
Species or alloys with two or more species (2) Ag and Gd, Dy, Tb, Pr, H
(3) Alloy of Au with one or more of the following: o, Er, Eu, Gd, Dy, Tb, Pr,
Alloy with one or more of Ho, Er, Eu (4) Cu and Gd, Dy, Tb, Pr, H
(5) Alloy of Nj and Gd, Dy, Tb, Pr
, Ho, Er, and Eu, and magnetic transition point T of an amorphous alloy containing rare earth metals.
m has composition dependence, examples of which are shown in Figures 3 to 9.
As shown in the figure. As shown in these examples, in the present invention,
By using various elements in a ternary or quaternary alloy system, the magnetic transition point Tm can cover most of the temperature range as the magnetic operating temperature. Therefore, it is possible to incorporate a plurality of amorphous alloys with different compositions into one unit, and in this case, by continuously changing the composition, the magnetic transition point Tm can also be continuously changed, as shown in Fig. 1 (A).
It is possible to make the peaks in the temperature dependence curve of 68 m as shown in Fig. 2 continuously line up.

また、更に本発明においては、希土類金属含有アモルフ
ァス合金の弱磁場下での断熱消磁によるスピングラス性
を利用するものである。
Furthermore, the present invention utilizes the spin glass properties of an amorphous alloy containing rare earth metals due to adiabatic demagnetization under a weak magnetic field.

例えば、第2図に示す磁化温度依存性を用いて説明する
と、外部磁場HがH1=10000e、 H2=500
0e、 H,=1500e、H4=1000eの如く弱
い外部磁場を印加し、次いで断熱消磁した場合、同図中
の円Aの近傍では、完全に平行ではないがスピンが強磁
性の如く揃う(A)。一方、同図中の円Bの近傍では、
H5=300eのように極めて弱い外部磁場中や消磁状
態では、平行配列に揃ったスピンがあたかも常磁性の如
くバラバラになり(B)、スピングラス性を呈する。
For example, to explain using the magnetization temperature dependence shown in FIG. 2, the external magnetic field H is H1=10000e, H2=500
When a weak external magnetic field is applied such as 0e, H, = 1500e, H4 = 1000e, and then adiabatic demagnetization is performed, the spins are aligned like ferromagnetism near circle A in the figure, although they are not completely parallel (A ). On the other hand, near circle B in the same figure,
In an extremely weak external magnetic field such as H5=300e or in a demagnetized state, the spins aligned in parallel become disjointed as if they were paramagnetic (B), exhibiting spin glass properties.

このスピングラス性を利用することとすれば、アモルフ
ァス磁気作動物質は、従来の酸化物に対−11= して必要とした数テスラー10テスラの如き強磁場を不
要とし、数十分の−のように極めて弱い磁場内でいとも
容易に強磁性物質の如くスピンを揃えることができる。
By utilizing this spin glass property, amorphous magnetically active materials do not require a strong magnetic field of several Teslas or 10 Teslas, which was required for conventional oxides by -11 As such, spins can be easily aligned like ferromagnetic materials in an extremely weak magnetic field.

(実施例) 溶融法によりGd55A16oアモルファス合金リボン
を作製し、各々50.100.500.10000eの
外部磁場を印加し、磁化の温度依存性曲線を調らべたと
ころ、第10図に示すとうりの結果を得た。そこで10
000eを印加し、消磁することを50回繰り返したと
ころ、30KからIOKまでの磁気冷却が可能となった
(Example) Gd55A16o amorphous alloy ribbons were produced by the melting method, and an external magnetic field of 50.100.500.10000e was applied to each ribbon, and the temperature dependence curve of magnetization was examined. Got the results. So 10
When 000e was applied and demagnetization was repeated 50 times, magnetic cooling from 30K to IOK became possible.

同じ<Gd55A1.、、、Gd6.A1.5アモルフ
ァス合金のリボンを作製し、その磁化の温度依存性を各
々30.100.150.500.10000 eのも
とで測定した結果を第11図、第12図に示す。
Same <Gd55A1. ,,,Gd6. A ribbon of A1.5 amorphous alloy was prepared, and the temperature dependence of its magnetization was measured at 30, 100, 150, 500, and 10,000 e, respectively. The results are shown in FIGS. 11 and 12.

Gdの濃度が増加するにつれて、磁気転移点が上昇する
のでGd4.AI6.の場合よりも更に高い温度から冷
凍が可能であり、更にad4.A16.よりも磁化の値
も大きいので、やはり冷凍の能率を更に向上させること
ができる。
As the concentration of Gd increases, the magnetic transition point increases, so Gd4. AI6. It is possible to freeze from a higher temperature than in the case of ad4. A16. Since the magnetization value is also larger than that of the above, it is possible to further improve the efficiency of refrigeration.

(発明の効果) 以上詳述したところから明らかなように、本発明は、磁
気モーメントが大きく、かつ、スピングラス性を顕現し
得る希土類金属含有アモルファス合金で、しかも弱磁場
下での断熱消磁により磁気作動させるものであるから、
(1)希土類金属含有アモルファス合金であるためにそ
の組成を任意に選ぶことが容易であり、磁気転移点の設
定も任意にでき、例えば、冷凍作業物質として1つのユ
ニットに組み込む際に組成を連続的に変化させると、磁
気転移点も連続的に変化させることができるので、極め
て効率がよくなる、(2)磁性元素の種類及び量も多種
類の中から任意に選ぶことができる、(3)金属である
ために熱伝導が高く、例えば、磁気冷凍の場合には、そ
の冷凍サイクルを速くすることができ、速やかに冷凍効
果が現われる、(4)スピングラスの性質を示すために
極めて弱い磁場中で飽和させることができるので、強磁
場が不要である、(5)希土類金属含有アモルファス合
金であるために機械的性質が優れており、取扱いが容易
で、しかも衝撃やサイクル運動にも強い等々、極めて顕
著なる効果を奏するので、既述の大型プラントをはじめ
とするあらゆる分野への適用が期待できる。
(Effects of the Invention) As is clear from the detailed description above, the present invention provides an amorphous alloy containing rare earth metals that has a large magnetic moment and can exhibit spin glass properties, and which can be adiabaticly demagnetized under a weak magnetic field. Because it is magnetically operated,
(1) Since it is an amorphous alloy containing rare earth metals, its composition can be easily selected arbitrarily, and the magnetic transition point can also be set arbitrarily.For example, when incorporating into one unit as a refrigeration work material, the composition can be changed continuously (2) The type and amount of the magnetic element can be arbitrarily selected from a wide variety of types. (3) Because it is a metal, it has high thermal conductivity.For example, in the case of magnetic refrigeration, the refrigeration cycle can be made faster, and the refrigeration effect appears immediately.(4) An extremely weak magnetic field is required to exhibit the properties of spin glass. (5) Since it is an amorphous alloy containing rare earth metals, it has excellent mechanical properties, is easy to handle, and is resistant to impact and cyclic motion. , it has a very remarkable effect, so it can be expected to be applied to all kinds of fields including the large-scale plants mentioned above.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(A)、(B)は各々、外部磁場による磁気エン
トロピーの変化量ΔSmの温度依存性を示す説明図、 第2図は磁化温度依存性を示す説明図で、同図(A)及
び(B)はスピンの配列状況を示す図、第3図乃至第9
図は各々、磁気転移点Tmの組成依存性を示す図、 第10図乃至第12図は各々、異なる外部磁場による磁
化の温度依存性を示す図である。 特許出願人  新技術開発事業団 代理人弁理士 中  村   尚 第3図 第4図 第5図 Nえ(%) 第6図 Cu(10) 第7図 第8図 第9図 X(%) 第10図
Figures 1 (A) and (B) are explanatory diagrams showing the temperature dependence of the amount of change in magnetic entropy ΔSm due to an external magnetic field, and Figure 2 is an explanatory diagram showing the magnetization temperature dependence. and (B) are diagrams showing the arrangement of spins, Figures 3 to 9.
Each figure shows the composition dependence of the magnetic transition point Tm, and each of FIGS. 10 to 12 shows the temperature dependence of magnetization due to different external magnetic fields. Patent applicant Takashi Nakamura, Patent attorney representing the New Technology Development Corporation Figure 3 Figure 4 Figure 5 N (%) Figure 6 Cu (10) Figure 7 Figure 8 Figure 9 X (%) Figure 10

Claims (1)

【特許請求の範囲】 1 磁気モーメントが大きく、かつ、スピングラス性を
顕現し得る希土類金属を含有したアモルファス合金であ
って、その組成を、高温乃至低温に亙る所望の磁気転移
点を具備するように調整してなり、これを通常の電磁石
を用いた弱磁場下での断熱消磁により、広作動温度領域
において優れた磁気作動性をもたらすよう構成したこと
を特徴とするアモルファス磁気作動物質。 2 磁気モーメントが大きく、かつ、スピングラス性を
顕現し得る希土類金属を含有したアモルファス合金の組
合わせ体であって、その各組成を、高温乃至低温に亙り
相異なる磁気転移点を連続的に具備するように調整して
なり、これを通常の電磁石を用いた弱磁場下での断熱消
磁により、広作動温度領域において優れた磁気作動性を
もたらすよう構成したことを特徴とするアモルファス磁
気作動物質。
[Claims] 1. An amorphous alloy containing a rare earth metal that has a large magnetic moment and can exhibit spin glass properties, the composition of which is adjusted to have a desired magnetic transition point ranging from high to low temperatures. 1. An amorphous magnetically actuated material, characterized in that the amorphous magnetically actuated material is configured to provide excellent magnetic actuation over a wide operating temperature range by adiabatic demagnetization under a weak magnetic field using an ordinary electromagnet. 2. A combination of amorphous alloys containing rare earth metals that have a large magnetic moment and can exhibit spin glass properties, each of which has a continuous magnetic transition point that varies from high to low temperatures. An amorphous magnetically active material, characterized in that it is adjusted to provide excellent magnetic actuation over a wide operating temperature range by adiabatic demagnetization under a weak magnetic field using an ordinary electromagnet.
JP15556284A 1984-07-27 1984-07-27 Amorphous magnetism actuating material Granted JPS6137945A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP15556284A JPS6137945A (en) 1984-07-27 1984-07-27 Amorphous magnetism actuating material
PCT/JP1985/000422 WO1986000936A1 (en) 1984-07-27 1985-07-26 Amorphous material which operates magnetically
DE8585903709T DE3585321D1 (en) 1984-07-27 1985-07-26 AMORPHIC MATERIAL WITH MAGNETIC EFFECT.
EP85903709A EP0191107B1 (en) 1984-07-27 1985-07-26 Amorphous material which operates magnetically
US07/401,545 US5060478A (en) 1984-07-27 1989-08-31 Magnetical working amorphous substance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15556284A JPS6137945A (en) 1984-07-27 1984-07-27 Amorphous magnetism actuating material

Publications (2)

Publication Number Publication Date
JPS6137945A true JPS6137945A (en) 1986-02-22
JPH0545663B2 JPH0545663B2 (en) 1993-07-09

Family

ID=15608766

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15556284A Granted JPS6137945A (en) 1984-07-27 1984-07-27 Amorphous magnetism actuating material

Country Status (1)

Country Link
JP (1) JPS6137945A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5362339A (en) * 1991-03-14 1994-11-08 Honda Giken Kogyo Kabushiki Kaisha Magnetic refrigerant and process for producing the same
CN104538169A (en) * 2015-01-17 2015-04-22 陈红 Preparing method for cobalt-based magnetic core
CN107419198A (en) * 2017-03-21 2017-12-01 上海大学 Ni-based low temperature amorphous magnetic refrigerating material of Rare-Earth Cobalt and preparation method thereof
WO2017209038A1 (en) * 2016-05-30 2017-12-07 株式会社フジクラ Gadolinium wire material, method for manufacturing same, metal-coated gadolinium wire material using same, heat exchanger, and magnetic refrigeration device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5362339A (en) * 1991-03-14 1994-11-08 Honda Giken Kogyo Kabushiki Kaisha Magnetic refrigerant and process for producing the same
CN104538169A (en) * 2015-01-17 2015-04-22 陈红 Preparing method for cobalt-based magnetic core
WO2017209038A1 (en) * 2016-05-30 2017-12-07 株式会社フジクラ Gadolinium wire material, method for manufacturing same, metal-coated gadolinium wire material using same, heat exchanger, and magnetic refrigeration device
CN107419198A (en) * 2017-03-21 2017-12-01 上海大学 Ni-based low temperature amorphous magnetic refrigerating material of Rare-Earth Cobalt and preparation method thereof

Also Published As

Publication number Publication date
JPH0545663B2 (en) 1993-07-09

Similar Documents

Publication Publication Date Title
Al-Omari et al. Magnetic and structural properties of SmCo7− xCux alloys
CN106350690B (en) Rare earth gadolinium-based AMORPHOUS ALLOY RIBBONS for room temperature magnetic refrigerating material and preparation method thereof
Buschow Magnetic properties of amorphous rare‐earth–cobalt alloys
JPWO2007001009A1 (en) Ferromagnetic shape memory alloy and its use
EP0191107B1 (en) Amorphous material which operates magnetically
Levin et al. Reversible spin-flop and irreversible metamagneticlike transitions induced by a magnetic field in the layered Gd 5 Ge 4 antiferromagnet
Coey Intrinsic magnetic properties of compounds with the Nd2Fe14B structure
Saito et al. Magnetic properties and structure change from tetragonal to hexagonal for the rapidly quenched SmTiFe11 alloy ribbons
EP0498613B1 (en) Regenerative materials
Satyanarayana et al. Magnetic properties of substituted Sm2Co17− xTx compounds (T= V, Ti, Zr, and Hf)
Methfessel Potential applications of magnetic rare earth compunds
JPS6137945A (en) Amorphous magnetism actuating material
Merches et al. Effect of substitution of nickel on the magnetic properties of Sm2Co17
Janssen et al. Giant magnetoresistance in Ce 2 Fe 17
Müller et al. Sm2Fe17 interstitial magnets
JPS6076110A (en) Assembling and magnetizing method for magnetic circuit
Oesterreicher et al. Magnetic investigations on Tb0. 25Fe0. 75− x Al x and Tb0. 105Fe0. 895− x Al x
JPH0625398B2 (en) Amorphous magnetic working material
Fuerst et al. Effect of manganese substitution in erbium‐iron‐manganese‐boron: Spin reorientation, moment compensation, and structure
Szytuła Complex magnetic phenomena in f-electron intermetallic compounds
Wiesinger et al. Nd− Fe− B type permanent magnets—Recent developments in basic and applied research
Yang et al. Magnetic hardening of rapidly solidified SmFe7+ xMx (0.8≤ x≤ 1.5, M= Mo, V, Ti) compounds
US3144325A (en) Magnetic compositions containing iron, rhodium, and at least one member of the lanthanide series
Nasunjilegal et al. Formation and magnetic properties of a novel Gd3 (Fe, Ti) 29Ny nitride
Miyazaki et al. Magnetic properties of rapidly quenched amorphous Fe-Sm alloys