JPS6137913B2 - - Google Patents

Info

Publication number
JPS6137913B2
JPS6137913B2 JP15669478A JP15669478A JPS6137913B2 JP S6137913 B2 JPS6137913 B2 JP S6137913B2 JP 15669478 A JP15669478 A JP 15669478A JP 15669478 A JP15669478 A JP 15669478A JP S6137913 B2 JPS6137913 B2 JP S6137913B2
Authority
JP
Japan
Prior art keywords
acid
enzyme
solution
glucose oxidase
hydrazide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15669478A
Other languages
Japanese (ja)
Other versions
JPS5581590A (en
Inventor
Yoshiki Minamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ajinomoto Co Inc
Original Assignee
Ajinomoto Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ajinomoto Co Inc filed Critical Ajinomoto Co Inc
Priority to JP15669478A priority Critical patent/JPS5581590A/en
Publication of JPS5581590A publication Critical patent/JPS5581590A/en
Publication of JPS6137913B2 publication Critical patent/JPS6137913B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

ポリアミノ酸を担体とした酵素の固定化方法と
して、ポリアミノ酸の酸性アミノ酸単位のカルボ
キシル基を酸アジド化して酵素蛋白のアミノ基と
ペプチド結合させる方法は知られている(特公昭
51−19031)。この方法は固定化物の酵素活性が高
くかつこの高活性を長期間持続させうるすぐれた
方法であるが、グルコースオキシダーゼのような
糖蛋白酵素の場合には塩基性アミノ酸残基がウレ
アーゼやウリカーゼなどの数分の1しかないため
固定化物の単位重量当りの酵素活性が低いという
欠点があつた。そこで発明者は糖蛋白酵素の糖鎖
部分に着目し、糖蛋白酵素を過ヨウ素酸又は過ヨ
ウ素酸塩で処理することによつて糖鎖部分にアル
デヒド基を形成させこれを酸性アミノ酸単位を有
するポリアミノ酸のヒドラジド化物と反応させる
ことによつて単位重量当りの酵素活性が高くかつ
安定性のより増大した糖蛋白酵素の固定化物を得
ることに成功したものである。 糖蛋白酵素とは糖又はその誘導体を含む複合蛋
白質の酵素のことで例えばグルコースオキシダー
ゼ、ペルオキシダーゼ、リボヌクレアーゼ、α−
ガラクトシダーゼ、グルコアミラーゼA、リパー
ゼ、ヒアルロニダーゼ等が含まれる。過ヨウ素酸
又は過ヨウ素酸塩を形成するカチオンは酵素活性
を阻害しないものであれば特に限定されない。例
えばナトリウム、カリウム、カルシウム、マグネ
シウムなどのイオンを用いればよい。酵素を過ヨ
ウ素酸又は過ヨウ素酸塩で処理する方法はベルオ
キシダーゼについてP.K.Nakaneの方法(J.
Histochem.Cytochem.、16、9(1968))が知ら
れており、他の酵素もこれに準じて行えばよい。
個々の酵素についての具体的条件、すなわちPH、
温度、時間、濃度などは反応の進行と酵素の失活
の両面を考慮する必要があり、最適条件は酵素に
よつて異なるので予め試験を行つて定めるのがよ
い。通常は、PHは酵素の安定範囲であり、温度は
0℃〜常温程度、時間は5分〜2時間程度であ
る。反応は公知の緩衝液、たとえば重炭酸、リン
酸、ホウ酸、酢酸などの塩の水溶液中で行うこと
が好ましい。反応の停止は過ヨウ素酸自体の量を
制限することによつて行つてもよいが、通常はエ
チレングリコールなどのジオール体又はアスコル
ビン酸のような還元剤を添加することによつて行
う。 固定化物の単位重量当りの酵素活性を高める為
に固定化反応の前になるべく過ヨウ素酸処理酵素
溶液から反応試薬等を除去し、濃縮しておくのが
よい。そのために透析、限外濾過、ゲル濾過など
の公知の手段を適宜選択して行えばよい。 過ヨウ素酸又は過ヨウ素酸塩で処理した酵素は
α−位又はω−位のカルボキシル基が酸ヒドラジ
ド基に変換された酸性アミノ酸単位を含有するポ
リアミノ酸(以下ポリアミノ酸ヒドラジドとい
う。)と反応させる。酸性アミノ酸とはモノアミ
ノジカルボン酸のことで例えばグルタミン酸、ア
スパラギン酸、α−アミノアジピン酸の如きもの
である。ポリアミノ酸のα−位又はω−位のカル
ボキシル基が酸ヒドラジド基になつた酸性アミノ
酸単位のほかの構成単位としては、酸性アミノ
酸、その低級アルキルエステル、酸アミド及び金
属塩が挙げられるが、このほか必要に応じロイシ
ン、アラニン、フエニルアラニンなどの中性アミ
ノ酸、セリン、スレオニンなどのオキシアミノ酸
及びそのO−置換体、システイン、メチオニンな
どの含硫アミノ酸及びそのS−置換体、リジン、
アルギニン、ヒスチジンなどの塩基性アミノ酸及
びその低級アシル体のうちの1種又は2種以上を
含むことができる。これらのアミノ酸及びその誘
導体単位は光学活性体、ラセミ体、又はこれらの
混合体のいずれであつてもよい。更に、これらの
重合体を後述のヒドラジン法で製造した場合には
2つの重合体のエステル残基間にヒドラジンが作
用して−CONHNHCO−型の架橋結合が形成され
る。 このようなポリアミノ酸ヒドラジドは酸性アミ
ノ酸低級アルキルエステル単位を含有する単一重
合体又は共重合体の成型物又は液状物をヒドラジ
ンと反応させたのち、必要に応じ未反応のエステ
ル基の一部又は全部をカルボキシル基に変換させ
ることによつて得ることができる(ヒドラジン
法)。ポリアミノ酸ヒドラジドを成型物として得
る方法は公知の方法で得たポリ酸性アミノ酸低級
アルキルエステルの成型物を公知の方法でヒドラ
ジド化してもよく、又、公知の方法で得られたポ
リ酸性アミノ酸ヒドラジドの溶液から公知の乾式
法又は湿式凝固法で目的の形状を有する成型物に
してもよい。ポリアミノ酸ヒドラジドは上記ヒド
ラジン法のほか、ポリアミノ酸クロリドにヒドラ
ジンを作用させるなどヒドラジド化物を製造しう
るいかなる方法にても製造することができる。酸
性アミノ酸誘導体のポリマーは有機溶剤に可溶で
あるので容易に種々の形状に成形したり、固体表
面にコーテイングすることができ、固定化酵素の
使用に望ましい任意な形状にして用いることがで
きるという特徴を有している。 過ヨウ素酸又は過ヨウ素酸塩で処理した酵素を
固定化する方法は該酵素を安定PH範囲の公知の緩
衝液、たとえば重炭酸、リン酸、ホウ酸などの塩
の水溶液とし、これにポリアミノ酸ヒドラジドを
必要により水、上記緩衝液などに懸濁後混合して
40℃以下好ましくは25℃以下で1時間〜48時間程
度接触させればよい。固定化物は必要により濾
過、遠心分離などにより反応液より分離して緩衝
液などで洗浄してから使用に供する。 次に、実施例1で得られた本発明の酵素固定化
物及び原料酵素について酵素活性とPHの関係を測
定した結果を第1図に示す。測定はグルコースオ
キシダーゼ10Uを0.1Mリン酸、0.1Mクエン酸、
2mMEDTA及び2mMNaN3を含有する緩衝液
で所定のPHに調整した溶液5.0mlに懸濁又は溶解
し、基質として1mg/mlの安息香酸を含む20mM
グルコース0.1mlを添加して26℃でマグネチツク
スターラーで撹拌しつつ1分間酵素反応させ、溶
存酸素濃度の減少速度を溶存酸素電極で測定する
ことによつて求めた。図中、実線は本発明の酵素
固定化物を、そして点線は原料酵素を示す。 酵素の熱安定性を第2図に示す。図中、実線は
実施例1で得られた本発明の酵素固定化物、鎖線
は同じく実施例1で得られた酸アジド法の酸素固
定化物、一点鎖線は実施例2で得られたアミノ誘
導体固定化酵素、そして点線は原料酵素を示す。
測定方法は、各酵素をPH6.5の0.1Mリン酸緩衝液
で各温度で30分間放置後残存活性を測定して行つ
た。 実施例におけるグルコースオキシダーゼ活性は
小型磁気撹拌子を入れた酸素電極セル(5.0ml)
に200mMグルコース、2mMEDTA、2mMア
ジ化ナトリウムを含有する0.1Mリン酸緩衝液PH
6.5を満し、25℃で撹拌(500r.p.m)しつつ、グ
ルコースオキシダーゼ溶液又は固定化グルコース
オキシダーゼ懸濁液0.1mlを入れて最大酸素減少
速度を測定し、酵素を加えない場合について補正
して活性を算出した。1Uは1分間に1μmolの溶
存酸素を消費する活性をいう。 実施例 1 グルコースオキシダーゼ4mg(210U/mg、ベー
リンガー社製)を0.3MNaHCO30.4mlで溶解し、
0.06MNaIO40.4mlを加えて室温で30分間反応させ
た後、PH7.0の0.1Mアスコルビン酸0.4mlを加えて
反応を停止させた。この反応液をアミコン社製ダ
イアフロ−PM−10を用い窒素ガス加圧下5℃で
限外濾過して0.4mlに濃縮した。冷
0.1MNaHCO31.6mlを加え限外濾過で0.4mlに濃縮
する操作を3回行つて530U/mlの活性化グルコー
スオキシダーゼ液1.0mlを得た。 極限粘度〔η〕=1.2のポリ−η−メチル−D−
グルタメート6重量部、ポリウレタンジイソシア
ナート3重量部及びエピクロルヒドリン1重量部
をジクロルエタン9容量部、トルエン1容量部か
らなる溶媒300重量部に3重量%になるように溶
解した液50gを80〜100メツシユの多孔質ガラス
ビーズ10gに加え、充分撹拌した後エバポレータ
ーで溶媒を除去し、100℃で5時間乾燥した。得
られた乾燥物を80%泡水ヒドラジン10容量部にピ
リジン1容量部を加えて溶液50mlに投入し、50℃
で3時間反応させたのち十分に水洗してガラスビ
ーズコーテイングPMGヒドラジド体を得た。 該ヒドラジド体0.5gに冷0.1MNaHCO31.5mlを
加えて撹拌した後静置して上清を除去した後、上
述の活性化グルコースオキシダーゼ液1.0mlを直
ちに加え、5℃で2日間ゆるやかに振盪して反応
させた。次いで室温にて1日間放置してから反応
上清液を除去し、0.5MNaCl、2mMEDTA含有
の0.1Mリン酸緩衝液PH7.0で5回洗浄してグルコ
ースオキシダーゼ固定化物(酵素活性428U)を
得た。洗液中の酵素活性は33Uであつた。この固
定化物について第1図のPH7における測定条件で
2月間に延200回の反復測定を行つたところ200回
目の活性は第1回目の94%であつた。 次に、上記で得られたガラスビーズコーテイン
グPMGヒドラジド体0.5gを氷冷した0.1N塩酸5
ml中に15秒間放置し、3重量%の亜硝酸ナトリウ
ム水溶液0.75mlを加えて20分間ゆつくり撹拌して
反応させた後ガラスビーズを濾別し、氷冷水次い
でPH8.5の0.05Mリン酸緩衝液で洗浄してアジド
化物を得た。このアジド化物を同じグルコースオ
キシダーゼ4mgを0.3MNaHCO34mlに溶解した液
に投入し、上記と同様に反応及び洗浄を行つたと
ころ酵素活性140Uのグルコースオキシダーゼ固
定化物が得られた。洗液中の酵素活性は688Uで
あつた。 実施例 2 実施例1と同じグルコースオキシダーゼを実施
例1と同様に処理して活性化グルコースオキシダ
ーゼ液を得た。 実施例1で得られたガラスビーズコーテイング
PMGヒドラジド体1.0gに上記活性化グルコース
オキシダーゼ1260Uを実施例1と同様に作用さ
せ、1100Uのグルコースオキシダーゼ固定化物を
得た。 実施例1と同じ多孔質ガラスビーズ10gを10%
γ−アミノプロパントリエトキシシランのトルエ
ン溶液80mlに加え、5時間リフラツクスした後エ
タノールで洗浄し、γ−アミノプロパントリエト
キシシランを結合させたガラスビーズを得た。こ
のガラスビーズ1.4gに上記活性化グルコースオ
キシダーゼ1760Uを実施例1と同様に作用させ、
900Uのグルコースオキシダーゼ固定化物を得
た。 この2つの固定化物について、下表の条件で処
理後、残存活性を測定した結果を下表に示す。
As a method for immobilizing an enzyme using a polyamino acid as a carrier, a method is known in which the carboxyl group of the acidic amino acid unit of the polyamino acid is converted into an acid azide and peptide bonded to the amino group of the enzyme protein.
51−19031). This method is an excellent method in which the enzyme activity of the immobilized product is high and this high activity can be maintained for a long period of time. However, in the case of glycoprotein enzymes such as glucose oxidase, basic amino acid residues such as urease and uricase Since it is only a fraction of the amount, it has the disadvantage that the enzyme activity per unit weight of the immobilized product is low. Therefore, the inventor focused on the sugar chain moiety of the glycoprotein enzyme, and by treating the glycoprotein enzyme with periodic acid or a periodate salt, an aldehyde group was formed in the sugar chain moiety, and this was converted into an acidic amino acid unit. By reacting with a hydrazide of a polyamino acid, we succeeded in obtaining an immobilized glycoprotein enzyme with high enzyme activity per unit weight and increased stability. Glycoprotein enzymes are complex protein enzymes containing sugars or derivatives thereof, such as glucose oxidase, peroxidase, ribonuclease, α-
Includes galactosidase, glucoamylase A, lipase, hyaluronidase, etc. The cation that forms periodic acid or periodate salt is not particularly limited as long as it does not inhibit enzyme activity. For example, ions such as sodium, potassium, calcium, and magnesium may be used. A method for treating enzymes with periodic acid or periodate salts is the method of PK Nakane (J.
Histochem.Cytochem., 16 , 9 (1968)) is known, and other enzymes may be used in accordance with this method.
Specific conditions for individual enzymes, i.e. pH;
Regarding temperature, time, concentration, etc., it is necessary to consider both the progress of the reaction and the inactivation of the enzyme, and since the optimum conditions differ depending on the enzyme, it is best to determine them by conducting tests in advance. Usually, the pH is within the stable range of the enzyme, the temperature is about 0°C to room temperature, and the time is about 5 minutes to 2 hours. Preferably, the reaction is carried out in a known buffer, such as an aqueous solution of a salt such as bicarbonate, phosphoric acid, boric acid, acetic acid, or the like. Although the reaction may be stopped by limiting the amount of periodic acid itself, it is usually accomplished by adding a diol such as ethylene glycol or a reducing agent such as ascorbic acid. In order to increase the enzyme activity per unit weight of the immobilized product, it is preferable to remove reaction reagents and the like from the periodate-treated enzyme solution and concentrate it before the immobilization reaction. For this purpose, known means such as dialysis, ultrafiltration, gel filtration, etc. may be selected as appropriate. The enzyme treated with periodic acid or periodate salt is reacted with a polyamino acid containing an acidic amino acid unit (hereinafter referred to as polyamino acid hydrazide) in which the carboxyl group at the α- or ω-position has been converted to an acid hydrazide group. . Acidic amino acids are monoaminodicarboxylic acids such as glutamic acid, aspartic acid, and α-aminoadipic acid. Other constituent units of the acidic amino acid unit in which the carboxyl group at the α- or ω-position of a polyamino acid is an acid hydrazide group include acidic amino acids, their lower alkyl esters, acid amides, and metal salts. In addition, as necessary, neutral amino acids such as leucine, alanine, and phenylalanine, oxyamino acids such as serine and threonine and their O-substituted forms, sulfur-containing amino acids and their S-substituted forms such as cysteine and methionine, lysine,
It can contain one or more of basic amino acids such as arginine and histidine and their lower acyl forms. These amino acids and derivative units thereof may be optically active, racemic, or a mixture thereof. Furthermore, when these polymers are produced by the hydrazine method described below, hydrazine acts between the ester residues of the two polymers to form a -CONHNHCO- type crosslinking bond. Such polyamino acid hydrazide is produced by reacting a molded or liquid product of a homopolymer or copolymer containing acidic amino acid lower alkyl ester units with hydrazine, and then, if necessary, removing part or all of the unreacted ester groups. can be obtained by converting into a carboxyl group (hydrazine method). A method for obtaining a polyamino acid hydrazide as a molded product is to hydrazide a molded product of polyacidic amino acid lower alkyl ester obtained by a known method, or to obtain a polyacidic amino acid hydrazide obtained by a known method. A molded article having a desired shape may be formed from a solution by a known dry method or wet coagulation method. In addition to the hydrazine method described above, polyamino acid hydrazide can be produced by any method capable of producing a hydrazide, such as by reacting hydrazine with polyamino acid chloride. Since polymers of acidic amino acid derivatives are soluble in organic solvents, they can be easily molded into various shapes or coated on solid surfaces, and can be used in any desired shape for use with immobilized enzymes. It has characteristics. A method for immobilizing enzymes treated with periodic acid or periodate salts is to immobilize the enzyme in a known buffer solution with a stable pH range, such as an aqueous solution of salts such as bicarbonate, phosphoric acid, boric acid, etc., and add polyamino acids to this solution. If necessary, suspend the hydrazide in water, the above buffer solution, etc., and then mix.
The contact may be carried out for about 1 hour to 48 hours at 40°C or lower, preferably 25°C or lower. The immobilized product is separated from the reaction solution by filtration, centrifugation, etc., if necessary, and washed with a buffer before use. Next, the results of measuring the relationship between enzyme activity and PH for the enzyme immobilized product of the present invention and the raw enzyme obtained in Example 1 are shown in FIG. For measurement, 10U of glucose oxidase was added to 0.1M phosphoric acid, 0.1M citric acid,
Suspend or dissolve in 5.0 ml of a solution containing 2mM MEDTA and 2mM NaN 3 adjusted to the specified pH, and 20mM containing 1mg/ml benzoic acid as a substrate.
0.1 ml of glucose was added and enzymatic reaction was carried out for 1 minute while stirring with a magnetic stirrer at 26°C, and the rate of decrease in dissolved oxygen concentration was determined by measuring with a dissolved oxygen electrode. In the figure, the solid line indicates the enzyme immobilized product of the present invention, and the dotted line indicates the raw enzyme. The thermostability of the enzyme is shown in Figure 2. In the figure, the solid line is the enzyme immobilized product of the present invention obtained in Example 1, the chain line is the oxygen immobilized product obtained by the acid azide method, also obtained in Example 1, and the dashed line is the amino derivative immobilized product obtained in Example 2. The dotted line indicates the raw enzyme.
The measurement method was to leave each enzyme in a 0.1M phosphate buffer solution of PH6.5 at each temperature for 30 minutes, and then measure the residual activity. Glucose oxidase activity in the examples was measured using an oxygen electrode cell (5.0ml) containing a small magnetic stirrer.
0.1M phosphate buffer PH containing 200mM glucose, 2mM MEDTA, 2mM sodium azide.
6.5, add 0.1 ml of glucose oxidase solution or immobilized glucose oxidase suspension while stirring (500 r.pm) at 25°C, measure the maximum oxygen reduction rate, and correct for the case where no enzyme is added. Activity was calculated. 1U refers to the activity that consumes 1 μmol of dissolved oxygen per minute. Example 1 4 mg of glucose oxidase (210 U/mg, manufactured by Boehringer) was dissolved in 0.4 ml of 0.3M NaHCO 3 ,
After adding 0.4 ml of 0.06M NaIO 4 and reacting at room temperature for 30 minutes, the reaction was stopped by adding 0.4 ml of 0.1M ascorbic acid with a pH of 7.0. This reaction solution was ultrafiltered at 5° C. under nitrogen gas pressure using Diaflow PM-10 manufactured by Amicon and concentrated to 0.4 ml. cold
Adding 1.6 ml of 0.1M NaHCO 3 and concentrating to 0.4 ml by ultrafiltration was performed three times to obtain 1.0 ml of an activated glucose oxidase solution with a concentration of 530 U/ml. Poly-η-methyl-D- with intrinsic viscosity [η] = 1.2
50 g of a solution prepared by dissolving 6 parts by weight of glutamate, 3 parts by weight of polyurethane diisocyanate, and 1 part by weight of epichlorohydrin in 300 parts by weight of a solvent consisting of 9 parts by volume of dichloroethane and 1 part by volume of toluene to give a concentration of 3% by weight is made into 80 to 100 meshes. After stirring thoroughly, the solvent was removed using an evaporator and the mixture was dried at 100°C for 5 hours. The obtained dried product was added to 50 ml of a solution of 10 parts by volume of 80% foamy hydrazine and 1 part by volume of pyridine, and heated at 50°C.
After reacting for 3 hours, the mixture was thoroughly washed with water to obtain a glass bead-coated PMG hydrazide. Add 1.5 ml of cold 0.1 M NaHCO 3 to 0.5 g of the hydrazide, stir, let stand, and remove the supernatant. Immediately add 1.0 ml of the above activated glucose oxidase solution and gently shake at 5°C for 2 days. and reacted. Next, after leaving it at room temperature for 1 day, the reaction supernatant was removed and washed five times with 0.1M phosphate buffer PH7.0 containing 0.5M NaCl and 2mM EDTA to obtain an immobilized glucose oxidase (enzyme activity 428U). Ta. The enzyme activity in the washing solution was 33U. When this immobilized product was repeatedly measured 200 times over 2 months under the measurement conditions of PH7 shown in Figure 1, the activity at the 200th measurement was 94% of the first measurement. Next, 0.5 g of the glass bead-coated PMG hydrazide obtained above was added with ice-cooled 0.1N hydrochloric acid 5
ml for 15 seconds, add 0.75 ml of 3% by weight aqueous sodium nitrite solution, stir gently for 20 minutes to react, then filter the glass beads, add ice-cold water and then add 0.05 M phosphoric acid at pH 8.5. The azide was obtained by washing with a buffer solution. This azide was added to a solution in which 4 mg of the same glucose oxidase was dissolved in 4 ml of 0.3M NaHCO 3 , and the reaction and washing were carried out in the same manner as above, whereby an immobilized glucose oxidase with an enzyme activity of 140 U was obtained. The enzyme activity in the washing solution was 688U. Example 2 The same glucose oxidase as in Example 1 was treated in the same manner as in Example 1 to obtain an activated glucose oxidase solution. Glass bead coating obtained in Example 1
1.0 g of PMG hydrazide was treated with 1260 U of the above activated glucose oxidase in the same manner as in Example 1 to obtain 1100 U of immobilized glucose oxidase. 10% of 10g of the same porous glass beads as in Example 1
The beads were added to 80 ml of a toluene solution of γ-aminopropanetriethoxysilane, refluxed for 5 hours, and then washed with ethanol to obtain glass beads bound with γ-aminopropanetriethoxysilane. 1.4 g of the glass beads were treated with 1760 U of the above activated glucose oxidase in the same manner as in Example 1,
900 U of glucose oxidase immobilization was obtained. The residual activity of these two immobilized products was measured after treatment under the conditions shown in the table below, and the results are shown in the table below.

【表】 実施例 3 250U/mgのペルオキシダーゼ(ベーリンガー社
製)1.2mgを0.3MNaHCO30.25mlに溶解し、
0.06MNaIO40.2mlを加えて実施例1と同様に反応
させ、以下実施例1と同様に処理して510U/mlの
活性化ペルオキシダーゼ液0.5mlを得た。 この活性化ペルオキシダーゼ液0.5mlに
0.1MNaHCO31ml及び実施例1で得られたガラス
ビーズコーテイングPMGヒドラジド体0.1gを加
え、4℃で2日間ゆるやかに振盪して反応させ
た。PH7.0の0.1Mリン酸緩衝液2mlで洗浄後同じ
緩衝液1mlを加え、NaBH40.2mgを加えて4℃で
5時間反応させたのちPH7.0の0.1Mリン酸緩衝液
で5回洗浄して2200U/gのペルオキシダーゼ固
定化物104mgを得た。酵素活性は0.01%H2O2を基
質としてフエノール・アンチピリンによる発色を
測定して定めた。
[Table] Example 3 1.2 mg of 250 U/mg peroxidase (manufactured by Boehringer) was dissolved in 0.25 ml of 0.3M NaHCO 3 .
0.2 ml of 0.06M NaIO 4 was added and the mixture was reacted in the same manner as in Example 1, and then treated in the same manner as in Example 1 to obtain 0.5 ml of an activated peroxidase solution of 510 U/ml. Add 0.5ml of this activated peroxidase solution
1 ml of 0.1M NaHCO 3 and 0.1 g of the glass bead-coated PMG hydrazide obtained in Example 1 were added, and the mixture was gently shaken and reacted at 4° C. for 2 days. After washing with 2 ml of 0.1M phosphate buffer, pH 7.0, add 1 ml of the same buffer, add 0.2 mg of NaBH 4 and react at 4°C for 5 hours, and then add 0.1M phosphate buffer, pH 7.0 five times. After washing, 104 mg of immobilized peroxidase with 2200 U/g was obtained. Enzyme activity was determined by measuring color development with phenol antipyrine using 0.01% H 2 O 2 as a substrate.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明で得られたグルコースオキシダ
ーゼ固定化物及び固定化に用いた原料酵素につい
てPHと酵素活性の関係を示した図であり、第2図
は酵素の熱安定性を測定した結果を示すものであ
る。
Figure 1 shows the relationship between PH and enzyme activity for the immobilized glucose oxidase obtained in the present invention and the raw enzyme used for immobilization, and Figure 2 shows the results of measuring the thermostability of the enzyme. It shows.

Claims (1)

【特許請求の範囲】 1 糖蛋白酵素を過ヨウ素酸又は過ヨウ素酸塩で
処理して該酵素にアルデヒド基を生成させてか
ら、α−位又はω−位のカルボキシル基が酸ヒド
ラジド基に変換された酸性アミノ酸単位を含有す
るポリアミノ酸と反応させることを特徴とする糖
蛋白酵素の固定化方法。 2 α−位又はω−位のカルボキシル基が酸ヒド
ラジド基に変換された酸性アミノ酸単位を含有す
るポリアミノ酸がポリ−γ−メチルグルタメート
をヒドラジンと反応させることにより得られたも
のである特許請求の範囲第1項記載の方法。
[Claims] 1. A glycoprotein enzyme is treated with periodic acid or a periodate salt to generate an aldehyde group in the enzyme, and then the carboxyl group at the α-position or the ω-position is converted to an acid hydrazide group. 1. A method for immobilizing a glycoprotein enzyme, which comprises reacting with a polyamino acid containing an acidic amino acid unit. 2. A polyamino acid containing an acidic amino acid unit in which the carboxyl group at the α- or ω-position has been converted to an acid hydrazide group is obtained by reacting poly-γ-methylglutamate with hydrazine. The method described in Scope 1.
JP15669478A 1978-12-15 1978-12-15 Method of fixing glucoprotein enzyme Granted JPS5581590A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15669478A JPS5581590A (en) 1978-12-15 1978-12-15 Method of fixing glucoprotein enzyme

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15669478A JPS5581590A (en) 1978-12-15 1978-12-15 Method of fixing glucoprotein enzyme

Publications (2)

Publication Number Publication Date
JPS5581590A JPS5581590A (en) 1980-06-19
JPS6137913B2 true JPS6137913B2 (en) 1986-08-26

Family

ID=15633288

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15669478A Granted JPS5581590A (en) 1978-12-15 1978-12-15 Method of fixing glucoprotein enzyme

Country Status (1)

Country Link
JP (1) JPS5581590A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02106332U (en) * 1989-02-14 1990-08-23

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02106332U (en) * 1989-02-14 1990-08-23

Also Published As

Publication number Publication date
JPS5581590A (en) 1980-06-19

Similar Documents

Publication Publication Date Title
US3959080A (en) Carrier matrix for the fixation of biochemically effective substances and process for the preparation thereof
US4438198A (en) Biochemically active matrix for use in a bio-artificial organ
US3843446A (en) Preparation of enzymatically active membranes
Mori et al. Preparation and properties of asparaginase entrapped in the lattice of polyacrylamide gel
JPS6137913B2 (en)
JPS5835679B2 (en) Kosohannouno Jitsushihouhou
US4601981A (en) Enzymatically active protein-enzyme complex membranes
JPH03236777A (en) Immobilization of enzyme
JPS596885A (en) Production of insoluble living body catalyst
Ooshima et al. Characteristics of immobilized invertase
US4670390A (en) Process for the immobilization of compounds comprising nucleophilic groups
JPS6020997B2 (en) Method for producing immobilized enzyme
JPH0517835B2 (en)
CA1104110A (en) Enzyme-immobilization carriers and preparation thereof
JPH0320232B2 (en)
JPS59109173A (en) Preparation of immobilized biocatalyst
JP2748416B2 (en) Manufacturing method of bioactive substance-immobilized membrane
JPS62198390A (en) Production of immobilized protease
JPS6214782A (en) Immobilized enzyme
JPS5820192A (en) Immobilized enzyme
JPS58149681A (en) Preparation of immobilized enzyme
JPS58152486A (en) Method for enzymic reaction
Mosbach Enzymes and general biology: special reference to enzyme synthesis, purification, and reactions on matrixes
JPS61170389A (en) Production of immobilized enzyme membrane
JP2944194B2 (en) Manufacturing method of immobilized enzyme