JPS6137575B2 - - Google Patents

Info

Publication number
JPS6137575B2
JPS6137575B2 JP13642578A JP13642578A JPS6137575B2 JP S6137575 B2 JPS6137575 B2 JP S6137575B2 JP 13642578 A JP13642578 A JP 13642578A JP 13642578 A JP13642578 A JP 13642578A JP S6137575 B2 JPS6137575 B2 JP S6137575B2
Authority
JP
Japan
Prior art keywords
gas
flame
combustion air
auxiliary combustion
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13642578A
Other languages
Japanese (ja)
Other versions
JPS5562343A (en
Inventor
Isao Murase
Katsutoshi Hirose
Shoji Yonetani
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP13642578A priority Critical patent/JPS5562343A/en
Publication of JPS5562343A publication Critical patent/JPS5562343A/en
Publication of JPS6137575B2 publication Critical patent/JPS6137575B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/71Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light thermally excited
    • G01N21/72Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light thermally excited using flame burners

Description

【発明の詳細な説明】 本発明はガスの連続炎光光度分析方法に関し、
とりわけエンジンのオイル消費測定に供して好適
なガスの連続炎光光度分析方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for continuous flame photometric analysis of gases,
In particular, the present invention relates to a method for continuous flame photometric analysis of gas suitable for measuring engine oil consumption.

エンジン特性の測定の一つとして、エンジンオ
イルの消費率を以つて特性判定を行う場合があ
る。このエンジンオイルの消費率測定は、エンジ
ンオイル中には硫黄成分が入つているため、排気
中のSO2濃度を測定することによつてオイル消費
率を測定することができる。
As one measure of engine characteristics, characteristics may be determined based on the consumption rate of engine oil. The engine oil consumption rate can be measured by measuring the SO 2 concentration in the exhaust gas, since engine oil contains sulfur components.

前述のSO2濃度測定に際して、ガスクロマトグ
ラフを用いて一定量の排気中のSO2濃度を測定す
ることができるが、このガスクロマトグラフによ
る測定では連続測定が不可能となつてしまう。即
ち、エンジンオイル消費率は、エンジンの加速、
定常、減速等、様々に変化する運転条件および吸
気温度、冷却水温度等の条件によつて変化し、正
確なエンジン特性を測定するにはエンジンオイル
消費率を連続的に、つまり排気中のSO2濃度を連
続的に測定する必要が生じる。
When measuring the SO 2 concentration described above, it is possible to measure the SO 2 concentration in a certain amount of exhaust gas using a gas chromatograph, but continuous measurement is not possible with this gas chromatograph. In other words, the engine oil consumption rate is determined by engine acceleration,
It varies depending on various operating conditions such as steady state and deceleration, as well as conditions such as intake air temperature and cooling water temperature.To measure accurate engine characteristics, the engine oil consumption rate must be measured continuously, that is, the SO in the exhaust gas. 2 It becomes necessary to measure the concentration continuously.

一般に、SO2濃度の連続測定装置としてガスの
炎光光度分析装置が挙げられる。該炎光光度分析
装置はバーナー室にH2 100%の燃料ガスと、助
燃空気(通常21%O2の大気が用いられる)とを
導入して該燃料ガスを水素過剰の還元炎状態で燃
焼させ、この燃焼火炎中に試料ガスの一定量を導
入して該試料ガス中のSO2を還元させ、このSO2
ガスの炎光を光電子増倍管によつて電気的に検出
して連続的に濃度分析を行うものである。ところ
が、かかる炎光光度分析装置によつて排気中の
SO2濃度測定を行おうとしても、排気中にはSO2
の他にCO、CO2、HC、O2、NO等多種のガスが
共存し、SO2の火炎がこれら共存ガスの干渉の影
響を大きく受けるため、実際にはSO2 100ppm以
上の高濃度分析用としては有効であるが排気中の
SO2は数ppmと低濃度であり、従つて排気中の
SO2濃度分析用としては不向きである。
Generally, a gas flame photometric analyzer is mentioned as a continuous measuring device for SO 2 concentration. The flame photometric analyzer introduces a fuel gas containing 100% H 2 and auxiliary combustion air (usually an atmosphere containing 21% O 2 ) into a burner chamber, and burns the fuel gas in a reducing flame state with excess hydrogen. A certain amount of sample gas is introduced into this combustion flame to reduce SO 2 in the sample gas, and this SO 2
The gas flame is electrically detected using a photomultiplier tube to continuously analyze the concentration. However, such a flame photometric analyzer can detect
Even if you try to measure the SO 2 concentration, there will be SO 2 in the exhaust gas.
In addition, various gases such as CO, CO 2 , HC, O 2 , and NO coexist, and the SO 2 flame is greatly affected by the interference of these coexisting gases, so in reality, high concentration analysis of SO 2 of 100 ppm or more is required. Although it is effective for
SO 2 has a low concentration of several ppm, so it is
It is not suitable for SO 2 concentration analysis.

そこで、本発明者等はかかる炎光光度分析装置
を用いて度重なるSO2濃度分析実験を行つたとこ
ろ、SO2ガス炎光の他のガスによる干渉特性が、
バーナー室に導入される助燃空気の酸素濃度によ
つて多分に影響されることが認められた。
Therefore, the present inventors conducted repeated SO 2 concentration analysis experiments using such a flame photometric analyzer, and found that the interference characteristics of SO 2 gas flame light due to other gases were
It has been found that this is greatly influenced by the oxygen concentration of the auxiliary combustion air introduced into the burner chamber.

本発明はこの実験結果に着目し、炎光光度分析
装置の供給助燃空気の酸素濃度を適切に設定する
ことにより、排気中のSO2を他の共存ガスによる
干渉を少なく抑えて低濃度分析できるようにした
ものである。
The present invention focuses on this experimental result, and by appropriately setting the oxygen concentration of the auxiliary combustion air supplied to the flame photometric analyzer, it is possible to analyze SO 2 in the exhaust gas at low concentrations with less interference from other coexisting gases. This is how it was done.

以下本発明の実施例を図面と共に詳述する 第1図には本発明の方法に用いられる炎光光度
分析装置を示すもので、1はバーナー室で、底部
には燃料ガス導入管2のノズル2aを配置してあ
り、該導入管2より送られてくる所定量のH2
100%燃料ガスを噴出させるようにしてある。前
記ノズル2a周側部には小室3を設けてあり、該
小室3に助燃空気導入管4を連通し、小室3への
所定量の助燃空気供給の下に前記ノズル2aから
噴出される燃料ガスを水素過剰の還元炎状態で燃
焼させるようにしてある。
Embodiments of the present invention will be described in detail below with reference to the drawings. Fig. 1 shows a flame photometric analyzer used in the method of the present invention, in which 1 is a burner chamber, and the bottom has a nozzle for a fuel gas introduction pipe 2. 2a is arranged, and a predetermined amount of H 2 is sent from the introduction pipe 2.
It is designed to blow out 100% fuel gas. A small chamber 3 is provided on the circumferential side of the nozzle 2a, and an auxiliary combustion air introduction pipe 4 is communicated with the small chamber 3, and fuel gas ejected from the nozzle 2a is supplied with a predetermined amount of auxiliary air to the small chamber 3. is made to burn in a reducing flame state with excess hydrogen.

また、前記小室3には試料ガス導入管5を連通
し、キヤピラリ6により流量制御された一定量の
試料排気ガスを導入し、該排気ガスを燃料ガスの
火炎により還元させるようにしてある。
Further, a sample gas introduction pipe 5 is connected to the small chamber 3, and a fixed amount of sample exhaust gas whose flow rate is controlled by a capillary 6 is introduced, and the exhaust gas is reduced by the flame of the fuel gas.

排気ガスを前記燃料ガスの火炎中に導入する
と、該排気ガス中のSO2ガスが還元し、SO2ガス
特有の炎光(3940オングストローム)を発生す
る。この炎光はSO2濃度に応じて光電子増倍管7
により電気量として検出され、アンプ8により増
幅されて記録計9で記録するようになつている。
When the exhaust gas is introduced into the flame of the fuel gas, the SO 2 gas in the exhaust gas is reduced to generate flame light (3940 angstroms) characteristic of SO 2 gas. This flame light is transmitted to the photomultiplier tube 7 according to the SO 2 concentration.
is detected as an electrical quantity, amplified by an amplifier 8, and recorded by a recorder 9.

前記光電子増倍管7の前側にはバンドパスフイ
ルタ10を設けて、排気中のSO2ガスの発光スペ
クトルだけを透過させて検出精度を高めるように
してある。
A bandpass filter 10 is provided in front of the photomultiplier tube 7 to allow only the emission spectrum of the SO 2 gas in the exhaust gas to pass therethrough to improve detection accuracy.

また、前記試料ガス導入管5のキヤピラリ6前
流には、定圧弁12および流量計13を備えたバ
イパス通路11を接続してあり、キヤピラリ6前
流の通路内圧が一定値以上になると定圧弁12を
開いて余剰ガスを外部に放出させ、キヤピラリ6
の前後差圧の増大に伴う試料ガスの過供給を防止
するようにしてある。
A bypass passage 11 equipped with a constant pressure valve 12 and a flow meter 13 is connected to the sample gas introduction pipe 5 upstream of the capillary 6, and when the internal pressure of the passage upstream of the capillary 6 exceeds a certain value, the constant pressure valve Open capillary 6 to release excess gas to the outside.
This is designed to prevent over-supply of sample gas due to an increase in the differential pressure before and after the sample gas.

更に、試料ガス導入管5には測定段階において
アンプ8のゲイン調整のための基準ガス導入管1
4,15を接続してある。一方の導入管14から
は出力の0点調整用のガスが供給されて0点位置
を調整し、その後、導入管15より測定成分濃度
の基準値設定用のガスが供給される。
Furthermore, the sample gas introduction pipe 5 includes a reference gas introduction pipe 1 for adjusting the gain of the amplifier 8 during the measurement stage.
4 and 15 are connected. Gas for adjusting the zero point of the output is supplied from one of the inlet pipes 14 to adjust the zero point position, and then gas for setting a reference value for the concentration of the component to be measured is supplied from the inlet pipe 15.

ところで、前述のように助燃空気の供給の下に
燃焼させた燃料ガスの火炎中に試料排気ガスを導
入してSO2濃度を測定する場合、SO2ガスの火炎
は排気中の他の共存成分の干渉を大きく受けてし
まうものである。
By the way, when measuring the SO 2 concentration by introducing the sample exhaust gas into the flame of the fuel gas combusted under the supply of auxiliary combustion air as described above, the SO 2 gas flame is affected by the presence of other coexisting components in the exhaust gas. It is subject to a large amount of interference.

これは、本発明者等の実験によれば、第1図に
示す炎光光度分析装置を用いて、燃料ガス導入管
2からのH2 100%の燃料ガス供給量を350c.c./mi
n、キヤピラリ6からの試料ガス供給量を10c.c./
min、および助燃空気導入管4からの助燃空気供
給量を300c.c./minとして設定した上で、この助燃
空気導入管4からの小室3に供給される助燃空気
の酸素濃度を、O2 21%の助燃空気に対して分岐
管16からのN2 100%の稀釈用ガスの導入によ
り可変とし、そして、前記試料ガスをSO2 5ppm
のバランスガスとして、a:共存ガスがN2のみ
の場合、b:同O2 13%+N2の場合、c:CO2
13%、+N2の場合、d:同CO 5%+N2の場合、
e:同NO 2000ppm+N2の場合の5種類におけ
る炎光光度分析を行い、前記aの共存ガスN2
みの場合における検出出力を100%とした時の助
燃空気の酸素濃度との関係を調べたところ第2図
に示す通りであつた。
According to experiments conducted by the present inventors, using the flame photometric analyzer shown in FIG.
n, the sample gas supply amount from capillary 6 is 10c.c./
min, and the amount of auxiliary combustion air supplied from the auxiliary combustion air introduction pipe 4 as 300c.c./min, and then set the oxygen concentration of the auxiliary combustion air supplied to the small chamber 3 from this auxiliary combustion air introduction pipe 4 as O 2 The sample gas was made variable by introducing a diluent gas of 100% N 2 from the branch pipe 16 to the 21% auxiliary combustion air, and the sample gas was changed to 5ppm of SO 2 .
As a balance gas, a: When the coexisting gas is N 2 only, b: When the same O 2 13% + N 2 , c: CO 2
In the case of 13% +N 2 , d: the same CO In the case of 5% +N 2 ,
e: Flame photometric analysis was performed in five types of NO 2000ppm + N 2 , and the relationship with the oxygen concentration of the auxiliary combustion air was investigated when the detection output in the case of only coexisting gas N 2 in a above was taken as 100%. However, the situation was as shown in Figure 2.

この実験結果から明らかなように、共存ガスが
N2のみ以外のものではb線(O2 13%+N2)、c
線(CO2 13%+N2)、d線(CO 5%+N2)、e
線(NO 2000ppm+N2)のように検出出力はa線
(N2のみ)で示す基準値に対してバラツキを生
じ、即ち干渉特性が悪化してしまうものである。
As is clear from this experimental result, the coexisting gas
For those other than N 2 only, b line (O 2 13% + N 2 ), c
line (CO 2 13% + N 2 ), d line (CO 5% + N 2 ), e line
As shown by the line (NO 2000ppm+N 2 ), the detection output varies with respect to the reference value shown by the a-line (N 2 only), that is, the interference characteristics deteriorate.

これは特に助燃空気中の酸素濃度が大気と同等
(O2 21%)に高くなる程前記検出出力のバラツ
キが大きくなつてしまうものであり、酸素濃度が
16%以下でバラツキが小さく干渉特性が良くなる
ことが認められる。
This is because the variation in the detection output increases as the oxygen concentration in the auxiliary combustion air increases to the same level as the atmosphere (O 2 21%).
It is recognized that when it is 16% or less, the variation is small and the interference characteristics are improved.

一方、酸素濃度を底くすればする程前記検出出
力のバラツキを小さく安定化させることができる
のであるが、酸素濃度が11.5%以下ではバーナ
ー、つまりH2 100%燃料ガスが酸素不足により
消えてしまう、所謂バーナー失火ゾーンに入つて
しまうことが確認された。
On the other hand, the lower the oxygen concentration, the smaller the variation in the detection output can be stabilized, but when the oxygen concentration is less than 11.5%, the burner, that is, the H 2 100% fuel gas, disappears due to lack of oxygen. It was confirmed that the burner would enter the so-called burner misfire zone.

そこで、本発明にあつては前記助燃空気導入管
4よりバーナー室1に導入される助燃空気の酸素
濃度を11.5〜16%の範囲に設定してある。
Therefore, in the present invention, the oxygen concentration of the auxiliary combustion air introduced into the burner chamber 1 from the auxiliary combustion air introduction pipe 4 is set in the range of 11.5 to 16%.

この助燃空気の供給に際しては、予め酸素濃度
を前記所定値に調整した助燃空気を供給してもよ
いが、この場合、グロープラグ17による点火始
動時に、助燃空気の酸素濃度が低いために着火不
良を起し易くなつてしまうため、第1図示のよう
にして酸素濃度を着火後とで随時調整できるよう
にすることが望ましい。
When supplying this auxiliary combustion air, auxiliary combustion air whose oxygen concentration has been adjusted to the predetermined value may be supplied, but in this case, when the glow plug 17 starts ignition, ignition failure occurs due to the low oxygen concentration of the auxiliary combustion air. Therefore, it is desirable to be able to adjust the oxygen concentration at any time after ignition, as shown in the first diagram.

即ち、第1図において助燃空気導入管4からは
常に酸素濃度が21%の大気が導入されるようにな
つており、かつ該助燃空気導入管4に分岐管16
を接続して、該分岐管16よりN2 100%の稀釈
用ガスを導入して、該N2ガスにより助燃空気の
酸素濃度を21%から前述した11.5〜16%の範囲に
稀釈調整できるようにしてある。
That is, in FIG. 1, air with an oxygen concentration of 21% is always introduced from the auxiliary air introduction pipe 4, and a branch pipe 16 is connected to the auxiliary air introduction pipe 4.
is connected, and a 100% N 2 dilution gas is introduced from the branch pipe 16, so that the oxygen concentration of the auxiliary combustion air can be diluted and adjusted from 21% to the range of 11.5 to 16% mentioned above . It is set as.

即ち、点火時には分岐管16を閉塞して酸素濃
度21%の助燃空気を導入し、着火性を確保させる
が、バーナー着火後は、分岐管16を開いて所定
量のN2ガスを混入し、助燃空気の酸素濃度を前
記所定値に調整するのである。
That is, at the time of ignition, the branch pipe 16 is closed and auxiliary combustion air with an oxygen concentration of 21% is introduced to ensure ignitability, but after the burner is ignited, the branch pipe 16 is opened and a predetermined amount of N 2 gas is mixed in. The oxygen concentration of the auxiliary combustion air is adjusted to the predetermined value.

なお、第1図中18,19,20は燃料ガス導
入管2、助燃空気導入管4、分岐管16にそれぞ
れ介装した開閉弁、流量計および圧力計を示す。
また、22,23は試料ガス導入管5、基準ガス
導入管14,15の各分岐部に介装した切換弁、
21はバーナー室1に設けた耐熱ガラスである。
In FIG. 1, reference numerals 18, 19, and 20 indicate on-off valves, flow meters, and pressure gauges installed in the fuel gas introduction pipe 2, the auxiliary combustion air introduction pipe 4, and the branch pipe 16, respectively.
Further, reference numerals 22 and 23 indicate switching valves interposed in each branch of the sample gas introduction pipe 5 and the reference gas introduction pipes 14 and 15;
21 is a heat-resistant glass provided in the burner chamber 1.

従つて、前述のように助燃空気の酸素濃度を最
適値に設定することにより、排気中のSO2濃度を
正確に測定することができるのである。
Therefore, by setting the oxygen concentration of the auxiliary combustion air to the optimum value as described above, it is possible to accurately measure the SO 2 concentration in the exhaust gas.

第3図に示す実施例は試料ガス導入管5を小室
3より突出させてノズル2a近傍に開口させ、助
燃空気導入管4と全く独立させて、検出精度をよ
り高めるようにしたものである。
In the embodiment shown in FIG. 3, the sample gas introduction pipe 5 is made to protrude from the small chamber 3 and open near the nozzle 2a, making it completely independent of the auxiliary combustion air introduction pipe 4, thereby further increasing the detection accuracy.

即ち、第1図に示すものにあつては、試料ガス
を小室3で助燃空気とプリミツクスさせて燃料ガ
スの火炎中に導入させるようにしてあるが、この
場合、試料ガスは助燃ガスにより稀釈されてSO2
濃度が低下し、しかも上記の如く他成分との干渉
によりみかけ上の濃度低下を来し、充分な感度を
もつて検出する上で不具合を生じてしまうおそれ
がある。
That is, in the case shown in Fig. 1, the sample gas is premixed with combustion-assisting air in the small chamber 3 and introduced into the fuel gas flame, but in this case, the sample gas is diluted by the combustion-assisting gas. te SO 2
The concentration decreases, and as described above, interference with other components causes an apparent decrease in concentration, which may cause problems in detecting with sufficient sensitivity.

また、本発明者等の実験によれば、助燃空気の
酸素濃度を低下させると、前述の如く他成分との
干渉特性は良くなるのであるが、第4図に示す如
く助燃空気の酸素濃度の低下に伴つて検出感度が
低下することが確認されている。
Furthermore, according to experiments conducted by the present inventors, when the oxygen concentration of the auxiliary combustion air is lowered, the interference characteristics with other components improve as described above, but as shown in Fig. 4, the oxygen concentration of the auxiliary combustion air decreases. It has been confirmed that the detection sensitivity decreases as the concentration decreases.

これは、助燃空気中の酸素濃度の低下に伴い、
燃料ガスの火炎の生成が活発に行われなくなるこ
とと併せて、試料ガスが助燃空気とプリミツクス
されてSO2濃度が低下してしまうことに起因する
ものと思料される。
This is due to the decrease in oxygen concentration in the auxiliary combustion air.
This is thought to be due to the fact that the fuel gas no longer actively generates a flame, and the sample gas is premixed with the auxiliary combustion air, resulting in a decrease in the SO 2 concentration.

そこで、前述のように試料ガス導入管5を小室
3より突出させ、試料ガスを助燃空気とプリミツ
クスさせないで直接燃料火炎中に噴出させること
により、SO2濃度の低下を回避して検出感度の確
保を行え、精度の高いSO2濃度分析を行えるので
ある。
Therefore, as mentioned above, by making the sample gas inlet pipe 5 protrude from the small chamber 3 and injecting the sample gas directly into the fuel flame without premixing it with combustion-assisting air, a decrease in SO 2 concentration can be avoided and detection sensitivity can be ensured. This allows for highly accurate SO 2 concentration analysis.

以上のように本発明によれば、排気中のSO2
他の共存ガスによる干渉を少なく抑えて低濃度分
析が可能となり、従つて排気中のSO2濃度を連続
的に測定してこのSO2濃度にもとづいてエンジン
オイルの消費率を測定し、エンジン特性を正確に
測定できるという実用上多大な効果を有する。
As described above, according to the present invention, it is possible to perform low concentration analysis of SO 2 in exhaust gas by minimizing interference with other coexisting gases, and it is therefore possible to continuously measure the SO 2 concentration in exhaust gas to It has a great practical effect of being able to measure the engine oil consumption rate based on the 2 concentration and accurately measuring engine characteristics.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の方法に採用される装置の系統
図、第2図は助燃空気酸素濃度−検出出力特性
図、第3図は異なる実施例の断面図、第4図は助
燃空気酸素濃度−検出感度特性図である。 1……バーナー室、2……燃料ガス導入管、4
……助燃空気導入管、5……試料ガス導入管、7
……光電子増倍管。
Fig. 1 is a system diagram of the device adopted in the method of the present invention, Fig. 2 is a diagram of auxiliary combustion air oxygen concentration-detection output characteristics, Fig. 3 is a sectional view of a different embodiment, and Fig. 4 is auxiliary combustion air oxygen concentration. - Detection sensitivity characteristic diagram. 1...Burner chamber, 2...Fuel gas introduction pipe, 4
...Auxiliary combustion air introduction pipe, 5...Sample gas introduction pipe, 7
...Photomultiplier tube.

Claims (1)

【特許請求の範囲】 1 バーナー室にH2 100%の燃料ガスと助燃空
気とを燃焼炎が還元炎となるようにそれぞれ所定
量に供給制御して導入して該燃料ガスを燃焼さ
せ、この燃焼炎によりバーナー室に所定量に供給
制御して導入される試料ガスを還元させて該試料
ガス中のSO2ガスの炎光を光電子増倍管によつて
検出し、SO2ガスの濃度を連続的に検出する方法
において、前記助燃空気の酸素濃度を11.5〜16%
に設定したことを特徴とするガスの連続炎光光度
分析方法。 2 試料ガスが、燃料ガス導入管、助燃空気導入
管と全く独立した導入管により導入されて燃焼火
炎中に供給されるようにしてなる特許請求の範囲
第1項記載のガスの連続炎光光度分析方法。
[Claims] 1. A fuel gas containing 100% H 2 and auxiliary combustion air are controlled to be supplied in predetermined amounts and introduced into the burner chamber so that the combustion flame becomes a reducing flame, and the fuel gas is combusted. The sample gas introduced into the burner chamber is controlled to be supplied in a predetermined amount by the combustion flame, and the flame light of SO 2 gas in the sample gas is detected by a photomultiplier tube to determine the concentration of SO 2 gas. In the continuous detection method, the oxygen concentration of the auxiliary combustion air is 11.5 to 16%.
A method for continuous flame photometric analysis of gas, characterized in that the method is set to: 2. Continuous flame luminosity of a gas according to claim 1, wherein the sample gas is introduced into the combustion flame by an introduction pipe completely independent of the fuel gas introduction pipe and the auxiliary combustion air introduction pipe. Analysis method.
JP13642578A 1978-11-06 1978-11-06 Luminous intensity analyzer for gas continuous flame light Granted JPS5562343A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13642578A JPS5562343A (en) 1978-11-06 1978-11-06 Luminous intensity analyzer for gas continuous flame light

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13642578A JPS5562343A (en) 1978-11-06 1978-11-06 Luminous intensity analyzer for gas continuous flame light

Publications (2)

Publication Number Publication Date
JPS5562343A JPS5562343A (en) 1980-05-10
JPS6137575B2 true JPS6137575B2 (en) 1986-08-25

Family

ID=15174843

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13642578A Granted JPS5562343A (en) 1978-11-06 1978-11-06 Luminous intensity analyzer for gas continuous flame light

Country Status (1)

Country Link
JP (1) JPS5562343A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4466943A (en) * 1979-11-28 1984-08-21 Nissan Motor Co., Ltd. Flame photometric detector analyzer
US4370060A (en) * 1980-12-10 1983-01-25 Nissan Motor Co., Ltd. Flame photometric detector analyzer

Also Published As

Publication number Publication date
JPS5562343A (en) 1980-05-10

Similar Documents

Publication Publication Date Title
US4168683A (en) Feedback control system for recirculation of exhaust gas
EP0282295B1 (en) Internal combustion engine control
US5073753A (en) Hydrocarbon flame ionization detector
US4934926A (en) Method and apparatus for monitoring and controlling burner operating air equivalence ratio
US5531105A (en) Method and system for determining engine oil consumption
US4466943A (en) Flame photometric detector analyzer
US5186146A (en) Combustion evaluation apparatus and combustion controller
KR20080022047A (en) Compensating for varying fuel and air properties in an ion signal
US5041265A (en) Hydrogen gas analyzer with improved delivery system
Wermuth et al. Absorption and fluorescence data of acetone, 3-pentanone, biacetyl, and toluene at engine-specific combinations of temperature and pressure
CA1149905A (en) Combustion state determination method and apparatus
US4370060A (en) Flame photometric detector analyzer
JPS6137575B2 (en)
US4796590A (en) Rapid-response method and devices for detection of poor combustion
US3927979A (en) Technique for measuring the carbon monoxide and reactive hydrocarbon content of a gas
US11913392B2 (en) Method, apparatus, and system for controlling natural gas engine operation based on fuel properties
US5096834A (en) Method for determination of concentration of smoke and apparatus therefor
US2825226A (en) Combustible gas detector
US4565969A (en) Saturation current incipient soot detector
JPH05119006A (en) Device for measuring concentration of hydrogen carbide
JPH07158500A (en) Evaluation method for engine flame
JPS6142225B2 (en)
JPS5924119A (en) Measurement of amount of unburnt substance in ash generated from combustion furnace and concentration of nox in exhaust gas
JP2616935B2 (en) Combustion flame detector for gaseous fuel
US6314953B1 (en) Method and system for regulating the air/fuel stream fed to an internal-combustion engine