JPS6137569B2 - - Google Patents

Info

Publication number
JPS6137569B2
JPS6137569B2 JP12491282A JP12491282A JPS6137569B2 JP S6137569 B2 JPS6137569 B2 JP S6137569B2 JP 12491282 A JP12491282 A JP 12491282A JP 12491282 A JP12491282 A JP 12491282A JP S6137569 B2 JPS6137569 B2 JP S6137569B2
Authority
JP
Japan
Prior art keywords
light
faraday
cell
sample
analyzer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12491282A
Other languages
Japanese (ja)
Other versions
JPS5915825A (en
Inventor
Yutaka Saijo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Horiba Ltd
Original Assignee
Horiba Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Horiba Ltd filed Critical Horiba Ltd
Priority to JP12491282A priority Critical patent/JPS5915825A/en
Publication of JPS5915825A publication Critical patent/JPS5915825A/en
Publication of JPS6137569B2 publication Critical patent/JPS6137569B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J4/00Measuring polarisation of light
    • G01J4/04Polarimeters using electric detection means

Description

【発明の詳細な説明】 本発明は、光源と検出器との間に、前記光源か
らの光を直線偏光する偏光子と、この偏光子に対
して偏光面が90゜異なる検光子とを設けると共
に、これら偏光子、検光子間にフアラデーセル及
び試料セルを設け、検光子を透過した光を検出器
で受光して試料の旋光度を測定するようにした旋
光計に関する。
Detailed Description of the Invention The present invention provides, between a light source and a detector, a polarizer that linearly polarizes the light from the light source, and an analyzer whose polarization plane differs by 90 degrees from the polarizer. The present invention also relates to a polarimeter in which a Faraday cell and a sample cell are provided between the polarizer and the analyzer, and the light transmitted through the analyzer is received by a detector to measure the optical rotation of the sample.

ところで、この種旋光計には、光学的零位法に
よる機械式のものと純電気的方法によるものとが
ある。
By the way, this type of polarimeter includes a mechanical type based on the optical zeroing method and a type based on a purely electrical method.

前者は、前記検光子を回転自在に設け、光源か
らの光が試料セル内の試料及び検光子を経て検出
器に入射した際の検出器出力が最小となるように
検光子を回転させ、この回転角度から試料の旋光
角を測定するものであるが、この旋光計において
は、検光子の機械的な回転運動を伴うが故に、応
答性が悪く、その上、機構が複雑で高価なものに
なるばかりでなく、測定精度が検出器回転機構の
機械的精度に依存し、高精度の測定結果は期待で
きない。
In the former method, the analyzer is rotatably provided, and the analyzer is rotated so that the detector output is minimized when the light from the light source enters the detector after passing through the sample in the sample cell and the analyzer. The optical rotation angle of the sample is measured from the rotation angle, but this polarimeter involves mechanical rotation of the analyzer, resulting in poor response and, in addition, the mechanism is complex and expensive. In addition, the measurement accuracy depends on the mechanical accuracy of the detector rotation mechanism, and highly accurate measurement results cannot be expected.

後者、検光子を固定的に設けておき、偏光子を
透過した光が試料セル内の試料により旋光され、
その旋光により偏位した成分の光が検光子を透過
して検出器に受光され、これによる検出器出力
(検光子の透過光量に相当する電気信号)が最小
(基本波成分において零)となるように、フアラ
デーセルに電流を流し、その電流量とフアラデー
セルによる偏光面回転角度とが比例することを利
用して、フアラデーセルに流した電流値から試料
の旋光角を測定するようにしたものである。
In the latter case, an analyzer is fixedly installed, and the light transmitted through the polarizer is rotated by the sample in the sample cell.
The component of light shifted by the optical rotation passes through the analyzer and is received by the detector, and the resulting detector output (an electrical signal corresponding to the amount of light transmitted through the analyzer) becomes minimum (zero in the fundamental wave component). In this method, a current is passed through the Faraday cell, and the angle of rotation of the sample is measured from the value of the current passed through the Faraday cell, taking advantage of the fact that the amount of current is proportional to the angle of rotation of the plane of polarization by the Faraday cell.

この旋光計は、検光子を回転させずに、検出器
出力を直接、演算処理するという純電気的な測定
方式であるため、応答性がよく、かつ、複雑な回
転機構を必要としない等の長所を有している反
面、測定できる旋光角が狭いという欠点がある。
というのは、フアラデーガラスとして用いられる
重フリントガラス(FD−6)は、ヴエルデ定数
が小さく、又、フアラデーコイルの装置上の大き
さや、電流による発熱の影響を考えると、測定角
度は0〜±3゜位が限界であるからである。また
最近ヴエルデ定数が従来のものより3〜4倍大き
なフアラデーガラス(商品名FR−5)が市販さ
れているが、温度持性が悪く、高角度の旋光角測
定が可能な純電気的方法による旋光計は、実用化
されていない。
This polarimeter uses a purely electrical measurement method that directly processes the detector output without rotating the analyzer, so it has good responsiveness and does not require a complicated rotation mechanism. Although it has advantages, it has the disadvantage that the angle of optical rotation that can be measured is narrow.
This is because the heavy flint glass (FD-6) used as Faraday glass has a small Weerde constant, and considering the size of the Faraday coil on the device and the effect of heat generation due to current, the measurement angle is 0 to ±3°. This is because the limit is the limit. Recently, a Faraday glass (trade name FR-5) with a Weerde constant 3 to 4 times larger than conventional glass has been commercially available, but it has poor temperature stability and optical rotation is based on a purely electrical method that allows measurement of high angles of rotation. The meter has not been put into practical use.

本発明は、後者の純電気的方法による旋光計の
改良に関し応答性が良く、複雑な回転機構を要し
ないといつた長所を有する純電気的方法を採用し
ているにも拘らず、且つその従来欠点を解消し、
高角度測定が可能な旋光計を提供することを目的
とする。
The present invention relates to the improvement of a polarimeter using the latter purely electrical method, although it employs a purely electrical method that has the advantages of good responsiveness and does not require a complicated rotation mechanism. Eliminate the conventional drawbacks,
The purpose of the present invention is to provide a polarimeter capable of high angle measurement.

以下、本発明の実施例を図面に基いて説明す
る。
Embodiments of the present invention will be described below with reference to the drawings.

第1図は、本発明の第1実施例を示す全体構成
図であり、同図において、1は光源、2はレン
ズ、3は所定波長の光のみを通す単色化フイル
タ、4は光源1からの光を直線偏光する偏光子、
5はフアラデーセルでフアラデーガラス5、フ
アラデーコイル5を備えている。6は試料セ
ル、7は検光子であり偏光子4と検光子7は、そ
れらによる偏光面が互いに直交するように設置さ
れている。8は検出器(たとえばフオトマル)、
9は高圧電源、10はカウンター、11はパワー
アンプ、12は電流検出器、13,14はアンプ
である。そしてこの実施例では前記フアラデーセ
ル5(フアラデーガラス5)の両側に反射鏡1
5,16が設けてあり光源1から投射されフアラ
デーガラス5を通過した光は、まず反射鏡15
にあたつて反射されて再びそのフアラデーガラス
を通過し次に反射鏡16にあたつて反射され
てさらに再びそのフアラデーガラス5を通過し
た後試料セル6、検光子7へと送られるようにな
つている。そして偏光子4と検光子7は前述した
ように偏光面が直交した配置になつており試料セ
ル6内に試料が入つていないときは旋光角は0゜
であり電流検出器によつて検出されるフアラデー
セル5の電流値は0となり測定旋光角は0゜とな
る。試料セル6内に旋光角α゜の試料が入ると検
光子7での光の偏光面は検光子7の偏光面とα゜
だけ直交からずれ、そのずれを検出器8が検出す
る。すると、この検出器8の出力が0となるよう
にカウンタ10、パワーアンプ11を介してフア
ラデーコイル5に自動的に電流が流れ、光の偏
光面を−α゜だけ回転させ、検光子7での光の偏
光面は、再度偏光子4と直交するようになる。と
ころでフアラデーコイル5に流す電流値と、光
の偏光面の回転角は比例関係にあるため試料の旋
光角が大きい程、フアラデーコイル5に流す電
流値を大きくする必要がある。しかし電流値を大
きくすると、発熱が大きくなるので流すことが出
来る電流値にはおのずと限界がある。また、フア
ラデーコイルの巻数を多くしたりフアラデーガラ
スの長さを長くすれば、それに比例して測定でき
る角度は大きくできるが、装置の大きさにもおの
ずと制約がある。ところが前記実施例では同一の
フアラデーガラス5内を測定光が複数回通過す
る構造としてあるので従来と同じ大きさのフアラ
デーセルを用いて従来と同じ角度の旋光角を測定
するのに電流値がそれだけ少なくてすみ(第1図
の場合従来の電流値の1/3でよい)又従来と同じ大 きさのフアラデーセルを用い従来と同じ電流値と
するとそれだけ高角度の旋光角(第1図の場合3
倍)の測定を行なうことができることとなる。
尚、前記実施例でフアラデーセル5の両側に反射
鏡15,16を設置して光が合計3回同一のフア
ラデーガラス5を通過するように構成したが、
第2図に示すように、フアラデーセル5の一側
(光源1とは反対側)にのみ反射鏡15を設け、
光が2回同一のフアラデーガラス5を通過する
ようにしてもよい。(この場合、試料セル6、検
光子7等は光源側に配置される。)又、図示はし
ないが反射鏡の反射面の大きさ、角度、反射鏡の
数などを適宜選択することにより、光が同一のフ
アラデーガラスを通過する回数を種々変更でき
る。
FIG. 1 is an overall configuration diagram showing a first embodiment of the present invention. In the figure, 1 is a light source, 2 is a lens, 3 is a monochromating filter that passes only light of a predetermined wavelength, and 4 is a light source 1. A polarizer that linearly polarizes the light of
5 is a Faraday cell equipped with a Faraday glass 5 1 and a Faraday coil 5 2 . 6 is a sample cell, and 7 is an analyzer. The polarizer 4 and the analyzer 7 are installed so that their planes of polarization are orthogonal to each other. 8 is a detector (e.g. photomal);
9 is a high voltage power supply, 10 is a counter, 11 is a power amplifier, 12 is a current detector, and 13 and 14 are amplifiers. In this embodiment, reflecting mirrors 1 are provided on both sides of the Faraday cell 5 (Faraday glass 5 1 ).
The light projected from the light source 1 and passed through the Faraday glass 51 first passes through the reflecting mirror 15.
The light is reflected by the mirror 16, passes through the Faraday glass 51 again, is reflected by the reflecting mirror 16, passes through the Faraday glass 51 again, and is then sent to the sample cell 6 and analyzer 7. It's summery. As mentioned above, the polarizer 4 and analyzer 7 are arranged so that their polarization planes are perpendicular to each other, and when there is no sample in the sample cell 6, the angle of optical rotation is 0°, which is detected by the current detector. The current value of the Faraday cell 5 becomes 0, and the measured angle of optical rotation becomes 0°. When a sample with an optical rotation angle α° enters the sample cell 6, the polarization plane of the light on the analyzer 7 deviates from being orthogonal to the polarization plane of the analyzer 7 by α°, and the detector 8 detects this deviation. Then, a current automatically flows to the Faraday coil 52 via the counter 10 and the power amplifier 11 so that the output of the detector 8 becomes 0, rotates the polarization plane of the light by -α°, and the analyzer 7 The polarization plane of the light becomes perpendicular to the polarizer 4 again. Incidentally, since the value of the current flowing through the Faraday coil 52 and the rotation angle of the polarization plane of light are in a proportional relationship, the larger the angle of optical rotation of the sample is, the larger the value of the current flowing through the Faraday coil 52 needs to be. However, as the current value increases, heat generation increases, so there is naturally a limit to the current value that can be passed. Furthermore, if the number of turns of the Faraday coil is increased or the length of the Faraday glass is increased, the angle that can be measured can be increased proportionally, but the size of the device is also naturally limited. However, in the above-mentioned embodiment, the measurement light passes through the same Faraday glass 51 multiple times, so the current value is correspondingly smaller to measure the same angle of optical rotation as the conventional one using a Faraday cell of the same size as the conventional one. (In the case of Fig. 1, 1/3 of the conventional current value is sufficient.) Also, if a Faraday cell of the same size as the conventional one is used and the current value is the same as the conventional one, the optical rotation angle will be higher (3 in the case of Fig. 1).
This means that it is possible to perform measurements of
In the embodiment described above, the reflectors 15 and 16 were installed on both sides of the Faraday cell 5 so that the light passed through the same Faraday glass 51 three times in total.
As shown in FIG. 2, a reflecting mirror 15 is provided only on one side of the Faraday cell 5 (the side opposite to the light source 1),
The light may pass through the same Faraday glass 51 twice. (In this case, the sample cell 6, analyzer 7, etc. are placed on the light source side.)Although not shown, by appropriately selecting the size and angle of the reflecting surface of the reflecting mirror, the number of reflecting mirrors, etc. The number of times that light passes through the same Faraday glass can be varied.

本発明は上述した構成よりなるので応答性が良
く、且つ、複雑な回転機構を必要とせず、測定精
度が回転機構の機械的精度に依存しないので高精
度測定が可能であるといつた純電気的法による長
所を有しているばかりでなく、従来この種の方法
において最大のネツクとなつていた測定角の限界
を大きく広げ簡単な構造で且つ装置を大型化する
ことなしに高角度測定を可能としたもので実用上
の効果まことに大である。
Since the present invention has the above-mentioned configuration, it has good responsiveness, does not require a complicated rotating mechanism, and the measurement accuracy does not depend on the mechanical accuracy of the rotating mechanism, making it possible to perform high-precision measurements. Not only does it have the advantages of a conventional method, but it also greatly expands the measurement angle limit, which has traditionally been the biggest problem with this type of method, and has a simple structure that enables high-angle measurements without increasing the size of the device. This has been made possible and the practical effects are truly great.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す全体構成図、
第2図は本発明の別実施例の要部を示す説明図で
ある。 1……光源、4……偏光子、5……フアラデー
セル、5……フアラデーガラス、6……試料セ
ル、7……検光子、8……検出器、15,16…
…反射鏡。
FIG. 1 is an overall configuration diagram showing an embodiment of the present invention;
FIG. 2 is an explanatory diagram showing the main parts of another embodiment of the present invention. 1... Light source, 4... Polarizer, 5... Faraday cell, 5 1 ... Faraday glass, 6... Sample cell, 7... Analyzer, 8... Detector, 15, 16...
…Reflector.

Claims (1)

【特許請求の範囲】[Claims] 1 光源と検出器との間に、前記光源からの光を
直線偏光する偏光子と、この偏光子に対して偏光
面が90゜異なるように固定的に設けられた検光子
と、これら偏光子、検光子間に位置するフアラデ
ーセル及び試料セルとを備え、前記偏光子を透過
した光が試料セル内の試料により旋光され、その
旋光により偏位した成分の光が検光子を透過して
前記検出器に受光され、これによる検出器出力が
最小となるように、前記フアラデーセルに電流を
流し、その電流量とフアラデーセルによる偏光面
回転角度とが比例することを利用して、フアラデ
ーセルを流した電流値から試料の旋光角を測定す
るようにした旋光計であつて、前記フアラデーセ
ルの少なくとも光源とは反対側の一側に反射鏡を
設け、該反射鏡にて光を反射させることにより、
光がフアラデーセルにおける同一のフアラデーガ
ラス内を複数回通過するように構成してあること
を特徴とする旋光計。
1. A polarizer that linearly polarizes the light from the light source, an analyzer fixedly provided between the light source and the detector so that the plane of polarization differs by 90 degrees from the polarizer, and these polarizers. , comprising a Faraday cell and a sample cell located between the analyzers, the light transmitted through the polarizer is optically rotated by the sample in the sample cell, and the component of light that is deviated by the optical rotation is transmitted through the analyzer and detected. A current is passed through the Faraday cell so that the light is received by the Faraday cell, and the resulting detector output is minimized.Using the fact that the amount of current is proportional to the angle of rotation of the plane of polarization by the Faraday cell, the value of the current flowing through the Faraday cell is calculated. A polarimeter configured to measure the angle of optical rotation of a sample from the angle of rotation of the sample, wherein a reflecting mirror is provided on at least one side of the Faraday cell opposite to the light source, and the light is reflected by the reflecting mirror,
A polarimeter characterized in that light is configured to pass through the same Faraday glass in a Faraday cell multiple times.
JP12491282A 1982-07-16 1982-07-16 Polarimeter Granted JPS5915825A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12491282A JPS5915825A (en) 1982-07-16 1982-07-16 Polarimeter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12491282A JPS5915825A (en) 1982-07-16 1982-07-16 Polarimeter

Publications (2)

Publication Number Publication Date
JPS5915825A JPS5915825A (en) 1984-01-26
JPS6137569B2 true JPS6137569B2 (en) 1986-08-25

Family

ID=14897187

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12491282A Granted JPS5915825A (en) 1982-07-16 1982-07-16 Polarimeter

Country Status (1)

Country Link
JP (1) JPS5915825A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2403797A (en) * 2003-05-16 2005-01-12 Radiodetection Ltd Fibre optic cable detection
WO2013008593A1 (en) 2011-07-08 2013-01-17 三洋化成工業株式会社 Polyurethane resin for moisture-permeable water-proof materials, and polyurethane resin composition

Also Published As

Publication number Publication date
JPS5915825A (en) 1984-01-26

Similar Documents

Publication Publication Date Title
US4309110A (en) Method and apparatus for measuring the quantities which characterize the optical properties of substances
JPS58129372A (en) Magnetic field-light converter
US6181421B1 (en) Ellipsometer and polarimeter with zero-order plate compensator
US6473181B1 (en) Measurement of waveplate retardation using a photoelastic modulator
US3741660A (en) Conversion of circular dichroism spectropolarimeter to linear dichroism measurement mode
US3640626A (en) Measuring of the concentration of solid particles suspended in various regions in a fluid using polarized light
EP0080540A1 (en) Method and apparatus for measuring quantities which characterize the optical properties of substances
JPS6137569B2 (en)
US3481671A (en) Apparatus and method for obtaining optical rotatory dispersion measurements
Ledsham et al. Dispersive reflection spectroscopy in the far infrared using a polarising interferometer
US3016789A (en) Polarimetric apparatus
JPS63236945A (en) Crystal bearing analysis instrument which utilizes polarization characteristic of raman scattering light
JP3181655B2 (en) Optical system and sample support in ellipsometer
US3637311A (en) Optical dichroism measuring apparatus and method
JPS60249007A (en) Instrument for measuring film thickness
SU789686A1 (en) Density meter
JPH04127004A (en) Ellipsometer and its using method
JPS59100828A (en) Polarimeter
JPS6195230A (en) Apparatus for measuring reflectivity
JP3058896B2 (en) Polarization crosstalk measurement system for polarization-maintaining optical fiber
KR860000389B1 (en) Electric field detection apparatus
JPH04138339A (en) Thin-film measuring apparatus
JPH0361898B2 (en)
Wright et al. Spectrophotometric studies of ultra low loss optical glasses lll: ellipsometric determination of surface reflectances
JPH0518686Y2 (en)