JPS6137435A - Liquid-injection recording device - Google Patents

Liquid-injection recording device

Info

Publication number
JPS6137435A
JPS6137435A JP15914784A JP15914784A JPS6137435A JP S6137435 A JPS6137435 A JP S6137435A JP 15914784 A JP15914784 A JP 15914784A JP 15914784 A JP15914784 A JP 15914784A JP S6137435 A JPS6137435 A JP S6137435A
Authority
JP
Japan
Prior art keywords
filter
driving
liquid
bubbles
ink
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15914784A
Other languages
Japanese (ja)
Inventor
Hiroshi Kyogoku
浩 京極
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP15914784A priority Critical patent/JPS6137435A/en
Publication of JPS6137435A publication Critical patent/JPS6137435A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/17Ink jet characterised by ink handling
    • B41J2/175Ink supply systems ; Circuit parts therefor
    • B41J2/17563Ink filters

Landscapes

  • Ink Jet (AREA)

Abstract

PURPOSE:To increase the maximum frequency of driving pulses by simple constitution, cost thereof is low, and to conduct recording at high speed by providing a driving means effectively lowering the driving voltage of a generating element at the maximum frequency of driving pulses and using a filter with fine holes penetrating in the axial direction. CONSTITUTION:The form and structure of a filter 7 are formed to a columnar shape with a large number of fine holes 7a penetrating the whole approximately rectilinearly along the axial direction in a honeycomb manner, and the whole is shaped from ceramics. The diameter of the filter 7 takes size such as approximately 1mm., and the number of the holes 7a extend over several dozen or several hundreds, but optimum size and number of holes are selected according to the design, etc. of each device as these values. The filter 7 is formed to a honeycomb shape from ceramics having a high hydrophilic nature, bubbles are difficult to stay in the filter when they are taken into the filter 7, and bubbles are removed easily. Effective driving voltage is lowered only on maximum frequency, the quantity of ink injected when a meniscus slightly retreats from the noze of a nozzle is reduced, and there is no possibility of which bubbles are taken in from the outside after injection.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は液体噴射記録装置に関し、さらに詳しくは駆動
パルスの印加により吐出エネルギー発生素子が駆動され
て記録用液体の液滴を吐出する液吐出部を有し、前記液
吐出部に液体を供給する液流路にフィルタが設けられた
液体噴射記録装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a liquid jet recording device, and more particularly, the present invention relates to a liquid jet recording device, and more specifically, a liquid jet recording device having a liquid jetting portion that discharges droplets of recording liquid by driving a jetting energy generating element by applying a driving pulse. The present invention also relates to a liquid jet recording device in which a filter is provided in a liquid flow path that supplies liquid to the liquid ejecting section.

〔従来技術〕[Prior art]

この種のいわゆるオンデマンド型インクジェット記録装
置の従来の構成および動作を第1図〜第5図を参照して
説明する。
The conventional structure and operation of this type of so-called on-demand inkjet recording apparatus will be explained with reference to FIGS. 1 to 5.

第1図は上記装置の記録ヘッドの構成を示すものである
FIG. 1 shows the configuration of the recording head of the above apparatus.

同図に示すように記録ヘッドのインク吐出部は、ガラス
細管1の先端を絞って直径数10μmの吐出口2aを有
するノズル部2を形成し、ノズル部2側のガラス細管1
の外周上に上述の吐出エネルギー発生素子で円筒形の圧
電素子3を嵌合、固定して構成されている。圧電素子3
はリード線L11L、を介して印加される駆動電圧で駆
動されて収縮し、この加圧力によりノズル部2の吐出口
2aからインク液滴りが吐出される。
As shown in the figure, the ink ejection section of the recording head is formed by constricting the tip of a glass capillary 1 to form a nozzle section 2 having an ejection opening 2a with a diameter of several tens of micrometers.
A cylindrical piezoelectric element 3, which is the ejection energy generating element described above, is fitted and fixed onto the outer periphery of the ejection energy generating element. Piezoelectric element 3
is driven by a driving voltage applied through the lead wire L11L and contracts, and ink droplets are ejected from the ejection opening 2a of the nozzle portion 2 due to this pressurizing force.

一方ガラス細管1の後端にはガラス細管1にインクを供
給するだめのチューブ4が連結され、このチューブ4の
後端は記録ヘッドに設けられたインク貯蔵用のサブイン
クタンク5内のインク6中に浸漬されておシ、このチュ
ーブ4の後端にはフィルタ7が嵌合されている。
On the other hand, a tube 4 for supplying ink to the glass tube 1 is connected to the rear end of the glass tube 1, and the rear end of this tube 4 is connected to the ink 6 in a sub-ink tank 5 for storing ink provided in the recording head. A filter 7 is fitted to the rear end of the tube 4.

このジイルタフは気泡やゴミがガ2ス細管1に入るのを
阻止し、かつ圧電素子3の駆動時にガラス細管1内に発
生する圧力波を阻止する働きを有しておシ、例えば粒径
50〜100μm前後のポリエチレン粒子をフィルタの
形状に焼結した後、各種の親水処理を施したものが広く
用いられている。
This GIL Tough has the function of preventing air bubbles and dust from entering the gas capillary tube 1, and also blocking pressure waves generated within the glass capillary tube 1 when the piezoelectric element 3 is driven. Polyethylene particles of approximately 100 μm are sintered into a filter shape and then subjected to various hydrophilic treatments, which are widely used.

またサブインクタンク5はインク供給チューブ8を介し
て不図示のメインインクタンクに連結されている。
Further, the sub-ink tank 5 is connected to a main ink tank (not shown) via an ink supply tube 8.

以上の構成からなる記録ヘッドは不図示のキャリッジ上
に搭載され、キャリッジの駆動と不図示の記録用紙の送
りによって記録用紙を走査する。
The recording head configured as described above is mounted on a carriage (not shown), and scans the recording paper by driving the carriage and feeding the recording paper (not shown).

この走査時に圧電素子3の駆動でインク液滴りが。During this scanning, the piezoelectric element 3 is driven, causing ink droplets.

ノズル部2の吐出口2aから吐出されることにより記録
用紙上にドツト記録が行なわれる。
By ejecting from the ejection opening 2a of the nozzle section 2, dot recording is performed on the recording paper.

次に第2図は第1図における圧電素子3を駆動する為の
駆動回路図である。ここで圧電素子6はコンデンサとし
て構成されている。同図のトランジスタTrのペースに
駆動パルスPが入力されると、圧電素子3はコンデンサ
としてTr 、 R1を通して電圧VNN迄急速に充電
される。R1は制限抵抗であ!11100A前後である
。駆動パルスPが途切れると、通常数千ピコファラッド
の容量を持つ圧電素子6に蓄えられた電荷は、抵抗R1
,R2を通じて放電される。この放電動作をリード線L
2と共通アース間の電圧■。の波形で示したのが第3図
である。
Next, FIG. 2 is a drive circuit diagram for driving the piezoelectric element 3 in FIG. 1. Here, the piezoelectric element 6 is configured as a capacitor. When a driving pulse P is input to the transistor Tr shown in the figure, the piezoelectric element 3 is rapidly charged to the voltage VNN through Tr and R1 as a capacitor. R1 is a limiting resistance! It is around 11100A. When the driving pulse P is interrupted, the charge stored in the piezoelectric element 6, which normally has a capacitance of several thousand picofarads, is transferred to the resistor R1.
, R2. This discharge operation is performed by the lead wire L.
Voltage between 2 and common ground■. FIG. 3 shows the waveform.

この様な駆動回路で記録を行う場合、第4図(イ)に示
す様なタイミング信号tを基にして、第4図の)に示す
様な圧電素子における駆動電圧■。の波形が得られる。
When recording with such a drive circuit, the drive voltage (2) at the piezoelectric element as shown in FIG. 4(A) is determined based on the timing signal t shown in FIG. 4(A). A waveform of

ここで第4図の)においてaの部分が素子駆動の最高周
波数部分子maxであシ、bの部分がfmax / 2
である。
Here, in Figure 4), the part a is the highest frequency molecule max for driving the element, and the part b is fmax / 2.
It is.

この様に駆動周波数は、fmax及びその1/2゜1/
3 、1/4へととびとびの周波数で圧電素子3が駆動
されるが、記録密度が上がるか、キャリッジの走査速度
が速くなって第4図囚(B)において駆動すべき周期T
が小さくなり、fma x値が大きくなると、第5図に
図示しだ様にノズル部2内のインクのメニスカスの位置
が変化する。
In this way, the driving frequency is fmax and its 1/2°1/
The piezoelectric element 3 is driven at a frequency that varies from 3 to 1/4, but as the recording density increases or the scanning speed of the carriage increases, the period T to be driven in Figure 4 (B) increases.
As the fmax value becomes smaller and the fmax value becomes larger, the position of the ink meniscus within the nozzle portion 2 changes as shown in FIG.

即ち、駆動周波数が比較的低い間はメニスカスは9の位
置にあシ、駆動周波数が上って来ると9ではなく少し内
側の10の位置に後退してくる。
That is, while the driving frequency is relatively low, the meniscus remains at position 9, and as the driving frequency increases, it retreats to position 10, which is a little inside instead of 9.

これはインク6のメニスカスの復帰がインクの表面張力
の力によってのみ行なわれインクの噴射が頻繁になって
来るとメニスカスが9迄復帰しない内に再度インクの噴
射が行なわれる為である。
This is because the return of the meniscus of the ink 6 is carried out only by the force of the surface tension of the ink, and when ink ejection becomes frequent, the ink is ejected again before the meniscus returns to 9.

また前述した圧電素子3の駆動によりガラス細管1内に
発生する圧力波をフィルタ7が有効に阻止していない場
合も、上記のメニスカスの位置変化の一因となる。
Further, if the filter 7 does not effectively block the pressure waves generated within the glass capillary 1 due to the drive of the piezoelectric element 3 described above, this also becomes a cause of the above-mentioned change in the position of the meniscus.

このようにメニスカスの位置が変化した状況で連続噴射
が続行されると、ノズルからのインク噴射後ノズル内に
外部より気泡を取り込み易くなる。
If continuous ejection is continued in a situation where the position of the meniscus has changed in this way, air bubbles are likely to be drawn into the nozzle from the outside after ink is ejected from the nozzle.

又メニスカスの位置が安定していない所で駆動される為
に、インクの噴射量が変化し、又インク液滴の飛翔速度
も変化して正確な着弾が阻害され易くなる。
Furthermore, since the meniscus is driven at an unstable position, the amount of ink ejected changes, and the flying speed of the ink droplets also changes, which tends to hinder accurate landing.

従って適正に記録を行なうだめには、単にfmaxを高
く設定して記録速度を上げることは困難であり、上記し
た様な理由のため従来ではfmaxは3)G(z程度が
限度であった。
Therefore, in order to perform proper recording, it is difficult to increase the recording speed by simply setting fmax high, and for the reasons mentioned above, conventionally fmax has been limited to approximately 3)G(z).

一方上記の様にfmaxを高く設定できない他の理由と
して従来のフィルタ7の特性が不安定であるということ
がある。
On the other hand, another reason why fmax cannot be set high as described above is that the characteristics of the conventional filter 7 are unstable.

すなわち前述したようにポリエチレン粒子を焼結した様
な従来のフィルタではインクの通液性等のフィルタの特
性を数値的に管理するのが極めて困難である。そこでマ
ージンを大きくする為に一般に通液抵抗を大きめに設定
してやる傾向にある。
That is, as mentioned above, with conventional filters made of sintered polyethylene particles, it is extremely difficult to numerically control filter characteristics such as ink permeability. Therefore, in order to increase the margin, there is a general tendency to set the liquid flow resistance to a larger value.

しかしながら、このことによって、液滴吐出エネルギー
が有効に使用されなくなる場合が生じていた。まだフィ
ルタ内に気泡が取シ込まれた場合。
However, due to this, there have been cases where the droplet ejection energy is not used effectively. If air bubbles are still trapped in the filter.

その気泡によってフィルタの特性が変化するが、従来の
フィルタでは一度気泡を取り込んでしまうとその除去は
極めて困難で高圧で押し出す等の特別な方法によらない
と除去できない。
The air bubbles change the properties of the filter, but once air bubbles are introduced into conventional filters, it is extremely difficult to remove them, and they cannot be removed without a special method such as extrusion at high pressure.

このように従来のフィルタでは、フィルタの特性自身が
充分でないばかりかその特性が不安定であるためノズル
部2へのインク供給量も不安定となり、fmaxのだめ
の最適値を保つことが困難となるので、安全策のために
fmaxを低めに設定している。
In this way, with conventional filters, not only the characteristics of the filter themselves are not sufficient, but also the characteristics are unstable, so the amount of ink supplied to the nozzle section 2 is also unstable, making it difficult to maintain the optimum value of fmax. Therefore, fmax is set low as a safety measure.

以上の問題点は上述の従来例に限らず最初に述べた種類
の液体噴射記録装置の全てに共通する。
The above-mentioned problems are not limited to the conventional example described above, but are common to all liquid jet recording apparatuses of the type mentioned first.

〔目 的〕〔the purpose〕

本発明は以上のような従来の問題点に鑑みてなされたも
ので、上述の種類の液体噴射記録装置において簡単で安
価な構成により記録ヘッドの吐出エネルギー発生素子を
駆動する駆動パルスの最高周波数を高め、より高速に記
録を行なえる液体噴射記録装置を提供することを目的と
している0すゐ導溺嘴刈日婢弥縦例染−、−、 [発明の概要] 以上の目的を達成するために本発明では、駆動パルスの
印加により吐出エネルギー発生素子が駆動されて記録用
液体の液適を吐出する液吐出部を有し、前記液吐出部に
液体を供給する液流路にフィルタが設けられた液体噴射
記録装置において、前記駆動パルスの最高周波数での前
記発生素子の駆動電圧を実効的に低くする駆動手段を具
備するとともに、前記フィルタとして軸方向に貫通する
微細な孔を有するフィルタを用いた構成を採用した。
The present invention has been made in view of the above-mentioned conventional problems, and it is possible to increase the maximum frequency of the drive pulses that drive the ejection energy generating elements of the print head using a simple and inexpensive structure in the above-mentioned type of liquid jet recording apparatus. [Summary of the Invention] In order to achieve the above objects. According to the present invention, there is provided a liquid ejecting section that ejects a droplet of recording liquid by driving an ejecting energy generating element by application of a drive pulse, and a filter is provided in a liquid flow path that supplies the liquid to the liquid ejecting section. The liquid jet recording device according to the present invention includes a driving means for effectively lowering the driving voltage of the generating element at the highest frequency of the driving pulse, and a filter having fine holes penetrating in the axial direction as the filter. The configuration used was adopted.

[実施例] 以下、先述の従来例で説明したインクジェットプリンタ
に本発明を適用した実施例を第6図以下を参照して説明
する。なお本実施例は以下に説明する部分のみが従来例
と異なり、従来と同様の他の部分の説明は省略する。
[Example] Hereinafter, an example in which the present invention is applied to the inkjet printer described in the conventional example described above will be described with reference to FIG. 6 and subsequent figures. Note that this embodiment differs from the conventional example only in the parts described below, and the explanation of other parts similar to the conventional example will be omitted.

まず本実施例では先述のインクジェットプリンタの構成
において記録ヘッドの吐出部にインクを供給するチュー
ブ4に設けられるフィルタ7として第6図(ト)、■)
に示すフィルタ7を用いた。ここで第6図(4)はフィ
ルタ7全体の斜視図、第6図(J3)は第6図(ト)中
の上面の一部の拡大平面図である。
First, in this embodiment, the filter 7 provided in the tube 4 that supplies ink to the ejection section of the recording head in the configuration of the inkjet printer described above is used as the filter 7 in FIG.
A filter 7 shown in FIG. Here, FIG. 6(4) is a perspective view of the entire filter 7, and FIG. 6(J3) is an enlarged plan view of a part of the upper surface in FIG. 6(G).

両図に示すように本実施例ではフィルタ7の形状構造を
、レンコン状に軸方向に沿ってほぼ真直ぐに全体を貫通
する微細な孔7aを多数有した円柱形状に形成し、全体
をセラミックから形成した。
As shown in both figures, in this embodiment, the filter 7 is formed into a cylindrical shape having many fine holes 7a that penetrate almost straight through the whole along the axial direction in the shape of a lotus root, and the whole is made of ceramic. Formed.

フィルター7の直径は例えば1顛程度であシ、フィルタ
ー7に設けられた孔7aの数は数十〜数百とされている
ものを本実施例では使用したがもちろんこれ等の値は、
各装置の設計等によって最適な大きさ、孔の数が選ばれ
る。
The diameter of the filter 7 is, for example, about one diameter, and the number of holes 7a provided in the filter 7 is said to be several tens to several hundreds, but of course, these values are
The optimum size and number of holes are selected depending on the design of each device.

このようにフィルタ7は元来親水性の高いセラミックか
らレンコン状に形成されているので、気泡がフィルタ7
内に取シ込まれた場合にフィルタ口内:に滞留しにくく
、気泡の除去が容易である。
In this way, since the filter 7 is originally made of highly hydrophilic ceramic and is formed into a lotus root shape, air bubbles can be removed from the filter 7.
When air bubbles are taken into the filter, they are less likely to remain in the filter mouth, making it easy to remove air bubbles.

またフィルタ7の通液性等の特性をフ、イルタフの長さ
及び孔の径と数の設定によ多数値的に自在に設計し管理
することができる。
Further, the characteristics such as liquid permeability of the filter 7 can be freely designed and managed in a multivalued manner by setting the length of the filter and the diameter and number of holes.

従ってフィルタ7の特性を、先述のfmaxを高くした
場合の条件に合わせて適切に設定でき、この分子max
に対するマージン幅を小さく設定できるので充分子ma
 xを高くすることができる。
Therefore, the characteristics of the filter 7 can be appropriately set according to the conditions when fmax is increased, and this molecule max
Since the margin width can be set small, sufficient child ma
x can be made high.

また本実施例のフィルタ7によれば、フィルタ7の製造
時に親水化処理を省略できる。またチューブ4への嵌合
、固定時に従来と異なり嵌合部の角部等が破壊されるこ
とが少なく、その破片を記録ヘッド内から除去する工程
も省略できるので記録ヘッドの製造コストの低下を図れ
る。
Furthermore, according to the filter 7 of this embodiment, the hydrophilic treatment can be omitted when manufacturing the filter 7. In addition, unlike conventional methods, the corners of the fitting part are less likely to be broken when fitting and fixing into the tube 4, and the process of removing the pieces from inside the recording head can be omitted, reducing the manufacturing cost of the recording head. I can figure it out.

次に本実施例では、前述の吐出エネルギー発生体である
圧電素子3の駆動電圧を、駆動パルスの周波数が最高で
ある時に実効的に低くする構成を採用した。この構成を
第7図(4)、■)および第8図を参照して説明する。
Next, in this embodiment, a configuration is adopted in which the drive voltage of the piezoelectric element 3, which is the ejection energy generator described above, is effectively lowered when the frequency of the drive pulse is at its highest. This configuration will be explained with reference to FIG. 7(4), 2) and FIG. 8.

第7図(イ)、ω)は本実施例の記録タイミング信号t
と駆動電圧V。の波形との関係を示す。これを従来例の
第4図(A) 、 (B)と比較して見ると分かる様に
、駆動電圧V。′の放電降下曲線がヌース電位に戻らな
い内に次の記録タイミングとなる。 −また本実施では
、fmaxの連続駆動時においてタイミングパルス1つ
分の間が開くと、前の駆動電圧は元に戻る様定められて
いる。
FIG. 7(a), ω) is the recording timing signal t of this embodiment.
and driving voltage V. shows the relationship with the waveform of As can be seen by comparing this with the conventional example shown in FIGS. 4(A) and 4(B), the drive voltage V. The next recording timing comes before the discharge drop curve of ' has not returned to the Nouss potential. - Also, in this embodiment, it is determined that when an interval corresponding to one timing pulse opens during continuous driving of fmax, the previous driving voltage returns to the original value.

このようにするために本実施例では、第2図における駆
動回路の放電抵抗R2を通常の2倍〜4倍の値にとる事
によって、圧電素子3の持つキャパシタンス成分とで構
成されるCR時定数を太きくし、これにより最大周波数
の時だけ次の記録タイミング迄電圧を零に戻らない様に
して、次の圧電素子に対する実効的な駆動電圧値が低く
なる様にしている。
In order to do this, in this embodiment, the discharge resistance R2 of the drive circuit shown in FIG. The constant is made thicker so that the voltage does not return to zero until the next recording timing only at the maximum frequency, so that the effective drive voltage value for the next piezoelectric element becomes low.

この様に最高周波数の時だけ実効的な駆動電圧が低くな
る様にすると、メニスカスが少しノズル先端よシ引っ込
んだ時に噴射されるインク量が減少し、噴射後に外部よ
り気泡がとり込まれる心配がない。
In this way, if the effective drive voltage is set to be low only at the highest frequency, the amount of ink ejected will decrease when the meniscus retracts a little from the nozzle tip, and there is a risk that air bubbles will be drawn in from the outside after ejection. do not have.

また第8図は圧電素子6の駆動電圧が高い場合と低い場
合での、圧電素子乙の駆動パルスの周波数とインク液滴
の噴射速度の関係を示すもので、同図において、曲線V
Hが高い駆動電圧での特性を示し、曲線VL、が低い駆
動電圧での特性を示している。図に示される様に、駆動
電圧が高い方が高周波数になるにつれて噴射速度の変動
が太きくなる。
FIG. 8 shows the relationship between the frequency of the driving pulse of the piezoelectric element 6 and the ejection speed of the ink droplet when the driving voltage of the piezoelectric element 6 is high and low.
Curve H indicates the characteristics at a high drive voltage, and curve VL indicates the characteristics at a low drive voltage. As shown in the figure, the higher the driving voltage is, the higher the frequency becomes, the wider the variation in the injection speed becomes.

そして一般に駆動周波数が上がるにつれてメニスカスの
位置が変動してインク液滴の噴射速度が変動する様にな
るが、実効電圧が下がるとその程度も低下する。従って
fmax時だけ実効電圧を下げる事によってこの変動幅
を小さくする事も出来る。
Generally, as the driving frequency increases, the position of the meniscus changes and the ejection speed of ink droplets changes, but as the effective voltage decreases, the degree of this also decreases. Therefore, by lowering the effective voltage only at fmax, this fluctuation range can be reduced.

実効電圧の低下量は、必要に応じて適宜決定されるが好
ましくは最高周波数駆動時に約1割程度とされる。
The amount of reduction in effective voltage is determined as appropriate depending on the need, but is preferably about 10% at the time of maximum frequency driving.

このように圧電素子6の駆動電圧を駆動ノくルスの周波
数が最高である時に実効的に低くすることにより、最高
周波数fmaxでの駆動時に気泡の取り込みおよび噴射
速度の変動を防止でき、最高周波数fmaxを高く設定
できる。
In this way, by effectively lowering the drive voltage of the piezoelectric element 6 when the frequency of the drive nozzle is at its highest, it is possible to prevent the intake of air bubbles and fluctuations in the injection speed when driving at the highest frequency fmax, and fmax can be set high.

しかもこの構成は、先述したように圧電素子3の駆動回
路の放電抵抗R2の抵抗値を変更するというような極め
て簡単で安価な方法に実現できる。
Moreover, this configuration can be realized in an extremely simple and inexpensive manner by changing the resistance value of the discharge resistor R2 of the drive circuit of the piezoelectric element 3 as described above.

またこの構成によれば圧電素子乙の駆動電力を低減させ
ることができる。
Moreover, according to this configuration, the driving power of the piezoelectric element B can be reduced.

以上のように本実施例によれば、上記の圧電素子6の駆
動電圧に関する駆動手段の構成とフィルタ7に関する構
成の相乗作用により最高周波数fmaxを従来よシ著し
く高くできる。
As described above, according to this embodiment, the maximum frequency fmax can be made significantly higher than that of the prior art due to the synergistic effect of the configuration of the driving means regarding the driving voltage of the piezoelectric element 6 and the configuration regarding the filter 7.

ちなみに本実施例の装置で実際に試験したところ、fm
axを従来の2倍の61G−1zとしても適正に記録を
行なえることが確認された。
By the way, when we actually tested using the device of this example, fm
It has been confirmed that proper recording can be performed even when the ax is set to 61G-1z, which is twice the conventional value.

なお以上のフィルタ7と吐出エネルギー発生素子の駆動
電圧に関する本発明の構成は実施例の装置に限らず、最
初に述べた種類の液体噴射記録装置の全てに適用できる
Note that the configuration of the present invention regarding the drive voltage of the filter 7 and the ejection energy generating element described above is not limited to the apparatus of the embodiment, but can be applied to all liquid jet recording apparatuses of the type mentioned at the beginning.

〔効 果〕〔effect〕

以上の説明から明らかなように本発明の液体噴射記録装
置によれば、吐出エネルギー発生素子を駆動する駆動パ
ルスの周波数が最高である時に前記素子の駆動電圧を実
効的に低くする手段を設けるとともに、液吐出部に記録
用液体を供給する液流路中に設けられるフィルタとして
、軸方向に貫通する微細な孔を多数有するセラミックフ
ィルタを用いたので、極めて簡単で安価な構成により上
記の最高周波数を高く設定し、高速記録が行なえるとい
う優れた効果が得られる。
As is clear from the above description, according to the liquid jet recording apparatus of the present invention, a means is provided for effectively lowering the driving voltage of the ejection energy generating element when the frequency of the driving pulse for driving the element is the highest. As a filter installed in the liquid flow path that supplies the recording liquid to the liquid discharge section, a ceramic filter having a large number of fine holes penetrating in the axial direction was used, so the above maximum frequency could be achieved with an extremely simple and inexpensive configuration. The excellent effect of high-speed recording can be obtained by setting the value high.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第5図は従来のインクジェット記録装置を説明
するもので、第1図はインクジェット記録装置の記録ヘ
ッドの構造を示す断面図、第2図は圧電素子の駆動回路
図、第3図は第2図の圧電素子における駆動電圧の波形
図、第4図囚、(B)はそれぞれタイミング信号及び圧
電素子の駆動信号の波形図、第5図はメニスカスの状態
を説明する説明図、第6図以下は本発明の詳細な説明す
るもので、第6図(5)はフィルタの全体斜視図、第6
図(B)は第6図(4)の上面の一部拡大平面図、第7
図(4)、(B)はそれぞれタイミング信号及び圧電素
子の駆動信号の波形図、第8図は圧電素子に加える駆動
電圧を変えた時の駆動周波数と液滴噴射速度の関係を説
明する線図である。 1・・・ガラス細管   2・・・ノズル部6・・・圧
電素子    4・・・チューブ5・・・サブインクタ
ンク  6・・・インク7・・・フィルタ    R2
・・・放電抵抗特許出願人  キ ヤ ノ ン 株式会
社第1図 第2図 第3図 第4図(A) 第4図(B) O 第5図 第6図(A)    第6図(B) 第7図(A) を 第7図(B) 第8図 /S1 珈勤@偉拉
1 to 5 illustrate a conventional inkjet recording device, in which FIG. 1 is a sectional view showing the structure of the recording head of the inkjet recording device, FIG. 2 is a driving circuit diagram of a piezoelectric element, and FIG. 3 is a waveform diagram of the drive voltage in the piezoelectric element in Figure 2, Figure 4 (B) is a waveform diagram of the timing signal and the drive signal of the piezoelectric element, respectively, Figure 5 is an explanatory diagram explaining the state of the meniscus, Figure 6 and the following are detailed explanations of the present invention. Figure 6 (5) is an overall perspective view of the filter;
Figure (B) is a partially enlarged plan view of the upper surface of Figure 6 (4), Figure 7
Figures (4) and (B) are waveform diagrams of the timing signal and drive signal of the piezoelectric element, respectively, and Figure 8 is a line explaining the relationship between the drive frequency and droplet ejection speed when changing the drive voltage applied to the piezoelectric element. It is a diagram. 1... Glass thin tube 2... Nozzle part 6... Piezoelectric element 4... Tube 5... Sub ink tank 6... Ink 7... Filter R2
...Discharge resistance patent applicant Canon Corporation Figure 1 Figure 2 Figure 3 Figure 4 (A) Figure 4 (B) O Figure 5 Figure 6 (A) Figure 6 (B) ) Figure 7 (A) Figure 7 (B) Figure 8/S1 Coffee @Weila

Claims (1)

【特許請求の範囲】[Claims] 駆動パルスの印加により吐出エネルギー発生素子が駆動
されて記録用液体の液滴を吐出する液吐出部を有し、前
記液吐出部に液体を供給する液流路にフィルタが設けら
れた液体噴射記録装置において、前記駆動パルスの最高
周波数での前記発生素子の駆動電圧を実効的に低くする
駆動手段を具備するとともに、前記フィルタとして軸方
向に貫通する微細な孔を有するフィルタを用いたことを
特徴とする液体噴射記録装置。
Liquid jet recording, comprising a liquid ejecting section in which an ejection energy generating element is driven by application of a drive pulse to eject droplets of recording liquid, and a filter is provided in a liquid flow path that supplies liquid to the liquid ejecting section. The apparatus is characterized in that it is equipped with a driving means that effectively lowers the driving voltage of the generating element at the highest frequency of the driving pulse, and that a filter having fine holes penetrating in the axial direction is used as the filter. A liquid jet recording device.
JP15914784A 1984-07-31 1984-07-31 Liquid-injection recording device Pending JPS6137435A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15914784A JPS6137435A (en) 1984-07-31 1984-07-31 Liquid-injection recording device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15914784A JPS6137435A (en) 1984-07-31 1984-07-31 Liquid-injection recording device

Publications (1)

Publication Number Publication Date
JPS6137435A true JPS6137435A (en) 1986-02-22

Family

ID=15687281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15914784A Pending JPS6137435A (en) 1984-07-31 1984-07-31 Liquid-injection recording device

Country Status (1)

Country Link
JP (1) JPS6137435A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0887190A3 (en) * 1997-06-23 1999-09-15 Seiko Epson Corporation Ink-jet recording device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0887190A3 (en) * 1997-06-23 1999-09-15 Seiko Epson Corporation Ink-jet recording device
EP1369247A3 (en) * 1997-06-23 2005-11-09 Seiko Epson Corporation Ink-jet recording device

Similar Documents

Publication Publication Date Title
DE60035963T2 (en) METHOD FOR CONTROLLING AN INK HEAD PRESSURE HEAD AND INK HEAD RECORDING DEVICE
EP0145130B1 (en) On-demand type ink-jet print head having fluid control means
JPH08510420A (en) High frequency drop-on-demand inkjet system
CA2184076C (en) Improvements relating to pulsed droplet deposition apparatus
US6419336B1 (en) Ink ejector
JPS63153148A (en) Liquid jet recording method
EP1551637A2 (en) Droplet ejection device
JPS6137435A (en) Liquid-injection recording device
US6260959B1 (en) Ink ejector
JPS6135254A (en) Recording head for ink jet recorder
JP2936358B2 (en) Driving method of inkjet print head
JPH03190747A (en) Ink jet recording apparatus
JPH01285355A (en) Ink jet recorder
JPH04263950A (en) Ink jet head
JP4379963B2 (en) Driving method of on-demand type multi-nozzle inkjet head
JP2002144557A (en) Method for driving ink-jet head
JPS6099661A (en) Liquid drop injector
JPS6225060A (en) Driving method for recording head
JPS6052352A (en) Inkjet recorder
JP3094587B2 (en) Inkjet head
JPS6225058A (en) Driving method for recording head
JPS6135963A (en) Ink jet recording apparatus
JPS60107355A (en) Driving method for recording head of ink jet recorder
JPS59106973A (en) Ink jet recording apparatus
JPS6099662A (en) Filter