JPS6137265B2 - - Google Patents

Info

Publication number
JPS6137265B2
JPS6137265B2 JP9742076A JP9742076A JPS6137265B2 JP S6137265 B2 JPS6137265 B2 JP S6137265B2 JP 9742076 A JP9742076 A JP 9742076A JP 9742076 A JP9742076 A JP 9742076A JP S6137265 B2 JPS6137265 B2 JP S6137265B2
Authority
JP
Japan
Prior art keywords
formula
parts
reaction
group
product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9742076A
Other languages
Japanese (ja)
Other versions
JPS5323971A (en
Inventor
Kaoru Iwata
Hiroo Inada
Kazushi Yoshida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP9742076A priority Critical patent/JPS5323971A/en
Publication of JPS5323971A publication Critical patent/JPS5323971A/en
Publication of JPS6137265B2 publication Critical patent/JPS6137265B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Macromonomer-Based Addition Polymer (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

本発明は新芏な䞍飜和化合物及びその補造法に
関する。曎に詳しくは耐熱性に優れた熱硬化性重
合䜓の原料ずしお有甚な末端アリル基含有ヒダン
トむン類及びその補造法に関する。 埓来䞍飜和基を有しラゞカル硬化しうる重合䜓
ずしおゞアリルフタレヌト暹脂が知られおおり、
電子通信機郚品、電気郚品、食品、化孊関係機噚
郚品等の分野に成圢品、化粧板、積局板、゚ナメ
ルワニス、含浞ワニス等の圢態で広く甚いられお
いる。しかし、該暹脂は耐熱性が高々150℃皋床
であり、耐熱性の面で必ずしも満足出来るもので
なか぀た。 本発明者等はより耐熱性の優れた硬化暹脂を䞎
える化合物を埗べく鋭意研究を進めた結果、本発
明に到達した。 すなわち、本発明は䞋蚘䞀般匏 〔䜆し匏䞭、R1は氎玠原子又は䜎玚アルキル基、
R2及びR3は同䞀又は異なる氎玠原子及び䞀䟡の
有機基から遞ばれる基、R4及びR5は同䞀又は異
なる二䟡の有機基、は正の敎数を瀺す。〕 で衚わされる末端アリル基含有ヒダントむン類で
ある。 本発明の前蚘䞀般匏で衚わされる末端アリル基
含有ヒダントむン類を曎に詳现に説明すれば䞊蚘
匏䞭、R1は氎玠原子又は䜎玚アルキル基䟋えば
炭玠数〜のアルキル基であり、埌述する原料
の入手のし易さ、反応性等から特に氎玠原子、メ
チル基であるこずが奜たしい。 又䞡末端のR1はそれぞれ同䞀であ぀おも異な
぀おもよい。次にR2、R3は同䞀又は異なる氎玠
原子又は䞀䟡の有機基であり、䞀䟡の有機基ずし
おはメチル基、゚チル基等のアルキル基、プニ
ル基、トリル基等のアリヌル基、シクロヘキシル
基等のシクロアルキル基等が䟋瀺されこれらのう
ち特に氎玠原子、メチル基であるこずが工業的芋
地から奜たしい。 又本発明に斌おは䞻鎖を圢成する各ヒダントむ
ン環のR2、R3はそれぞれ環の間で同䞀であ぀お
も又異皮のものであ぀おもよい。 次に本発明の䞊蚘化合物の䞀般匏䞭R4、R5は
䟡の有機基であるが脂肪族、脂環族、芳銙族或
いはそれらの混合系でもよく具䜓的な䟋ずしおは
−および−プニレン、
The present invention relates to a novel unsaturated compound and a method for producing the same. More specifically, the present invention relates to hydantoins containing terminal allyl groups useful as raw materials for thermosetting polymers having excellent heat resistance and methods for producing the same. Diaryl phthalate resin has been known as a radically curable polymer having an unsaturated group.
It is widely used in the fields of electronic communication equipment parts, electrical parts, foods, chemical equipment parts, etc. in the form of molded products, decorative boards, laminates, enamel varnishes, impregnated varnishes, etc. However, this resin has a heat resistance of about 150° C. at most, and is not necessarily satisfactory in terms of heat resistance. The present inventors have carried out intensive research to obtain a compound that provides a cured resin with even better heat resistance, and as a result, they have arrived at the present invention. That is, the present invention is based on the following general formula [However, in the formula, R 1 is a hydrogen atom or a lower alkyl group,
R 2 and R 3 are groups selected from the same or different hydrogen atoms and monovalent organic groups, R 4 and R 5 are the same or different divalent organic groups, and n represents a positive integer. ] These are terminal allyl group-containing hydantoins represented by: To explain in more detail the terminal allyl group-containing hydantoins represented by the above general formula of the present invention, in the above formula, R 1 is a hydrogen atom or a lower alkyl group, such as an alkyl group having 1 to 4 carbon atoms, and the raw materials described below are Hydrogen atoms and methyl groups are particularly preferred from the viewpoint of availability and reactivity. Furthermore, R 1 at both ends may be the same or different. Next, R 2 and R 3 are the same or different hydrogen atoms or monovalent organic groups, and monovalent organic groups include alkyl groups such as methyl group and ethyl group, aryl groups such as phenyl group and tolyl group, and cyclohexyl group. Examples include cycloalkyl groups such as cycloalkyl groups, and among these, hydrogen atoms and methyl groups are particularly preferred from an industrial standpoint. Further, in the present invention, R 2 and R 3 of each hydantoin ring forming the main chain may be the same or different between the rings. Next, in the general formula of the above compound of the present invention, R 4 and R 5 are divalent organic groups, but they may also be aliphatic, alicyclic, aromatic, or a mixture thereof. Specific examples include m- and R 5 . P-phenylene,

【匏】【formula】

【匏】44′−ビプニレン[Formula] 44′-biphenylene

【匏】【formula】

【匏】【formula】

【匏】−および−キ シリレン、[Formula] m- and P-key silylene,

【匏】【formula】

【匏】【formula】

【匏】【formula】

【匏】【formula】

【匏】【formula】

【匏】【formula】

【匏】テトラメチレ ン、ヘキサメチレン、オクタメチレン、デカメチ
レン、ドデカメチレン等が挙げられる。 又R4、R5は同䞀であ぀おも異぀おいおもよ
く、曎に䞊蚘匏䞭の繰り返し単䜍間でR4は異぀
おいおもよい。 本発明の末端アリル基含有ヒダントむン類は実
質的に以䞊詳述した䞊蚘䞀般匏で衚わされる化合
物を蚀うが䞊蚘䞀般匏のヒダントむンの郚分、即
ち
[Formula] Examples include tetramethylene, hexamethylene, octamethylene, decamethylene, and dodecamethylene. Further, R 4 and R 5 may be the same or different, and R 4 may be different between the repeating units in the above formula. The terminal allyl group-containing hydantoin of the present invention refers to a compound substantially represented by the above general formula detailed above, and the hydantoin portion of the above general formula, i.e.

【匏】の䞀郚䟋えば30モ ル以䞋を䞀般匏For example, a part of [formula] General formula

【匏】【formula】

【匏】【formula】

【匏】及び[Formula] and

【匏】 䜆し䞊蚘匏䞭D1は四䟡の有機基、D2は䞉䟡の有
機基、D3及びD4は二䟡の有機基を瀺すで衚わ
される少なくずも䞀皮の単䜍で眮き代えた共重合
䜓であ぀おもよい。D1、D2、D3又はD4をそれぞ
れ察応するテトラカルボン酞ゞ無氎物、トリカル
ボン酞無氎物、ゞカルボン酞又はアミノカルボン
酞で衚わすず、䟋えばピロメリツト酞ゞ無氎物、
・3′・・4′−ベンゟプノンテトラカルボン
酞ゞ無氎物、ゞプニルスルホンテトラカルボン
酞ゞ無氎物、・・・−ブタンテトラカル
ボン酞ゞ無氎物、・・・−シクロペンタ
ンテトラカルボン酞ゞ無氎物、・・・−
ナフタレンテトラカルボン酞ゞ無氎物等のテトラ
カルボン酞ゞ無氎物䟋えば、トリメリツト酞無
氎物、トリカルバリル酞無氎物、・3′・−ベ
ンゟプノントリカルボン酞無氎物等のトリカル
ボン酞無氎物䟋えば、テレフタル酞、む゜フタ
ル酞、ナフタレンゞカルボン酞、・4′−ベンゟ
プノンゞカルボン酞、ゞプニルスルホンゞカ
ルボン酞、ゞプニル゚ヌテルゞカルボン酞、シ
クロヘキサンゞカルボン酞、セバチン酞、アゞピ
ン酞等のゞカルボン酞䟋えばアミノカプロン
酞、−アミノメチルシクロヘキサンカルボン
酞、−及び−アミノ安息銙酞等のアミノカル
ボン酞等を䟋瀺するこずができる。 本発明における前蚘匏で衚わされる末端アリル
基含有ヒダントむン類においお、は正の敎数を
衚わすが、䞀般には〜20、奜たしくは〜15
の範囲が有利である。 本発明者らの研究によれば、前蚘䞀般匏で衚わ
される末端アリル基含有ヒダントむン類は次の方
法によ぀お補造されるこずが刀぀た。すなわち、 () 䞀般匏
[Formula] (However, in the above formula, D 1 is a tetravalent organic group, D 2 is a trivalent organic group, and D 3 and D 4 are divalent organic groups). It may also be a copolymer. When D 1 , D 2 , D 3 or D 4 is represented by the corresponding tetracarboxylic dianhydride, tricarboxylic anhydride, dicarboxylic acid or aminocarboxylic acid, for example, pyromellitic dianhydride,
3, 3', 4, 4'-benzophenone tetracarboxylic dianhydride, diphenylsulfone tetracarboxylic dianhydride, 1, 2, 3, 4-butane tetracarboxylic dianhydride, 1, 2, 3,4-cyclopentanetetracarboxylic dianhydride, 1,4,5,8-
Tetracarboxylic dianhydrides such as naphthalenetetracarboxylic dianhydride; tricarboxylic anhydrides such as trimellitic anhydride, tricarballylic anhydride, 3,3',4-benzophenone tricarboxylic anhydride; For example, dicarboxylic acids such as terephthalic acid, isophthalic acid, naphthalenedicarboxylic acid, 4,4'-benzophenonedicarboxylic acid, diphenylsulfonedicarboxylic acid, diphenyl etherdicarboxylic acid, cyclohexanedicarboxylic acid, sebacic acid, adipic acid; Examples include aminocarboxylic acids such as aminocaproic acid, 4-aminomethylcyclohexanecarboxylic acid, and m- and P-aminobenzoic acid. In the terminal allyl group-containing hydantoin represented by the above formula in the present invention, n represents a positive integer, and generally n is 1 to 20, preferably 1 to 15
A range of is advantageous. According to the research conducted by the present inventors, it has been found that the terminal allyl group-containing hydantoins represented by the above general formula can be produced by the following method. That is, () general expression

【匏】 䜆しR1は氎玠原子又は䜎玚アルキル基で衚
わされるアリルアミン(A)、 䞀般匏 䜆しR2及びR3は同䞀又は異なる氎玠原子及び
䞀䟡の有機基から遞ばれる基、R4は二䟡の有
機基を瀺すで衚わされるビスむミノ酢酞又は
そのカルボン酞誘導䜓(B)、 䞀般匏NH2−R5−NH2䜆しR5は二䟡の有機
基を瀺すで衚わされるゞアミン(c)及びゞアリ
ヌルカヌボネヌト(D)ずを䞋蚘(i)、(ii)及び(iii)匏 (i) ≧− (ii) ≧ (iii) ≧2B 䞊蚘各匏䞭、、、、はそれぞれ、前
蚘(A)、(B)、(C)、(D)成分のモル数を瀺す。を満
足する割合で反応せしめる方法。たたは () 䞀般匏 䜆しR2及びR3は同䞀又は異なる氎玠原子及び
䞀䟡の有機基から遞ばれる基、R4は二䟡の有
機基を瀺すで衚わされるビスむミノ酢酞又は
そのカルボン酞誘導䜓(B)、 䞀般匏OCN−R5−NCO䜆しR5は二䟡の有
機基を瀺すで衚わされるゞむ゜シアネヌト(E)
及び 䞀般匏
[Formula] Allylamine (A) represented by (where R 1 is a hydrogen atom or a lower alkyl group), general formula (However, R 2 and R 3 are groups selected from the same or different hydrogen atoms and monovalent organic groups, and R 4 is a divalent organic group.) Bisiminoacetic acid or its carboxylic acid derivative (B), General Diamine (c) represented by the formula NH 2 −R 5 −NH 2 (wherein R 5 represents a divalent organic group) and diaryl carbonate (D) are combined into the following formulas (i), (ii), and (iii). (i) A≧2(B-C) (ii) C≧0 (iii) D≧2B (In each of the above formulas, A, B, C, and D are respectively the above-mentioned (A), (B), and (C) ) and (D) (indicates the number of moles of component) are reacted at a satisfying ratio. or () general expression (However, R 2 and R 3 are groups selected from the same or different hydrogen atoms and monovalent organic groups, and R 4 is a divalent organic group.) Bisiminoacetic acid or its carboxylic acid derivative (B), General Diisocyanate (E) represented by the formula OCN-R 5 -NCO (where R 5 represents a divalent organic group)
and general formula

【匏】 䜆しR1は氎玠原子又は䞀䟡の有機基を瀺す
で衚わされるアリルむ゜シアネヌト(F)ずを䞋蚘
(iv)及び(v)匏 (iv) ≧− (v) ≧ 䞊蚘各匏䞭、、はそれぞれ(B)、(E)、(F)
成分のモル数を瀺す を満足する割合で反応せしめる方法。 先ずの方法に぀いお具䜓的に説明する。 (A)成分ずしお甚いる䞀般匏
[Formula] (However, R 1 represents a hydrogen atom or a monovalent organic group)
Allyl isocyanate (F) represented by
(iv) and (v) formulas (iv) F≧2(B-E) (v) E≧0 (B, E, and F in the above formulas are (B), (E), and (F), respectively)
(indicates the number of moles of the components) is reacted at a satisfactory ratio. First, the method () will be specifically explained. (A) General formula used as component

【匏】で衚わされるアリルアミン ずしおはCH2CH−CH2NH2、
The allylamine represented by [Formula] is CH 2 =CH-CH 2 NH 2 ,

【匏】が特に奜たしく混合物であ ぀おもよい。 (B)成分ずしおは䞀般匏
[Formula] is particularly preferred and may also be a mixture. (B) The general formula for the component is

【匏】で衚わされ るビスむミノ酢酞又はそのカルボン酞誘導䜓を甚
いるが匏䞭R2、R3、R4は前述したものず同じで
あり又カルボン酞誘導䜓ずしおぱステル、アミ
ド等が有る。奜適に甚いられる゚ステル類ずしお
は、メチル、゚チル等の䜎玚アルキル゚ステル、
プニル、トリル等の芳銙族゚ステル類が挙げら
れる。又アミドずしおは無眮換アミド、メチル、
゚チル、ゞメチル、ゞ゚チル等の䜎玚アルキルア
ミド等が挙げられる。 次に(c)成分ずしお䞀般匏NH2−R5−NH2で衚わ
されるゞアミンを甚いるが匏䞭R5は前述したも
のず同じである。本発明の(D)成分ずしお甚いるゞ
アリヌルカヌボネヌトずしお䟋えばゞプニルカ
ヌボネヌト、ゞトリルカヌボネヌト、ゞナフチル
カヌボネヌト等が挙げられ特にポリカヌボネヌト
の原料ずしお工業的に入手容易なゞプニルカヌ
ボネヌトが奜たしく甚いられる。 本発明に斌おは䞊蚘、、、成分を䞋蚘
匏(i)、(ii)、(iii)を満足する割合で反応させる。 (i)≧−、(ii)−≧、(iii)≧2B 各匏䞭、、、の定矩は前蚘ず同じ 該関係匏を満足しない堎合には目的ずする未端
アリル基含有ポリヒダントむン類は埗られず奜た
しくない。尚各成分は実質的に䞋蚘匏A′
B′−C′、D′2B′䜆しA′、B′、C′、D′は
反応
に関䞎した各、、、成分のモル数を満
足する割合で反応するので、成分はそれ皋倚
く甚いる必芁はなく䞊限は䟋えば≊2.6−
、≊26B皋床である。 反応は溶融、又は必芁によ぀おは反応を均䞀系
で、枩和な条件䞋で行う為、䞍掻性溶媒、䟋えば
トル゚ン、キシレン、クロルベンれン、ゞクロル
ベンれン、アニ゜ヌル、テトラヒドロフラン、
・−ゞメチルホルムアミド、・−ゞメチ
ルアセトアミド、−メチルピロリドン、ヘキサ
メチルホスホルアミド、テトラメチル尿玠、クレ
ゟヌル、キシレノヌル等の存圚䞋実斜され反応枩
床は䞀般的には50〜350℃、奜適には100〜300℃
で行われる。反応時間は、反応枩床に䟝存する
が、䞀般的には0.5〜20時間、奜適には〜15時
間の範囲で行われる。それ以䞊では、反応を長く
する効果がないし、又それ以䞋では反応が十分進
行しない。 次にもう䞀方の補造法であるの方法に぀
いお説明する。(B)成分ずしお䜿甚するビスむミノ
酢酞、又はそのカルボン酞誘導䜓は前蚘の
方法の(B)成分ず党く同様のものである。次に(E)成
分ずしお䜿甚する䞀般匏−R5−
で衚わされるゞむ゜シアネヌトは前蚘
の方法の(C)成分であるゞアミンに盞圓する
もので匏䞭R5は前述の通りである。又プニ
ル、トリルりレタン等の察応する安定化む゜シア
ネヌト類も奜適に甚いられる。又(F)成分ずしお䜿
甚する䞀般匏
Bisiminoacetic acid or its carboxylic acid derivative represented by the formula is used; in the formula, R 2 , R 3 , and R 4 are the same as those described above, and the carboxylic acid derivative includes esters, amides, and the like. Preferably used esters include lower alkyl esters such as methyl and ethyl;
Aromatic esters such as phenyl and tolyl are mentioned. Also, as the amide, unsubstituted amide, methyl,
Examples include lower alkyl amides such as ethyl, dimethyl, and diethyl. Next, as component (c), a diamine represented by the general formula NH2 - R5 - NH2 is used, where R5 is the same as described above. Examples of the diaryl carbonate used as component (D) of the present invention include diphenyl carbonate, ditolyl carbonate, dinaphthyl carbonate, etc. Diphenyl carbonate, which is industrially easily available as a raw material for polycarbonate, is particularly preferably used. In the present invention, the above components A, B, C, and D are reacted in proportions satisfying the following formulas (i), (ii), and (iii). (i) A≧2(B-C), (ii) C-≧0, (iii) D≧2B (Definitions of A, B, C, and D in each formula are the same as above) Does not satisfy the relational expression In this case, the desired polyhydantoin containing an end allyl group cannot be obtained, which is not preferable. In addition, each component is substantially expressed by the following formula A' = 2
(B'-C'), D'=2B' (where A', B', C', and D' are the number of moles of each component A, B, C, and D involved in the reaction). Therefore, it is not necessary to use so many A and D components, and the upper limit is, for example, A≩2.6 (B-
C), D≩26B. Since the reaction is carried out in the melt or, if necessary, in a homogeneous system under mild conditions, an inert solvent such as toluene, xylene, chlorobenzene, dichlorobenzene, anisole, tetrahydrofuran,
It is carried out in the presence of N·N-dimethylformamide, N·N-dimethylacetamide, N-methylpyrrolidone, hexamethylphosphoramide, tetramethylurea, cresol, xylenol, etc., and the reaction temperature is generally 50 to 350°C. Preferably 100-300℃
It will be held in The reaction time depends on the reaction temperature, but is generally 0.5 to 20 hours, preferably 1 to 15 hours. If it is more than that, there is no effect of prolonging the reaction, and if it is less than that, the reaction will not proceed sufficiently. Next, the other manufacturing method, method (), will be explained. Bisiminoacetic acid or its carboxylic acid derivative used as component (B) is exactly the same as component (B) in the method () above. Next, the general formula O=C=N-R 5 -N= used as component (E)
The diisocyanate represented by C═O corresponds to the diamine that is component (C) in the method () above, and R 5 in the formula is as described above. Corresponding stabilized isocyanates such as phenyl and tolylurethane are also suitably used. General formula used as component (F)

【匏】で衚わされ るアリルむ゜シアネヌトは前蚘の方法の(A)
成分に盞圓するもので匏䞭R1は前述の通りであ
り特に−CH1CHCH2、
Allyl isocyanate represented by [Formula]
In the formula, R 1 is as described above, and in particular, O=C=N-CH 1 CH=CH 2 ,

【匏】が奜たしく甚いられる。 又プニル、トリルりレタン等の安定化む゜シア
ネヌトも奜適に甚いられる。本発明方法に斌おは
各成分を䞋蚘匏(iv)、(v)を満足する割合で反応させ
る。 (iv) ≧−、(v) ≧ 各匏䞭、、の定矩は前蚘ず同じ 該関係匏を満足しない堎合には目的ずする末端
アリル基含有ヒダントむン類は埗られず奜たしく
ない。尚各成分は実質的に䞋蚘匏F′B′−
E′䜆しF′、B′、E′は反応に関䞎した各成分の
モル数を満足する割合で反応するので成分は
それ皋倚く甚いる必芁はなく䞊限は䟋えば≊
2.6−皋床である。反応は前蚘の
方法ずほが同じ条件で実斜される。 尚本発明方法の前蚘及びに斌お(B)
成分の䞀郚、䟋えば30モル以䞋を前蚘したポリ
カルボン酞、又はその無氎物、又はそれらの掻性
誘導䜓、䟋えば゚ステル等で眮きかえおもよい。 本発明方法に斌お埗られる末端アリル基含有ヒ
ダントむン類の分子量は、の堎合は、アリ
ルアミン(A)ず、ゞアミン類(C)ずのモル比の
堎合はアリルむ゜シアネヌト(F)ずゞむ゜シアネヌ
ト類(E)ずのモル比により、制埡するこずが出来
る。䞀般的にい぀お、アリル成分(A)、(F)のモル比
が高くなるに埓぀お䜎分子量、埓぀お、末端アリ
ル基の密床が高くなる。 本発明に斌お、埗られた末端アリル基含有ヒダ
ントむン類は、再結晶、再沈柱等の方法によ぀お
粟補される。又統蚈的構造を有する堎合は、特に
再沈柱法が有効な粟補手段になる。勿論堎合によ
぀おは単離するこずなく、反応溶液のたた成型に
䟛するこずも可胜である。 又本発明によ぀お埗られた末端アリル基含有ヒ
ダントむン類の構造は、赀倖吞収スペクトル、栞
磁気共鳎スペクトル、元玠分析等の方法により確
認するこずが出来る。 本発明の末端アリル基含有ヒダントむン類はそ
のもの自䜓、或いは他のアリル化合物ず共に前述
の通り、ラゞカル的に硬化せしめるこずにより、
耐熱性に優れた暹脂に転化出来、成圢物、゚ナメ
ルワニス、フむルム、含浞ワニス、接着剀等に広
く応甚可胜である。 以䞋、実斜䟋を挙げお本発明を曎に詳述する
が、本発明が、これにより限定されるものではな
い。尚実斜䟋䞭「郚」ずあるのは、すべお「重量
郚」を意味する。 実斜䟋  アリルアミン57郚、・4′−ビスカルボ゚ト
キシメチルアミノゞプニルメタン555郚、
44′−ゞアミノゞプルメタン198郚、ゞプニル
カヌボネヌト642郚及び−メチルピロリドン
3000郚を溶媒ずしお撹拌機付き反応噚に仕蟌み、
箄200℃で時間撹拌䞋反応せしめた。次いで、
反応物を倧過剰のメタノヌル䞭に移し、析出した
生成物を別、也燥した。反応物の融点は171〜
178℃であり、赀倖線吞収スペクトルは1770cm-1
にヒダントむンに基ずく匷い特性吞収が、又、
1640cm-1にアリル基が基ずく特性吞収が局ずしお
認められた。又、このものの元玠分析倀は、
74.1、5.3、11.1であり、理論倀
73.5、5.0、11.6ず良く䞀臎し、
䞋蚘匏 で衚わされる化合物の生成を瀺した。埗られた粉
末100重量郚に察し、重量郚のゞクミルパヌオ
キシドを加え、良く混合した埌、220℃で圧瞮成
圢するず、コハク色の成圢物が埗られた。このも
のの耐熱性を熱重量分析により調べた所、玄320
℃たで重量枛少を瀺さず、良奜な耐熱性を瀺し
た。 実斜䟋  −ビスカルボ゚トキシメチルアミノベン
れン14郚、アリルアミン6.3郚、ゞプニルカヌ
ボネヌト23.5郚を撹拌機付き反応噚に仕蟌み、
200〜230℃に加熱撹拌した。時間埌、反応系内
に残存しおいる末反応物及び副生物を枛圧䞋远出
し、生成物を埗た。生成物の融点は195〜200℃あ
぀た。このものを熱゚タノヌルで掗浄凊理するず
癜色結晶160郚90を埗た。このものの融点
は202℃であ぀た。 赀倖吞収スペクトルは1760cm-1、1700cm-1にヒ
ダントむンの吞収が、又、1640cm-1にアリル基に
基く特性吞収が認められた。元玠分析倀は
62.1、5.3、15.9であり、理論倀
61.0、5.1、15.8ず良奜な䞀臎を
瀺し、䞋蚘匏 で衚わされる化合物の圢成を瀺した。又、このも
のを50重量郚に察し、−アリル−−アリロキ
シカルボニルフタルむミド50重量郚を溶融混合
し、よく粉砕した埌、重量郚のゞクミルパヌオ
キシドを添加しお200℃で硬化するず、アメ色の
硬化暹脂を埗た。このものは熱重量分析空気
䞭、昇枩速床℃分では、330℃たで重量枛
少を瀺さず良奜な耐熱性を瀺した。 実斜䟋  実斜䟋に斌お−ビスカルボ゚トキシメチ
ルアミノベンれン14郚の代りに44′−ビスカ
ルボ゚トキシメチルアミノゞプニルメタン
18.5郚を甚い、100郚クレゟヌル䞭で200℃で、
時間反応せしめた。埗られた反応溶液を倧量のメ
タノヌル䞭に撹拌䞋で投入し、析出した沈柱を
別、也燥するず、19.5郚88の癜色粉末を埗
た。このものの融点は230〜235℃であ぀た。又、
元玠分析結果は67.9、5.1、12.0
であ぀た。理論倀67.6、5.4、
12.6。 又、赀倖吞収スペクトルは、ヒダントむンに基
ずく特性吞収を1770及び1720cm-1に及びアリル基
に基ずく特性吞収を1740cm-1に瀺し、䞋蚘匏 で衚わされる。 の生成が確認された。 又、このものは、実斜䟋ず同様の方法で硬化
するず、良奜な熱硬化特性を瀺し、成型暹脂を䞎
えた。 実斜䟋  ビス−アミノプニル゚ヌテル300郚、
ピロメリツト酞ゞ無氎物39.6郚、−クレゟヌル
3000郚、キシレン1000郚を撹拌機付き反応噚に仕
蟌み、加熱撹拌し、反応によ぀お生ずる氎をキシ
レンずの共沞で反応系倖ぞ陀去せしめた。次い
で、アリルアミン57郚、−ビスカルボキシメ
チルアミノベンれン504郚ゞプニルカヌボ
ネヌト856郚を添加し、還流䞋で時間反応せし
めた。次いで反応物を倧過剰のメタノヌルに添加
し、析出した生成物を過により埗た生成物の融
点は205〜215℃であり、赀倖吞収スペクトルより
1770cm-1、1710cm-1にヒダントむン及びむミド結
合に基ずく吞収が重な぀お認められ又、1640cm-1
に、アリル基に基ずく吞収が認められ、分析によ
り䞋蚘匏 で衚わされる化合物40モルず、䞋蚘匏 で衚わされる化合物60モルずの生成が認められ
た。 実斜䟋  ・4′−ビスカルボ゚トキシメチルアミノ
ゞプニルメタン555郚、・4′−ゞプニルメ
タンゞむ゜シアネヌト250郚及びアリルむ゜シア
ネヌト85郚及び−メチルピロリドン3000郚を反
応噚に仕蟌み、宀枩から時間で埐々に180℃た
で昇枩し、曎に時間、180℃で反応をせしめ
た。次いで、メタノヌル䞭に析出せしめ別、也
燥せしめ生成物を埗た。生成物の融点は170〜180
℃であり赀倖吞収スペクトルは実斜䟋のものず
党く䞀臎した。 実斜䟋  −ビスカルボ゚トキシメチルアミノベン
れン28郚、アリルむ゜シアネヌト17.4郚、クレゟ
ヌル100郚を反応噚に仕蟌み、クレゟヌルの還流
䞋時間反応せしめた。次いで反応物を過剰のメ
タノヌルに移し、生成物を析出せしめた。埗られ
た生成物は融点200〜207℃であり、赀倖吞収スペ
クトルは実斜䟋のものに䞀臎した。 実斜䟋  44′−ゞプニル゚ヌテルゞむ゜シアネヌト378
郚、トリメリツト酞無氎物38.4郚及び−メチル
ピロリドン3000郚を撹拌機付き反応噚に仕蟌み、
時間で170℃たで埐々に加熱し、曎に時間加
熱反応せしめた。次いで、アリルむ゜シアネヌト
87郚、−ビスカルボキシメチルアミノベン
れン504郚を添加し、クレゟヌル還流䞋時間反
応せしめた。 次いで、反応物を過剰のメタノヌルに移し、生
成物を析出せしめた。埗られた生成物は融点200
〜210℃であり、赀倖吞収スペクトルより1770cm
-1、1710cm-1にヒダントむン及びアミド結合に基
ずく吞収が、又1640cm-1にアリル基に基ずく吞収
が認められ、分析により䞋蚘匏 で衚わされる化合物40モルず、䞋蚘匏 で衚わされる化合物60モルずの生成が認められ
た。 実斜䟋  ・4′−ゞプニル゚ヌテルゞむ゜シアネヌト
378郚、トリメリツト酞無氎物38.4郚、−ゞ
゚トキシカルボニルメチルアミノベンれン504
郚及び3000郚の−メチルピロリドンを撹拌機付
き反応噚に仕蟌み、時間で170℃たで加熱し、
曎に同枩床で時間反応をせしめる。50℃たで枩
床を䞋げ、次いでアリルむ゜シアネヌトを添加し
お再床枩床を䞊げお170℃たでいたらしめ、170℃
で時間加熱撹拌する。反応物を過剰のメタノヌ
ルに移し、生成物を析出せしめた。埗られた生成
物は融点200〜210℃であり、赀倖吞収スペクトル
より1770cm-1及び1710cm-1にヒダントむン及びむ
ミド結合に基く特性吞収が、又1640cm-1にアミド
及びアリル基に基く、特性吞収が認められ、実斜
䟋の化合物のそれらず䞀臎した。 実斜䟋  アリルアミン57郚、・4′−ビスカルボ゚ト
キシメチルアミノゞプニルメタン555郚、ヘ
キサメチレンゞアミン116郚、ゞプニルカヌボ
ネヌト642郚及び−クレゟヌル1000郚を溶媒ず
しお玄200℃で時間反応せしめる。次いで反応
物を倧過剰のメタノヌル䞭に移し、析出した生成
物を別、也燥した。 反応物の融点は230〜240℃であり、赀倖吞収ス
ペクトルは1765cm-1及び1710cm-1にヒダントむン
に基ずく匷い特性吞収が、又、1640cm-1にアリル
基に基ずく特性吞収が局ずしお認められた。この
ものの元玠分析倀は、70.1、6.8、
12.2であり、理論倀66.9、6.3
、12.5ず良く䞀臎し、䞋蚘匏 で衚わされる化合物の圢成が認められた。
[Formula] is preferably used. Stabilized isocyanates such as phenyl and tolylurethane are also preferably used. In the method of the present invention, each component is reacted in a proportion that satisfies the following formulas (iv) and (v). (iv) F≧2(B-E), (v) E≧0 (Definitions of B, E, and F in each formula are the same as above) If the above relational expression is not satisfied, the target terminal allyl group-containing Hydantoins cannot be obtained and are not preferred. In addition, each component is substantially expressed by the following formula F'=2(B'-
E') (where F', B', and E' are the number of moles of each component involved in the reaction), so there is no need to use that much F component, and the upper limit is, for example, F≩
It is about 2.6 (B-E). The reaction is carried out under substantially the same conditions as in the method () above. In the above () and () of the method of the present invention, (B)
A portion of the components, for example up to 30 mol %, may be replaced by the polycarboxylic acids described above, or their anhydrides, or their active derivatives, such as esters. The molecular weight of the terminal allyl group-containing hydantoins obtained in the method of the present invention is determined by the molar ratio of allylamine (A) to diamines (C) in the case of () to allyl isocyanate (F) in the case of (). It can be controlled by the molar ratio with diisocyanates (E). Generally, the higher the molar ratio of allyl components (A) and (F), the lower the molecular weight, and therefore the higher the density of terminal allyl groups. In the present invention, the obtained terminal allyl group-containing hydantoins are purified by methods such as recrystallization and reprecipitation. In addition, when the protein has a statistical structure, the reprecipitation method is particularly effective as a purification method. Of course, depending on the case, it is also possible to use the reaction solution as it is for molding without isolation. Further, the structure of the terminal allyl group-containing hydantoin obtained by the present invention can be confirmed by methods such as infrared absorption spectroscopy, nuclear magnetic resonance spectroscopy, and elemental analysis. By radically curing the terminal allyl group-containing hydantoin itself or together with other allyl compounds as described above,
It can be converted into a resin with excellent heat resistance and can be widely applied to molded products, enamel varnishes, films, impregnated varnishes, adhesives, etc. Hereinafter, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited thereto. In the examples, all "parts" mean "parts by weight." Example 1 57 parts of allylamine, 555 parts of 4,4'-bis(carboethoxymethylamino)diphenylmethane,
198 parts of 44'-diaminodiphermethane, 642 parts of diphenyl carbonate and N-methylpyrrolidone
Charge 3000 parts as a solvent into a reactor equipped with a stirrer,
The reaction was carried out at about 200°C for 3 hours with stirring. Then,
The reaction mixture was transferred into a large excess of methanol, and the precipitated product was separated and dried. The melting point of the reactant is 171~
The temperature is 178℃, and the infrared absorption spectrum is 1770cm -1
The strong characteristic absorption based on hydantoin also
A characteristic absorption layer based on allyl groups was observed at 1640 cm -1 . Moreover, the elemental analysis value of this substance is C=
74.1%, H=5.3%, N=11.1%, theoretical value C
= 73.5%, H = 5.0%, N = 11.6%, in good agreement.
The following formula This shows the formation of a compound represented by 3 parts by weight of dicumyl peroxide was added to 100 parts by weight of the obtained powder, mixed well, and compression molded at 220°C to obtain an amber molded product. When the heat resistance of this material was investigated by thermogravimetric analysis, it was found that the heat resistance was approximately 320.
It showed no weight loss up to ℃ and showed good heat resistance. Example 2 14 parts of m-bis(carboethoxymethylamino)benzene, 6.3 parts of allylamine, and 23.5 parts of diphenyl carbonate were charged into a reactor equipped with a stirrer,
The mixture was heated and stirred at 200-230°C. After 3 hours, the final reactants and by-products remaining in the reaction system were expelled under reduced pressure to obtain a product. The melting point of the product was 195-200°C. This product was washed with hot ethanol to obtain 160 parts (90%) of white crystals. The melting point of this product was 202°C. In the infrared absorption spectrum, hydantoin absorption was observed at 1760 cm -1 and 1700 cm -1 , and characteristic absorption based on allyl group was observed at 1640 cm -1 . The elemental analysis value is C=
62.1%, H=5.3%, N=15.9%, theoretical value C
= 61.0%, H = 5.1%, N = 15.8%, showing good agreement, and the following formula The formation of a compound represented by is shown. Further, 50 parts by weight of this product was melt-mixed with 50 parts by weight of N-allyl-4-allyloxycarbonylphthalimide, thoroughly ground, and then 3 parts by weight of dicumyl peroxide was added and cured at 200°C. As a result, a candy-colored cured resin was obtained. In thermogravimetric analysis (in air, heating rate: 5°C/min), this product showed no weight loss up to 330°C and exhibited good heat resistance. Example 3 In Example 2, 44'-bis(carboethoxymethylamino)diphenylmethane was used instead of 14 parts of m-bis(carboethoxymethylamino)benzene.
18.5 parts at 200°C in 100 parts cresol.
I let it react over time. The obtained reaction solution was poured into a large amount of methanol under stirring, and the precipitate was separated and dried to obtain 19.5 parts (88%) of white powder. The melting point of this product was 230-235°C. or,
Elemental analysis results are C=67.9%, H=5.1%, N=12.0
It was %. Theoretical value: C = 67.6%, H = 5.4%,
N=12.6%. In addition, the infrared absorption spectrum shows the characteristic absorption based on hydantoin at 1770 and 1720 cm -1 and the characteristic absorption based on allyl group at 1740 cm -1 , and the following formula It is expressed as The generation of was confirmed. When this product was cured in the same manner as in Example 2, it exhibited good thermosetting properties and gave a molded resin. Example 4 300 parts of bis(4-aminophenyl)ether,
39.6 parts of pyromellitic dianhydride, m-cresol
3,000 parts of xylene and 1,000 parts of xylene were charged into a reactor equipped with a stirrer, heated and stirred, and water produced by the reaction was removed from the reaction system by azeotrope with xylene. Next, 57 parts of allylamine, 504 parts of m-bis(carboxymethylamino)benzene, and 856 parts of diphenyl carbonate were added, and the mixture was reacted under reflux for 4 hours. Next, the reactant was added to a large excess of methanol, and the precipitated product was filtered. The melting point of the product obtained was 205 to 215 °C, and from the infrared absorption spectrum.
Overlapping absorptions based on hydantoin and imide bonds were observed at 1770 cm -1 and 1710 cm -1 , and at 1640 cm -1
Absorption based on the allyl group was observed, and analysis showed the following formula: 40 mol% of the compound represented by and the following formula Formation of 60 mol% of the compound represented by was observed. Example 5 4,4'-bis(carboethoxymethylamino)
555 parts of diphenylmethane, 250 parts of 4,4'-diphenylmethane diisocyanate, 85 parts of allyl isocyanate, and 3000 parts of N-methylpyrrolidone were charged into a reactor, and the temperature was gradually raised from room temperature to 180°C over 3 hours, and then heated for another 3 hours. , the reaction was allowed to proceed at 180°C. The product was then precipitated into methanol, separated and dried to obtain a product. The melting point of the product is 170-180
℃, and the infrared absorption spectrum completely matched that of Example 1. Example 6 28 parts of m-bis(carboethoxymethylamino)benzene, 17.4 parts of allyl isocyanate, and 100 parts of cresol were charged into a reactor and reacted for 4 hours under reflux of cresol. The reaction mass was then transferred to excess methanol to precipitate the product. The product obtained had a melting point of 200-207°C and an infrared absorption spectrum that matched that of Example 2. Example 7 44'-diphenyl ether diisocyanate 378
1 part, 38.4 parts of trimellitic anhydride, and 3000 parts of N-methylpyrrolidone were charged into a reactor equipped with a stirrer.
The mixture was gradually heated to 170° C. over 1 hour, and the reaction was continued by heating for another 1 hour. Then allyl isocyanate
87 parts and 504 parts of m-bis(carboxymethylamino)benzene were added thereto, and the mixture was reacted for 4 hours under reflux of cresol. The reaction mass was then transferred to excess methanol to precipitate the product. The product obtained has a melting point of 200
~210℃, 1770cm from the infrared absorption spectrum
-1 , an absorption based on hydantoin and amide bonds was observed at 1710 cm -1 , and an absorption based on allyl group was observed at 1640 cm -1 , and the analysis revealed that the following formula 40 mol% of the compound represented by and the following formula Formation of 60 mol% of the compound represented by was observed. Example 8 4,4'-diphenyl ether diisocyanate
378 parts, trimellitic anhydride 38.4 parts, m-di(ethoxycarbonylmethylamino)benzene 504
and 3000 parts of N-methylpyrrolidone were placed in a reactor equipped with a stirrer and heated to 170°C for 1 hour.
The reaction was further allowed to proceed at the same temperature for 1 hour. Lower the temperature to 50°C, then add allyl isocyanate and raise the temperature again to 170°C.
Heat and stir for 1 hour. The reaction was transferred to excess methanol to precipitate the product. The obtained product has a melting point of 200 to 210°C, and its infrared absorption spectrum shows characteristic absorptions based on hydantoin and imide bonds at 1770 cm -1 and 1710 cm -1 , and characteristic absorptions based on amide and allyl groups at 1640 cm -1 . Absorption was observed and was consistent with that of the compound of Example 7. Example 9 Reaction at about 200°C for 4 hours using 57 parts of allylamine, 555 parts of 4,4'-bis(carboethoxymethylamino)diphenylmethane, 116 parts of hexamethylenediamine, 642 parts of diphenyl carbonate and 1000 parts of m-cresol as a solvent. urge The reaction mixture was then transferred into a large excess of methanol, and the precipitated product was separated and dried. The melting point of the reactant is 230 to 240°C, and the infrared absorption spectrum shows strong characteristic absorptions based on hydantoin at 1765 cm -1 and 1710 cm -1 and a layer of characteristic absorption based on allyl groups at 1640 cm -1 . Admitted. The elemental analysis values of this item are C = 70.1%, H = 6.8%,
N=12.2%, theoretical value C=66.9%, H=6.3
%, N=12.5%, and the following formula Formation of a compound represented by was observed.

Claims (1)

【特蚱請求の範囲】  䞋蚘䞀般匏〔〕 〔䜆し、匏䞭R1、R2及びR3は同䞀若しくは異な
り、氎玠原子又はメチル基を衚わし、R4及びR5
は同䞀若しくは異なり、䞋蚘匏 【匏】【匏】 は−−、−CH2−を衚わす、又は−CH2−p
は〜の敎数を衚わすで衚わされる基で
あり、は䞋蚘匏矀〔〕 から遞ばれる基を衚わし、及びは䞋蚘条件 ≊≊ ≊≊ を満足する又は正の敎数を衚わす。〕 で衚わされる末端アリル基含有ヒダントむン類。
[Claims] 1. The following general formula [] [However, in the formula, R 1 , R 2 and R 3 are the same or different and represent a hydrogen atom or a methyl group, and R 4 and R 5
are the same or different, and the following formula [formula] [formula] (X represents -O-, -CH 2 -), or (-CH 2 ) - p
(p represents an integer of 4 to 8), and Q is the following formula group [] m and n represent O or a positive integer satisfying the following conditions: O≩m+n≩5 O≩n/m+1≩3/7. ] A terminal allyl group-containing hydantoin represented by
JP9742076A 1976-08-17 1976-08-17 Hydantoins containing terminal allyl group, and their preparation Granted JPS5323971A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9742076A JPS5323971A (en) 1976-08-17 1976-08-17 Hydantoins containing terminal allyl group, and their preparation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9742076A JPS5323971A (en) 1976-08-17 1976-08-17 Hydantoins containing terminal allyl group, and their preparation

Publications (2)

Publication Number Publication Date
JPS5323971A JPS5323971A (en) 1978-03-06
JPS6137265B2 true JPS6137265B2 (en) 1986-08-22

Family

ID=14191943

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9742076A Granted JPS5323971A (en) 1976-08-17 1976-08-17 Hydantoins containing terminal allyl group, and their preparation

Country Status (1)

Country Link
JP (1) JPS5323971A (en)

Also Published As

Publication number Publication date
JPS5323971A (en) 1978-03-06

Similar Documents

Publication Publication Date Title
JP2843029B2 (en) Method for producing crosslinked copolyamideimide
US4111906A (en) Polyimides prepared from perfluoroisopropylidene diamine
DE2426885C2 (en)
US3868351A (en) Solution process for the preparation of polyimdies from diamines and anhydrides
US3609113A (en) Poly-(arylene-triketoimidazolidines and process for preparing the same
CA1217595A (en) Acid-extended copolyamideimides and method for their preparation
JPS61162525A (en) New copolyamideimide, its production and prepolymer thereof and its production
US3996203A (en) Solution process for the preparation of polyimides from diamines and anhydrides
JPH05156005A (en) Aromatic polyamide and its preparation
JPS6056169B2 (en) thermosetting resin composition
JPS6137265B2 (en)
JPS6317860B2 (en)
JPS5856374B2 (en) Polyhydantoin copolymer containing terminal allyl group and method for producing the same
EP0210851B1 (en) Mixtures of polyamideimides, containing 3,4'-diaminodiphenylether as diamine component, and of a plasticizer.
JPS63161022A (en) Production of polymer or cured product thereof
JPS6137266B2 (en)
JPH05301960A (en) Thermosetting oligomer and its production
JPS5952898B2 (en) Method for producing polyimide precursor
JPH0931154A (en) Polyamide resin composition
JPH0352916A (en) Mixed polyimide and preparation thereof
JPH05271535A (en) Thermosetting resin composition and thermosetting adhesive film
JPS59120630A (en) Manufacture of hydantoin ester
CA1242843A (en) Copolyamideimides, prepolymers therefor and method for their preparation
JPH06256259A (en) Aromatic dicarboxylic acid and polyamide
US5028688A (en) Polyamideimide polymers