JPS6136978Y2 - - Google Patents

Info

Publication number
JPS6136978Y2
JPS6136978Y2 JP4229283U JP4229283U JPS6136978Y2 JP S6136978 Y2 JPS6136978 Y2 JP S6136978Y2 JP 4229283 U JP4229283 U JP 4229283U JP 4229283 U JP4229283 U JP 4229283U JP S6136978 Y2 JPS6136978 Y2 JP S6136978Y2
Authority
JP
Japan
Prior art keywords
ultrasonic
deflection element
light deflection
frequency
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4229283U
Other languages
Japanese (ja)
Other versions
JPS59116930U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP4229283U priority Critical patent/JPS59116930U/en
Publication of JPS59116930U publication Critical patent/JPS59116930U/en
Application granted granted Critical
Publication of JPS6136978Y2 publication Critical patent/JPS6136978Y2/ja
Granted legal-status Critical Current

Links

Description

【考案の詳細な説明】 本考案は光ビームを偏光する装置、特に音波と
光の相互作用を利用した超音波光偏向装置に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a device for polarizing a light beam, and more particularly to an ultrasonic light deflection device that utilizes the interaction between sound waves and light.

光ビームを用いた情報処理装置は高速度、高密
度、並列処理が可能などの幾多の特徴を有してお
り、これまでに種々の方式のものが考案されてい
る。このうち光ビームをアクセスする機構をもつ
装置では、高速度でしかもランダムに光ビームを
偏向することのできる光偏向器を必要とすること
が多い。このような光偏向器としては、電気光学
効果を利用したもの、音響光学効果を利用したも
のなどがあるが、装置が小型であり、光学的な調
整が容易であるなどの利点から、音響光学効果を
利用した超音波光偏向器が多く使われている。
Information processing devices using light beams have many features such as high speed, high density, and the ability to perform parallel processing, and various systems have been devised so far. Among these devices, devices that have a mechanism for accessing a light beam often require an optical deflector that can deflect the light beam at high speed and randomly. Such optical deflectors include those that utilize the electro-optic effect and those that utilize the acousto-optic effect, but acousto-optic devices have the advantage of being compact and easy to optically adjust. Ultrasonic optical deflectors that utilize this effect are widely used.

固体または液体中に励起した高周波音振は光波
に対して位相格子の役割をはたし、入射した光ビ
ームの一部を回折することはよく知られている。
超音波光偏向器は上記の原理に基づいた光制御素
子の1つで、励起する音波の波長を異ならしめ、
回折する光ビームの出射角度を変化させる機能を
有する。通常用いる音波は速度分散のない体積波
である。したがつて音波の波長をを異ならしめる
には、一般に音波を励起する圧電あるいは磁歪な
どの変換子の駆動電気信号の周波数を変化さるこ
とによつて達成している。周知のように、この種
の光偏向器においては駆動周波数に対する回折光
ビームの強度は入射する光ビームの偏向器への入
射角度が固定しているため、周波数が変るとブラ
ツグ角よりずれて低下すること、また音波を駆動
する変換子の電気音響変換能率が中心周波数を中
心として帯域特性を有することなどから、全体と
して帯域特性を有している。
It is well known that high-frequency acoustic vibrations excited in a solid or liquid act as a phase grating for light waves, diffracting a portion of the incident light beam.
An ultrasonic optical deflector is one of the light control elements based on the above principle, which changes the wavelength of the excited sound wave,
It has the function of changing the emission angle of the diffracted light beam. The normally used sound waves are volume waves without velocity dispersion. Therefore, changing the wavelength of sound waves is generally achieved by changing the frequency of the driving electrical signal of a piezoelectric or magnetostrictive transducer that excites the sound waves. As is well known, in this type of optical deflector, the intensity of the diffracted light beam relative to the driving frequency decreases with a deviation from the Bragg angle as the frequency changes, since the angle of incidence of the incident light beam on the deflector is fixed. In addition, because the electroacoustic conversion efficiency of the transducer that drives the sound wave has a band characteristic around the center frequency, it has a band characteristic as a whole.

超音波光偏向器の偏向点数は光ビームの径を一
定とすれば帯域幅に比例する。したがつて偏向点
数を増大させるためには、帯域幅を広げることが
必要である。上述のように偏向光強度は帯域特性
をもつため、使用帯域幅が広ければ、帯域内の偏
向光強度の変化は大きくなる。通常光偏向器の帯
域幅は最大偏向光強度の3dB減少以内の偏向光強
度を得ることのできる周波数幅として規定されて
いる。
The number of deflection points of the ultrasonic optical deflector is proportional to the bandwidth if the diameter of the optical beam is constant. Therefore, in order to increase the number of deflection points, it is necessary to widen the bandwidth. As described above, since the polarized light intensity has band characteristics, the wider the used bandwidth, the larger the change in the polarized light intensity within the band. Usually, the bandwidth of an optical deflector is defined as a frequency width that can obtain a deflected light intensity within 3 dB of the maximum deflected light intensity.

ドツト列またはホログラム列を形成する光メモ
リの読み出しに上記超音波光偏向器を用いる構成
においては、偏向光強度の変動があるため、読み
出すドツトまたはホログラムによつてこれらを透
過しまたは再生される信号光のレベルが大きく変
動する。このため信号を誤つて検知することが多
い。また例えばホログラム自体の発生するノイズ
光等他の構成要素の発するノイズ成分があるた
め、信号対雑音比を一定程度確保するためには、
上記光偏向器のもつ偏向光強度の変動は3dBであ
つても大きく、これを更に減少させる必要があ
る。
In a configuration in which the above ultrasonic optical deflector is used to read out an optical memory forming a dot array or a hologram array, since the intensity of the deflected light varies, the signal light that is transmitted or reproduced by the dots or holograms to be read out may vary. level fluctuates greatly. For this reason, signals are often detected incorrectly. In addition, since there are noise components emitted by other components, such as noise light generated by the hologram itself, in order to ensure a certain level of signal-to-noise ratio,
The fluctuation in the intensity of the deflected light of the optical deflector is large even at 3 dB, and it is necessary to further reduce this fluctuation.

従来偏向光の強度を補償する方法としては、超
音波光偏向器によつて偏向される主偏向光の1部
を分離した光、または偏向光として用いない非回
折光、−1次回折光等の強度を検出し、これをあ
る標準と比較しその差を検出して、前記超音波光
偏向器に供給する高周波信号のレベルを制御する
制御帰還系を構成する方法がある。限られた帯域
幅で多くの偏向点数を得るために光ビームの径は
通常5mm〜8mmと太く、また偏向媒体中に発生す
る熱的摂乱を受けるのを防ぐため、光ビームの入
射位置を音波を発生する電気音響変換子よりある
程度離す必要がある。前記媒体中の音波の速度
は、3000〜4000m/sと遅い。このためレベルの
制御を受けた音波束が光ビームに作用し偏向光の
強度を変化させるまでには2〜5μsを要する。
それ故、上記のような構成による偏向光の強度変
動を補償する帰還系は低速となり、高速度の光偏
向機能を達成させることができない。
Conventional methods for compensating the intensity of polarized light include separating a part of the main polarized light that is deflected by an ultrasonic optical deflector, or using undiffracted light that is not used as polarized light, -1st-order diffracted light, etc. There is a method of constructing a control feedback system that detects the intensity, compares it with a certain standard, detects the difference, and controls the level of the high-frequency signal supplied to the ultrasonic optical deflector. In order to obtain a large number of deflection points with a limited bandwidth, the diameter of the light beam is usually large, 5 mm to 8 mm, and the incident position of the light beam must be adjusted to prevent thermal disturbances generated in the deflection medium. It is necessary to keep it a certain distance away from the electroacoustic transducer that generates the sound waves. The speed of sound waves in the medium is slow, 3000 to 4000 m/s. Therefore, it takes 2 to 5 μs for the level-controlled sound wave flux to act on the light beam and change the intensity of the polarized light.
Therefore, the feedback system configured as described above for compensating for the intensity fluctuation of the deflected light becomes slow, and cannot achieve a high-speed optical deflection function.

本考案の目的は超音波光偏向器のもつ偏向光強
度の変動が補償されしかも高速度に光ビームを偏
向する機能を有する超音波光偏向装置を提供する
ことである。
An object of the present invention is to provide an ultrasonic optical deflector that can compensate for fluctuations in the intensity of deflected light of an ultrasonic optical deflector and has the function of deflecting a light beam at high speed.

本考案によれば超音波光偏向器と該光偏向器を
アクセスするアクセス信号に応じた、高周波信号
を発する高周波発振器と、前記アクセス信号の符
号を検知し該符号に応じて、前記アクセス信号を
透過または符号を反転する符号反転回路と、前記
符号反転回路より送出される信号に応じたアナロ
グレベルを発生するD/A変換器と、D/A変換
器を出力するアナログレベルに応じて、前記高周
波発振器を発振する高周波信号レベルを制御する
電流制御型減衰器と、該減衰器を透過する高周波
信号を増幅し、前記超音波光偏向器に供給する働
きをなす高周波増幅器とより成り、前記超音波光
偏向器によつて偏向される偏向光強度の帯域特性
が平坦なしかも高速度の偏向が可能な光偏向装置
が得られる。
According to the present invention, an ultrasonic optical deflector, a high frequency oscillator that emits a high frequency signal according to an access signal that accesses the optical deflector, and a high frequency oscillator that detects the code of the access signal and emits the access signal according to the code. a sign inversion circuit that transmits or inverts the sign; a D/A converter that generates an analog level according to the signal sent from the sign inversion circuit; It consists of a current-controlled attenuator that controls the level of a high-frequency signal that oscillates a high-frequency oscillator, and a high-frequency amplifier that amplifies the high-frequency signal that passes through the attenuator and supplies it to the ultrasonic optical deflector. It is possible to obtain an optical deflection device in which the band characteristic of the intensity of the deflected light deflected by the acoustic wave optical deflector is flat and which is capable of high-speed deflection.

次に本考案を図面を参照して詳細に説明する。 Next, the present invention will be explained in detail with reference to the drawings.

第1図は従来からよく知られている超音波光偏
向素子を駆動する基本回路系を示す原理構成図
で、1は超音波光偏向素子、2は6ビツトで表わ
されているアクセス符号4に応じた高周波信号を
発振する高周波発振器、3は高周波発振器2の出
力信号を増幅し超音波光偏向素子1に供給する高
周波広帯域増幅器である。
FIG. 1 is a principle configuration diagram showing a basic circuit system for driving a conventionally well-known ultrasonic optical deflection element, in which 1 is an ultrasonic optical deflection element, and 2 is an access code 4 represented by 6 bits. A high frequency oscillator 3 that oscillates a high frequency signal corresponding to the high frequency oscillator 2 is a high frequency broadband amplifier that amplifies the output signal of the high frequency oscillator 2 and supplies it to the ultrasonic optical deflection element 1.

第2図は第1図の系の典型的な動作特性を示す
図で、高周波発振器2の発振周波数と偏向光強度
との関係を示す。高周波発振器2の発振レベルは
発振周波数に関係なくほぼ一定であるにもかかわ
らず、前に述べた超音波光偏向素子1の特性によ
つて、本図に示すような帯域特性を現わす。高周
波発振器2に入力するアクセス符号4と、出力す
る発振信号の周波数との対応は第2図に示す如く
である。第3図は本発明の第1の実施例を示す原
理構成図であつて、1は超音波光偏向素子、2は
アクセス符号4に応じた高周波正弦波信号を発振
する高周波発振器、6は6ビツトで表わしたアク
セス符号4の符号を検出し、分岐したアクセス符
号9の全ビツトの符号を反転するかまたは反転せ
ずそのまま透過するかの動作をする符号反転回路
であり、たとえばMSBが0であるときは全ビツ
トの符号を反転し、MSBが1のときは全ビツト
をそのまま透過させる動作をする。7は符号反転
回路6によつて符号を定められたアクセス信号1
0に応じたアナログ電流を送出するD/A変換
器、8はD/A変換器7から送出され演算増幅器
5によつて所望のレベルに増幅されたアナログ電
流11に応じて、高周波発振器2の発振信号12
のレベルを制御する電流制御型減衰器、3は上記
のように制御された高周波発振器の出力信号を増
幅し、超音波光偏向素子1に供給する高周波広帯
域増幅器である。
FIG. 2 is a diagram showing typical operating characteristics of the system shown in FIG. 1, and shows the relationship between the oscillation frequency of the high-frequency oscillator 2 and the intensity of the deflected light. Although the oscillation level of the high-frequency oscillator 2 is almost constant regardless of the oscillation frequency, it exhibits a band characteristic as shown in the figure due to the characteristics of the ultrasonic optical deflection element 1 described above. The correspondence between the access code 4 input to the high frequency oscillator 2 and the frequency of the oscillation signal output is as shown in FIG. FIG. 3 is a principle configuration diagram showing the first embodiment of the present invention, in which 1 is an ultrasonic optical deflection element, 2 is a high-frequency oscillator that oscillates a high-frequency sine wave signal according to an access code 4, and 6 is a 6 This is a sign inverting circuit that detects the sign of access code 4 expressed in bits and inverts the sign of all bits of branched access code 9 or passes it through without inverting.For example, if the MSB is 0, At certain times, the sign of all bits is inverted, and when the MSB is 1, all bits are passed through as is. 7 is an access signal 1 whose sign is determined by the sign inversion circuit 6;
A D/A converter 8 outputs an analog current corresponding to 0 to the high-frequency oscillator 2 according to the analog current 11 output from the D/A converter 7 and amplified to a desired level by the operational amplifier 5. Oscillation signal 12
The current-controlled attenuator 3 is a high-frequency broadband amplifier that amplifies the output signal of the high-frequency oscillator controlled as described above and supplies it to the ultrasonic light deflection element 1.

次に本実施例の動作を説明する。 Next, the operation of this embodiment will be explained.

D/A変換器7に入力するアクセス符号9とそ
れから出力するアナログレベル11の対応は第4
図に示す如くであり、ここでは両極性の出力特性
をもつものとする。すなわち、入力アクセス符号
9が全て0すなわち(0,0,…,0)のとき負
の最大レベル、全て1すなわち(1,1,…,
1)のとき正の最大レベルを送出する。いま第3
図において入力アクセス符号4が(0,0,…,
0)であるとする。このアクセス符号4は高周波
発振器2に入力し、高周波発振器2は1なる周
波数の。正弦波信号を発振する。同時に符号反転
回路6はアクセス符号4のMSBが0であるた
め、分岐されて入力するアクセス符号9の全ビツ
トを反転し(1,1,…,1)としてD/A変換
器7に送出する。D/A変換器7は第4図に示す
ような入力符号と出力アナログレベルとの対応関
係を有しているから、正の最大レベルを出力す
る。一方アクセス符号4が(1,1,…,1)で
あるとすると、高周波発振器2は2なる周波数
の正弦波信号を発振する。この場合MBSは1で
あるため、符号反転回路6は入力アクセス符号9
をそのまま透過させる。このときD/A変換器7
の出力アナログレベルは正の最大レベルを出力す
る。したがつて符号反転回路6に入力するアクセ
ス符号9とD/A変換器7を出力するアナログレ
ベルとの対応関係は第5図に示すようになる。
D/A変換器7を出力し演算増幅器5によつて増
幅されたアナログ出力11は高周波発振器2の発
振信号12のレベルを制御する電流制御型減衰器
8の制御電流として供給される。この電流制御型
減衰器8の原理はダイオードのバイアス電流を制
御して抵抗値を変化させるものであり、制御電流
Icと高周波信号の透過率Trfとの関係を表わす特
性の典型的な例は、第6図に示すように非線型特
性をもつ。例えば演算増幅器5のオフセツト電圧
を調整し第6図のIBで示す電流値のバイアス電
流に、先のD/A変換器7のアナログ出力を重畳
させることによつて高周波発振器2の発振信号1
2のレベルをD/A変換器7のアナログ出力11
に応じて変化させることができる。したがつてア
クセス符号4とこの電流制御型減衰器8を通過し
た後の高周波信号レベル14との対応関係は第7
図に示すように、中心に対応するアクセス符号
(1,0,…,0)のときの高周波信号レベルが
低くなる谷状の特性を示す。上記のように制御を
受けた高周波発振器2の出力レベルを線形に増幅
する広帯域高周波増幅器3に入力し、増幅ののち
超音波光偏向素子1に供給する。一方第2図に示
したように、駆動レベルが周波数に対して平坦で
あると、超音波光偏向素子1の偏向する光強度の
帯域特性は中心周波数を最大として山なりとなつ
ている。したがつて本考案の構成をとることによ
つて偏向光強度の帯域特性は演算増幅器5の利得
を正しく設定すれば上記2つの特性が相殺しあつ
て第8図に示すように平坦な特性となる。
The correspondence between the access code 9 input to the D/A converter 7 and the analog level 11 outputted from it is the fourth one.
As shown in the figure, it is assumed here that it has bipolar output characteristics. That is, when the input access codes 9 are all 0, that is (0, 0, ..., 0), the negative maximum level is all 1, that is (1, 1, ...,
1), the maximum positive level is transmitted. Now the third
In the figure, input access code 4 is (0, 0,...,
0). This access code 4 is input to a high frequency oscillator 2, and the high frequency oscillator 2 has a frequency of 1. Oscillates a sine wave signal. At the same time, since the MSB of access code 4 is 0, sign inverting circuit 6 inverts all bits of access code 9 that is branched and inputted, and sends it to D/A converter 7 as (1, 1, ..., 1). . Since the D/A converter 7 has the correspondence relationship between the input code and the output analog level as shown in FIG. 4, it outputs the maximum positive level. On the other hand, if the access code 4 is (1, 1, . . . , 1), the high frequency oscillator 2 oscillates a sine wave signal with a frequency of 2. In this case, since MBS is 1, the sign inversion circuit 6 inputs the input access code 9
pass through as is. At this time, the D/A converter 7
The output analog level of outputs the maximum positive level. Therefore, the correspondence relationship between the access code 9 input to the sign inversion circuit 6 and the analog level output from the D/A converter 7 is as shown in FIG.
An analog output 11 output from the D/A converter 7 and amplified by the operational amplifier 5 is supplied as a control current to a current-controlled attenuator 8 that controls the level of the oscillation signal 12 of the high-frequency oscillator 2. The principle of this current control type attenuator 8 is to change the resistance value by controlling the bias current of the diode.
A typical example of the characteristic representing the relationship between Ic and the transmittance Trf of a high frequency signal has a nonlinear characteristic as shown in FIG. For example, by adjusting the offset voltage of the operational amplifier 5 and superimposing the analog output of the D/A converter 7 on a bias current having a current value indicated by I B in FIG.
2 level to the analog output 11 of the D/A converter 7.
It can be changed according to. Therefore, the correspondence relationship between the access code 4 and the high frequency signal level 14 after passing through the current controlled attenuator 8 is as follows.
As shown in the figure, a valley-like characteristic is shown in which the high-frequency signal level becomes low when the access code (1, 0, . . . , 0) corresponds to the center. The output level of the high-frequency oscillator 2 controlled as described above is input to the broadband high-frequency amplifier 3 that linearly amplifies it, and after amplification is supplied to the ultrasonic optical deflection element 1. On the other hand, as shown in FIG. 2, when the drive level is flat with respect to frequency, the band characteristic of the light intensity deflected by the ultrasonic light deflection element 1 forms a peak with the center frequency being the maximum. Therefore, by adopting the configuration of the present invention, if the gain of the operational amplifier 5 is set correctly, the band characteristics of the polarized light intensity will be flat as shown in FIG. 8, with the above two characteristics canceling each other out. Become.

上記2つの実施例の構成要素の1つである符号
反転回6は市販の集積回路を数個用いて容易にし
かも低廉な価格で構成することができる。
The sign inversion circuit 6, which is one of the constituent elements of the above two embodiments, can be constructed easily and inexpensively using several commercially available integrated circuits.

本考案では電子回路のみで偏向光の強度を一定
化するものであり、前に述べた音波の伝搬が帰還
制御系の中に介在する方法とは異なり、超音波光
偏向素子の偏向速度を低下させることがない 以上説明したように本考案によれば、数少い構
成要素で偏向光強度変動の少い、しかも高速度の
超音波光偏向装置が得られる。
In this invention, the intensity of the deflected light is made constant using only an electronic circuit, and unlike the method described previously in which the propagation of sound waves is interposed in the feedback control system, the deflection speed of the ultrasonic light deflection element is reduced. As explained above, according to the present invention, it is possible to obtain an ultrasonic light deflection device that has a small number of components, has little variation in the intensity of deflected light, and has high speed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の超音波光偏向装置の原理構成
図、第2図は第1図の構成でのアクセス符号と偏
向光強度との対応を表わす図。第3図は本考案の
実施例を表わす図、第4図はD/A変換器の入力
符号と出力レベルとの対応を表わす図。第5図は
符号反転回路の入力符号とD/A変換器の出力レ
ベルとの対応を表わす図。第6図は電流制御型減
衰器の特性曲線、第7図は電流制御型減衰器を出
力する高周波信号のレベルを表わす図、第8図は
第3図に示す実施例の構成を用いたときの偏向光
強度の帯域特性を表わす。 図において1…超音波光偏向素子、2…高周波
発振器、3…高周波広帯域増幅器、4…アクセス
符号、5…演算増幅器、6…符号反転回路、7…
D/A変換器、8…電流制御型減衰器。
FIG. 1 is a diagram showing the principle configuration of a conventional ultrasonic light deflection device, and FIG. 2 is a diagram showing the correspondence between access codes and deflection light intensity in the configuration of FIG. 1. FIG. 3 is a diagram showing an embodiment of the present invention, and FIG. 4 is a diagram showing the correspondence between input codes and output levels of a D/A converter. FIG. 5 is a diagram showing the correspondence between the input sign of the sign inversion circuit and the output level of the D/A converter. Figure 6 shows the characteristic curve of the current-controlled attenuator, Figure 7 shows the level of the high-frequency signal output from the current-controlled attenuator, and Figure 8 shows when the configuration of the embodiment shown in Figure 3 is used. represents the band characteristics of the polarized light intensity. In the figure, 1... Ultrasonic optical deflection element, 2... High frequency oscillator, 3... High frequency broadband amplifier, 4... Access code, 5... Operational amplifier, 6... Sign inversion circuit, 7...
D/A converter, 8...Current control type attenuator.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 超音波光偏向素子と、該超音波光偏向素子の光
偏向位置を指示する並列入力デジタル符号に応じ
た周波数の高周波正弦信号を発生する高周波発振
器と、前記超音波光偏向素子に入力する前記高周
波正弦信号の振幅を制御する電流制御型減衰器
と、該電流制御型減衰器に制御電流を与える手段
とより成り、前記超音波光偏向素子の回折効率が
周波数によらず一定となるように構成し、さら
に、前記制御電流を与える手段を、前記超音波光
偏向素子の偏向効率最大に対応する並列入力デジ
タル符号より大または小なる符号の全ビツトを反
転させる符号反転回路と該符号反転回路の出力を
D/A変換する回路とによつて構成することを特
徴とする超音波光偏向装置。
an ultrasonic light deflection element; a high frequency oscillator that generates a high frequency sine signal having a frequency corresponding to a parallel input digital code indicating a light deflection position of the ultrasonic light deflection element; and the high frequency signal input to the ultrasonic light deflection element. The ultrasonic light deflection element comprises a current-controlled attenuator that controls the amplitude of the sine signal, and means for applying a control current to the current-controlled attenuator, and is configured such that the diffraction efficiency of the ultrasonic light deflection element is constant regardless of the frequency. Further, the means for applying the control current includes a sign inverting circuit for inverting all bits of a code greater or less than a parallel input digital code corresponding to the maximum deflection efficiency of the ultrasonic optical deflection element; 1. An ultrasonic light deflection device comprising a circuit for D/A converting output.
JP4229283U 1983-03-24 1983-03-24 Ultrasonic light deflection device Granted JPS59116930U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4229283U JPS59116930U (en) 1983-03-24 1983-03-24 Ultrasonic light deflection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4229283U JPS59116930U (en) 1983-03-24 1983-03-24 Ultrasonic light deflection device

Publications (2)

Publication Number Publication Date
JPS59116930U JPS59116930U (en) 1984-08-07
JPS6136978Y2 true JPS6136978Y2 (en) 1986-10-27

Family

ID=30172841

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4229283U Granted JPS59116930U (en) 1983-03-24 1983-03-24 Ultrasonic light deflection device

Country Status (1)

Country Link
JP (1) JPS59116930U (en)

Also Published As

Publication number Publication date
JPS59116930U (en) 1984-08-07

Similar Documents

Publication Publication Date Title
US4475182A (en) Focus servo control system for automatically adjusting a relative distance between an objective lens unit and a recording surface of an optical recording medium
EP0229825B1 (en) Apparatus for stabilizing a laser beam
US4162398A (en) Bias control circuit for light modulators
EP3319187B1 (en) Control system using a phase modulation capable acousto-optic modulator for diverting laser output intensity noise to a first order laser light beam and related methods
JPH0447288B2 (en)
US4068197A (en) Apparatus for stabilizing beam for exposure
US4477821A (en) Light modulating apparatus
JPS6136978Y2 (en)
US4629879A (en) Light beam intensity controlling apparatus
US5742425A (en) Technique for electronically stabilizing the ouputs of acoustooptic devices
JPS6136979Y2 (en)
US4370030A (en) Extended resolution light deflector using surface acoustic waves
KR870009351A (en) 3-beam optical pickup diffraction grating control system
JPS5987427A (en) Integrated optical device
JPH0159751B2 (en)
US4447134A (en) Grating signal system using zero order beam of acousto-optic modulator
JP3014132B2 (en) Method and apparatus for detecting parameters of a digitally controllable processing circuit for controlling scanning of a data carrier
JPS598144A (en) Optical information reader
JP3382022B2 (en) Light beam deflection scanner
JPS5824119A (en) Optical modulating device
Pizzo Acousto-Optic & Electro-Optic Modulator Applications
CN116300155A (en) Beam delay correction method and system
JP2615556B2 (en) Tracking servo device
JPS60136715A (en) Ultrasonic optical modulator
KR100286066B1 (en) Optical and optical scanning devices and optical information recording devices