JPS6136910Y2 - - Google Patents

Info

Publication number
JPS6136910Y2
JPS6136910Y2 JP1981062430U JP6243081U JPS6136910Y2 JP S6136910 Y2 JPS6136910 Y2 JP S6136910Y2 JP 1981062430 U JP1981062430 U JP 1981062430U JP 6243081 U JP6243081 U JP 6243081U JP S6136910 Y2 JPS6136910 Y2 JP S6136910Y2
Authority
JP
Japan
Prior art keywords
armature
back electromotive
resistance
electromotive force
winding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1981062430U
Other languages
Japanese (ja)
Other versions
JPS57173036U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1981062430U priority Critical patent/JPS6136910Y2/ja
Publication of JPS57173036U publication Critical patent/JPS57173036U/ja
Application granted granted Critical
Publication of JPS6136910Y2 publication Critical patent/JPS6136910Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Control Of Direct Current Motors (AREA)
  • Dc Machiner (AREA)

Description

【考案の詳細な説明】 この考案は、直流電気動力計のトルク検出方式
に関する。
[Detailed Description of the Invention] This invention relates to a torque detection method for a DC electric dynamometer.

従来の直流電気動力計は、直流電動機または直
流発電機(以下単に直流機と呼ぶ。)の固定子を
回転軸の回りに揺動出来るようにし、固定子と回
転子との間に働くトルクを固定子に連結した秤り
装置や負荷軸につけられた歪検出ゲージによつて
測定するのが一般的手法である。
Conventional DC electric dynamometers allow the stator of a DC motor or DC generator (hereinafter simply referred to as a DC machine) to swing around a rotation axis, and measure the torque acting between the stator and rotor. A common method is to measure with a weighing device connected to the stator or a strain detection gauge attached to the load shaft.

これに対し、直流機のトルクTは一般的に T=A・I・Φ−TM …(1) で表わされる。但し、Aは比例定数 Iは電機子電流 Φは界磁磁束 TMは機械損トルク したがつて、電機子電流I、界磁磁束Φ、機械
損トルクTMなどからトルクTを算出することが
出来る。
On the other hand, the torque T of a DC machine is generally expressed as T=A・I・Φ−T M (1). However, A is a proportional constant I is armature current Φ is field magnetic flux T M is mechanical loss torque Therefore, torque T can be calculated from armature current I, field magnetic flux Φ, mechanical loss torque T M , etc. I can do it.

ところで、一般に磁束Φを直接検出することは
困難であるため、通常、次に示す関係式に基づい
て磁束Φを導出している。
By the way, since it is generally difficult to directly detect the magnetic flux Φ, the magnetic flux Φ is usually derived based on the following relational expression.

Φ=B・B/N …(2) 但し、Bは比例定数 Eは逆起電圧 Nは回転速度 ここで、回転速度Nの正確な計測は比較的容易
であるため、(2)式に基づいて磁束Φを正確に導出
するには、逆起電圧Eの正確な測定が必要となる
わけである。
Φ=B・B/N …(2) However, B is a proportionality constant E is a back electromotive force N is the rotational speed Here, since accurate measurement of the rotational speed N is relatively easy, based on equation (2) In order to accurately derive the magnetic flux Φ, it is necessary to accurately measure the back electromotive force E.

従来、逆起電圧Eを簡単に得る方法として、第
1図aに示す如く、電機子1の端子電圧Vを計測
し、逆起電圧Eとするものがある。すなわち、E
≒Vと見なす方法である。
Conventionally, as a method for easily obtaining the back electromotive force E, there is a method of measuring the terminal voltage V of the armature 1 and using it as the back electromotive force E, as shown in FIG. 1a. That is, E
This is a method that considers ≒V.

しかし、この方法ではとうてい逆起電圧の正確
な計測はできない。何故なら、電機子巻線の等価
回路は、第1図bに示すとおりであり、直流抵抗
分Raを有しているからである。つまり、逆起電
圧をE、電機子巻線の直流抵抗分をRa、電機子
巻線の端子電圧をV、電機子巻線を流れる電流を
Iとすれば、 E=V−1・Ra …(3) である。
However, this method cannot accurately measure the back electromotive force. This is because the equivalent circuit of the armature winding is as shown in FIG. 1b, and has a DC resistance Ra. In other words, if the back electromotive force is E, the DC resistance of the armature winding is Ra, the terminal voltage of the armature winding is V, and the current flowing through the armature winding is I, then E=V-1・Ra... (3).

従つて、この方式ではI・Raに相当する誤差
が常に存在することになり、正確な計測法とは言
い難い。そのため、より正確な逆起電圧を得たい
場合には別の適当な手段にたよらざるを得ない。
Therefore, in this method, an error corresponding to I.Ra always exists, and it cannot be said to be an accurate measurement method. Therefore, if you want to obtain a more accurate back electromotive force, you have no choice but to rely on other appropriate means.

比較的正確に逆起電圧を得る方式として、かつ
比較的ポピユラーなものとして第2図a,bに示
すものがある。
There is a method shown in FIGS. 2a and 2b that is a relatively popular method for obtaining a back electromotive force with relative accuracy.

第2図aは逆起電圧を導出する回路図、第2図
bはその等価回路であり、2は抵抗値R2の抵抗
器、3,4はそれぞれ抵抗値R3,R4の抵抗器、
5,6はそれぞれ電機子1と抵抗器2との間及び
抵抗器3と4との間の端子、7,8は外部電源が
接続される端子である。
Figure 2a is a circuit diagram for deriving the back electromotive force, and Figure 2b is its equivalent circuit, where 2 is a resistor with a resistance value of R2 , and 3 and 4 are resistors with a resistance value of R3 and R4, respectively. ,
5 and 6 are terminals between the armature 1 and the resistor 2 and between the resistors 3 and 4, respectively, and 7 and 8 are terminals to which an external power source is connected.

第2図についてこの方式の原理について説明す
る。
The principle of this system will be explained with reference to FIG.

今、端子7,8に電圧Vが印加されているとす
ると、抵抗器4の両端の電圧VR4及び抵抗器2の
両端の電圧VR2は次式によつて求めることができ
る。
Assuming that a voltage V is now applied to the terminals 7 and 8, the voltage V R4 across the resistor 4 and the voltage VR2 across the resistor 2 can be determined by the following equations.

R4=V・R/R+R …(4) VR2=(V−E)・R/Ra+R …(5) そこで端子5,6間の電圧は ここで、R/R=Ra/Rとなるように各抵抗
値を選定 したとすれば すなわち、端子5,6間の電圧は比率Ra/Rが一定 不変であれば、逆起電圧Eに比例した値となるの
で、電機子電流や電機子電圧の影響を受けずに逆
起電圧Eの検出が出来る。
V R4 = V・R 4 /R 3 +R 4 …(4) V R2 =(V−E)・R 2 /Ra+R 2 …(5) Therefore, the voltage between terminals 5 and 6 is Here, if each resistance value is selected so that R 3 /R 4 =Ra/R 2 In other words, if the ratio Ra/R 2 remains constant, the voltage between terminals 5 and 6 will be a value proportional to the back electromotive force E, so the back electromotive force will increase without being affected by the armature current or armature voltage. E can be detected.

しかしながら、現実には電機子巻線の直流抵抗
分Raの値が運転にともなう温度の変化に応じて
変動するので、誤差が生じてしまい、正確な検出
法とは言えない。つまり、電機子巻線の抵抗Ra
は外気あるいは運転にともなう温度変化によつて
(8)式のように変化する。
However, in reality, the value of the DC resistance Ra of the armature winding fluctuates in response to changes in temperature during operation, resulting in errors and cannot be said to be an accurate detection method. In other words, the armature winding resistance Ra
is caused by outside air or temperature changes associated with driving.
It changes as shown in equation (8).

Ra=Rao(1+αt) …(8) 但し Raoは基準温度における電機子巻線の抵抗 αは抵抗温度係数 tは基準温度と電機子巻線の温度との差の温度 従つて、比率Ra/R2が一定不変である条件の
もとに正確な逆起電圧を測定し得る第2図の方式
では常時正確な計測が期待できない。
Ra = Rao (1 + αt) ...(8) where Rao is the resistance of the armature winding at the reference temperature α is the temperature coefficient of resistance t is the temperature difference between the reference temperature and the temperature of the armature winding Therefore, the ratio Ra/R The method shown in Fig. 2 , which can accurately measure the back electromotive force under the condition that 2 remains constant, cannot be expected to always provide accurate measurements.

この考案は、上記従来の欠点に鑑みてなされた
ものであり、常に正確な逆起電圧を得、もつて正
確なトルクを導出せんとするものである。
This invention was made in view of the above-mentioned drawbacks of the conventional art, and aims to always obtain an accurate back electromotive force and thereby derive an accurate torque.

第3図及び第4図は、この考案の一実施例を示
す回路図であり、第3図は逆起電圧を導出するた
めの回路、第4図は第3図の等価回路である。図
において、9は電機子巻線、10は補極巻線、1
1,12はそれぞれ抵抗値R5.R6の抵抗器、VB
ブラシドロツプ電圧、Riは補極巻線抵抗であ
る。なお、抵抗器11,12の抵抗値R5,R6
間には、R5/R6=Ra/Riなる関係がある。
3 and 4 are circuit diagrams showing an embodiment of this invention, in which FIG. 3 is a circuit for deriving a back electromotive voltage, and FIG. 4 is an equivalent circuit of FIG. 3. In the figure, 9 is an armature winding, 10 is a commutator winding, 1
1 and 12 are resistors with resistance values R 5 and R 6 respectively, V B is a brush drop voltage, and Ri is a commutator winding resistance. Note that there is a relationship R 5 /R 6 =Ra/Ri between the resistance values R 5 and R 6 of the resistors 11 and 12.

この方式は、第2図に示す従来例と略同一であ
るが、第2図に示す従来例にあつては電機子巻線
と直列に外付の抵抗器2を接続しているが、この
考案の方式では直流機内部の補極巻線抵抗を利用
している点で異なり、かつこの相異は以下に述べ
るように逆起電圧の測定値を極めて正確な値とす
る。
This method is almost the same as the conventional example shown in Fig. 2, but in the conventional example shown in Fig. 2, an external resistor 2 is connected in series with the armature winding. The proposed method is different in that it uses a commutator winding resistance inside the DC machine, and this difference makes the measured value of the back electromotive force an extremely accurate value, as described below.

今、第3図、第4図に示すような回路におい
て、端子5.6間の電位差Vを導くと、(7)式で導
かれたのと同様に次式で表わされる。
Now, in the circuits shown in FIGS. 3 and 4, if the potential difference V between the terminals 5 and 6 is derived, it is expressed by the following equation in the same way as it was derived by equation (7).

(8)式を変形すると E=V・(Ra/Ri+1)−VB …(9) すなわち、比率Ra/Riが一定不変であれば電
機子電流や電機子電圧の影響を受けずに逆起電圧
を正確に導出できる。さらに、補極巻線10は電
機子巻線9同様に直流機内部に存在するものであ
り、外気あるいは運転にともなう温度変化も略同
様に変化する。従つて、比率Ra/Riは温度変化
によつても常に一定と考えられる。しかして、正
確な逆起電圧を得ることにより、正確なトルクが
導出できる。
Transforming equation (8), E=V・(Ra/Ri+1)−V B …(9) In other words, if the ratio Ra/Ri remains constant, the back electromotive force will not be affected by the armature current or armature voltage. Voltage can be derived accurately. Furthermore, the commutator winding 10 is present inside the DC machine like the armature winding 9, and the temperature changes due to outside air or operation in substantially the same way. Therefore, the ratio Ra/Ri is considered to be always constant even when the temperature changes. Therefore, by obtaining an accurate back electromotive force, accurate torque can be derived.

以上のように、この考案によれば電機子巻線抵
抗と補極巻線抵抗との比率と同一の比率をもつた
R5,R6を直列接続して電機子に対し並列に挿入
し、電機子巻線と、この電機子巻線と同様に直流
機内部に存在する補極巻線との接続点及び抵抗
R5とR6との接続点間の電位差Vをもとに逆起電
圧E=V・Ra+Ri/Ri−VBを得、さらにこの逆
起電 圧をもとにトルクを導出するものとしているの
で、電機子電流や電機子電圧の影響を受けずに、
又、電機子巻線温度が変動しても影響を受けず
に、正確な逆起電圧を得ることができ、従つて正
確なトルクを導出することができる。
As described above, according to this invention, the armature winding resistance and the commutating pole winding resistance have the same ratio.
R 5 and R 6 are connected in series and inserted in parallel to the armature, and the connection point and resistance between the armature winding and the commutator winding that exists inside the DC machine as well as this armature winding
Based on the potential difference V between the connection point of R 5 and R 6 , the back electromotive force E=V・Ra+Ri/Ri−V B is obtained, and the torque is further derived based on this back electromotive force. , without being affected by armature current or armature voltage.
Further, even if the armature winding temperature fluctuates, an accurate back electromotive voltage can be obtained without being affected, and therefore an accurate torque can be derived.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図はそれぞれ直流機の逆起電圧
を得るための回路を示す回路図、第3図及び第4
図はこの考案の一実施例を示す回路図である。 図において、1は電機子、2〜4及び11,1
2は抵抗器、9は電機子巻線、10は補極巻線で
ある。なお、各図中、同一符号は、同一あるいは
相当部分を示すものとする。
Figures 1 and 2 are circuit diagrams showing circuits for obtaining back electromotive force of a DC machine, Figures 3 and 4 respectively.
The figure is a circuit diagram showing an embodiment of this invention. In the figure, 1 is the armature, 2 to 4 and 11,1
2 is a resistor, 9 is an armature winding, and 10 is a commutator winding. In each figure, the same reference numerals indicate the same or corresponding parts.

Claims (1)

【実用新案登録請求の範囲】 直流機の電機子巻線抵抗Raと補極巻線抵抗Ri
との抵抗比Ra/Riと同一比の抵抗器R5,R6を直
列接続して、電機子に対し並列に挿入し、上記電
機子巻線と補極巻線との接続点、及び抵抗器R5
とR6との接続点間の電位差Vから上記直流機の
逆起電圧 E=V×Ra+Ri/Ri−VB 但しVBはブラシドロツプ電圧 を導出し、かつ導出された逆起電圧をもとにトル
クを導出するようにしたことを特徴とする電気動
力計。
[Scope of claim for utility model registration] Armature winding resistance Ra and commutator winding resistance Ri of a DC machine
Resistors R 5 and R 6 with the same resistance ratio Ra/Ri are connected in series and inserted in parallel to the armature, and the connection point between the armature winding and the commutator winding, and the resistance Equipment R 5
The back electromotive force of the above DC machine is calculated from the potential difference V between the connection point between R6 and R6 . An electric dynamometer characterized by deriving torque.
JP1981062430U 1981-04-27 1981-04-27 Expired JPS6136910Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1981062430U JPS6136910Y2 (en) 1981-04-27 1981-04-27

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1981062430U JPS6136910Y2 (en) 1981-04-27 1981-04-27

Publications (2)

Publication Number Publication Date
JPS57173036U JPS57173036U (en) 1982-10-30
JPS6136910Y2 true JPS6136910Y2 (en) 1986-10-25

Family

ID=29858616

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1981062430U Expired JPS6136910Y2 (en) 1981-04-27 1981-04-27

Country Status (1)

Country Link
JP (1) JPS6136910Y2 (en)

Also Published As

Publication number Publication date
JPS57173036U (en) 1982-10-30

Similar Documents

Publication Publication Date Title
US4785242A (en) Position detecting apparatus using multiple magnetic sensors for determining relative and absolute angular position
JP3183759B2 (en) Load measuring device
JPH1084688A (en) Sensor for detecting abnormality in motor and its method
US4762007A (en) Torque measuring apparatus
US11228265B2 (en) Rotor position sensing system for permanent magnet synchronous motors and related methods
US4091662A (en) Apparatus for testing the performance of electric motors
JPS6136910Y2 (en)
CN113125952A (en) Method for testing back electromotive force of permanent magnet rotor motor
US7043395B2 (en) Method for detecting the magnetic flux the rotor position and/or the rotational speed
JP2001255220A (en) Load torque measuring instrument
JPWO2020035693A5 (en)
US4435987A (en) Device for correcting torque detected by an electric dynamometer
RU2044274C1 (en) Stand for testing precision angular velocity gyroscopic pickup
JP2000205972A (en) Apparatus for measuring temperature of rotor
US4416160A (en) Apparatus for detecting torque in electric dynamometer
JP3058406B2 (en) Rotation amount measuring device
CN109962648B (en) Motor zero position detection method and system
JPH048385Y2 (en)
CN1712970B (en) System and method for deterining wheel speed
CN114236389B (en) Online demagnetizing detection system for elevator permanent magnet host
JPH0310054B2 (en)
CN118050637A (en) Permanent magnet motor detection system, method and device, storage medium and electronic equipment
Robinson Analog tachometers
JPS5933846B2 (en) Electric dynamometer detection torque correction method
JPS586379B2 (en) Field voltage and field current measuring device for brushless rotating electric machines